Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Matrix Biol ; 119: 57-81, 2023 05.
Article in English | MEDLINE | ID: mdl-37137584

ABSTRACT

Lysophosphatidic acid (LPA) is a lysophospholipid that signals through six G-protein coupled receptors (LPARs), LPA1 to LPA6. LPA has been described as a potent modulator of fibrosis in different pathologies. In skeletal muscle, LPA increases fibrosis-related proteins and the number of fibro/adipogenic progenitors (FAPs). FAPs are the primary source of ECM-secreting myofibroblasts in acute and chronic damage. However, the effect of LPA on FAPs activation in vitro has not been explored. This study aimed to investigate FAPs' response to LPA and the downstream signaling mediators involved. Here, we demonstrated that LPA mediates FAPs activation by increasing their proliferation, expression of myofibroblasts markers, and upregulation of fibrosis-related proteins. Pretreatment with the LPA1/LPA3 antagonist Ki16425 or genetic deletion of LPA1 attenuated the LPA-induced FAPs activation, resulting in decreased expression of cyclin e1, α-SMA, and fibronectin. We also evaluated the activation of the focal adhesion kinase (FAK) in response to LPA. Our results showed that LPA induces FAK phosphorylation in FAPs. Treatment with the P-FAK inhibitor PF-228 partially prevented the induction of cell responses involved in FAPs activation, suggesting that this pathway mediates LPA signaling. FAK activation controls downstream cell signaling within the cytoplasm, such as the Hippo pathway. LPA induced the dephosphorylation of the transcriptional coactivator YAP (Yes-associated protein) and promoted direct expression of target pathway genes such as Ctgf/Ccn2 and Ccn1. The blockage of YAP transcriptional activity with Super-TDU further confirmed the role of YAP in LPA-induced FAPs activation. Finally, we demonstrated that FAK is required for LPA-dependent YAP dephosphorylation and the induction of Hippo pathway target genes. In conclusion, LPA signals through LPA1 to regulate FAPs activation by activating FAK to control the Hippo pathway.


Subject(s)
Hippo Signaling Pathway , Lysophospholipids , Humans , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Lysophospholipids/pharmacology , Lysophospholipids/metabolism , Muscle, Skeletal/metabolism , Fibrosis
2.
Front Cell Neurosci ; 17: 1288676, 2023.
Article in English | MEDLINE | ID: mdl-38164435

ABSTRACT

The ependyma of the spinal cord is a latent stem cell niche that is reactivated by injury, generating new cells that migrate to the lesion site to limit the damage. The mechanisms by which ependymal cells are reactivated after injury remain poorly understood. ATP has been proposed to act as a diffusible "danger signal" to alert about damage and start repair. Indeed, spinal cord injury (SCI) generates an increase in extracellular ATP around the lesion epicenter that lasts for several hours and affects the functional outcome after the damage. The P2X7 receptor (P2X7r) has functional properties (e.g., low sensitivity for ATP, high permeability for Ca2+) that makes it a suitable candidate to act as a detector of tissue damage. Because ependymal cells express functional P2X7r that generate an inward current and regenerative Ca2+ waves, we hypothesize that the P2X7r has a main role in the mechanisms by which progenitor-like cells in the ependyma react to tissue damage. To test this possibility, we simulated the P2X7r activation that occurs after SCI by in vivo intraspinal injection of the selective agonist BzATP nearby the central canal. We found that BzATP rescued ependymal cells from quiescence by triggering a proliferative response similar to that generated by injury. In addition, P2X7r activation by BzATP induced a shift of ependymal cells to a glial fibrillary acidic protein (GFAP) phenotype similar to that induced by injury. However, P2X7r activation did not trigger the migration of ependyma-derived cells as occurs after tissue damage. Injection of BzATP induced the expression of connexin 26 (Cx26) in ependymal cells, an event needed for the proliferative reaction after injury. BzATP did not induce these changes in ependymal cells of P2X7-/- mice supporting a specific action on P2X7r. In vivo blockade of P2X7r with the potent antagonist AZ10606120 reduced significantly the injury-induced proliferation of ependymal cells. Our data indicate that P2X7r has a key role in the "awakening" of the ependymal stem cell niche after injury and suggest purinergic signaling is an interesting target to improve the contribution of endogenous progenitors to repair.

3.
J Fungi (Basel) ; 8(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36294673

ABSTRACT

Hematopoietic stem cells (HSCs), a multipotent and self-renewing population responsible for the generation and maintenance of blood cells, have been the subject of numerous investigations due to their therapeutic potential. It has been shown that these cells are able to interact with pathogens through the TLRs that they express on their surface, affecting the hematopoiesis process. However, the interaction between hematopoietic stem and progenitor cells (HSPC) with fungal pathogens such as Histoplasma capsulatum has not been studied. Therefore, the objective of the present study was to determine if the interaction of HSPCs with H. capsulatum yeasts affects the hematopoiesis, activation, or proliferation of these cells. The results indicate that HSPCs are able to adhere to and internalize H. capsulatum yeasts through a mechanism dependent on TLR2, TLR4, and Dectin-1; however, this process does not affect the survival of the fungus, and, on the contrary, such interaction induces a significant increase in the expression of IL-1ß, IL-6, IL-10, IL-17, TNF-α, and TGF-ß, as well as the immune mediators Arg-1 and iNOS. Moreover, H. capsulatum induces apoptosis and alters HSPC proliferation. These findings suggest that H. capsulatum directly modulates the immune response exerted by HPSC through PRRs, and this interaction could directly affect the process of hematopoiesis, a fact that could explain clinical manifestations such as anemia and pancytopenia in patients with severe histoplasmosis, especially in those with fungal spread to the bone marrow.

4.
PeerJ ; 10: e14019, 2022.
Article in English | MEDLINE | ID: mdl-36168438

ABSTRACT

Background: Maize (Zea mays L.) is a staple crop cultivated on a global scale. However, its ability to feed the rapidly growing human population may be impaired by climate change, especially if it has low climatic niche and range lability. One important question requiring clarification is therefore whether maize shows high niche and range lability. Methods: We used the COUE scheme (a unified terminology representing niche centroid shift, overlap, unfilling and expansion) and species distribution models to study the niche and range changes between maize and its wild progenitors using occurrence records of maize, lowland teosinte (Zea mays ssp. parviglumis) and highland teosinte (Zea mays ssp. mexicana), respectively, as well as explore the mechanisms underlying the niche and range changes. Results: In contrast to maize in Mexico, maize did not conserve its niche inherited from lowland and highland teosinte at the global scale. The niche breadth of maize at the global scale was wider than that of its wild progenitors (ca. 5.21 and 3.53 times wider compared with lowland and highland teosinte, respectively). Compared with its wild progenitors, maize at global scale can survive in regions with colder, wetter climatic conditions, as well as with wider ranges of climatic variables (ca. 4.51 and 2.40 times wider compared with lowland and highland teosinte, respectively). The niche changes of maize were largely driven by human introduction and cultivation, which have exposed maize to climatic conditions different from those experienced by its wild progenitors. Small changes in niche breadth had large effects on the magnitude of range shifts; changes in niche breadth thus merit increased attention. Discussion: Our results demonstrate that maize shows wide climatic niche and range lability, and this substantially expanded its realized niche and potential range. Our findings also suggest that niche and range shifts probably triggered by natural and artificial selection in cultivation may enable maize to become a global staple crop to feed the growing population and adapting to changing climatic conditions. Future analyses are needed to determine the limits of the novel conditions that maize can tolerate, especially relative to projected climate change.


Subject(s)
Zea mays , Humans , Mexico
5.
Front Cell Dev Biol ; 10: 934571, 2022.
Article in English | MEDLINE | ID: mdl-35859896

ABSTRACT

Background: In several non-mammalian species, auditory receptors undergo cell renewal after damage. This has raised hope of finding new options to treat human sensorineural deafness. Uncertainty remains as to the triggering mechanisms and whether hair cells are regenerated even under normal conditions. In the present investigation, we explored the auditory organ in the crocodile to validate possible ongoing natural hair cell regeneration. Materials and Methods: Two male Cuban crocodiles (Crocodylus rhombifer) and an adult male African Dwarf crocodile (Osteolaemus tetraspis) were analyzed using transmission electron microscopy and immunohistochemistry using confocal microscopy. The crocodile ears were fixed in formaldehyde and glutaraldehyde and underwent micro-computed tomography (micro-CT) and 3D reconstruction. The temporal bones were drilled out and decalcified. Results: The crocodile papilla basilaris contained tall (inner) and short (outer) hair cells surrounded by a mosaic of tightly connected supporting cells coupled with gap junctions. Afferent neurons with and without ribbon synapses innervated both hair cell types. Supporting cells occasionally showed signs of trans-differentiation into hair cells. They expressed the MAFA and SOX2 transcription factors. Supporting cells contained organelles that may transfer genetic information between cells, including the efferent nerve fibers during the regeneration process. The tectorial membrane showed signs of being replenished and its architecture being sculpted by extracellular exosome-like proteolysis. Discussion: Crocodilians seem to produce new hair cells during their life span from a range of supporting cells. Imposing efferent nerve fibers may play a role in regeneration and re-innervation of the auditory receptors, possibly triggered by apoptotic signals from wasted hair cells. Intercellular signaling may be accomplished by elaborate gap junction and organelle systems, including neural emperipolesis. Crocodilians seem to restore and sculpt their tectorial membranes throughout their lives.

6.
J Leukoc Biol ; 112(1): 31-45, 2022 07.
Article in English | MEDLINE | ID: mdl-35674096

ABSTRACT

Leukemogenesis is proposed to result from the continuous interplay between inducive bone marrow (BM) microenvironments and malignant precursor cells. Recent findings point toward an abnormal production of proinflammatory mediators within the BM from acute lymphoblastic leukemia (ALL) patients, although the mechanism underlying this phenomenon is uncertain. Here, we have identified 3 miRNAs, miR-146a-5p, miR-181b-5p, and miR-199b-3p, as potential candidates for TLR8 ligation, which are overexpressed in ALL and show agonist functional binding. When purified from ALL exosomes, they demonstrated their capacity of inducing cytokine production by both, hematopoietic and stromal BM cells. Of note, the exposure of BM cells from ALL patients to the proinflammatory milieu resulting from these miRNAs agonist activity revealed the proliferation of normal progenitors, while poor effects were recorded in the leukemic counterpart. The unconventional roles of the tumor-secreted miRNAs as TLR8 agonist ligands may provide a novel mechanism contributing a tumor-microenvironment feedback loop by switching on proinflammatory pathways that further activate normal hematopoietic precursors and support ALL progression. Secreted B-ALL TLR8-agonist miRNAs are involved in the promotion of proinflammatory microenvironments that target normal hematopoietic cells. B-lineage ALL cells secrete exosomes containing miRNAs endowed with the ability of functionally binding TLR8 in hematopoietic and BM mesenchymal stromal cells. Upon TLR8 signaling, the activation of the NF-kB pathway induces secretion of proinflammatory cytokines that, in turn, promotes cell proliferation in early hematopoietic cell populations, driving a tumor-microenvironment-hematopoietic activation feedback loop that may reduce the normal hematopoietic stem and progenitor cell compartment and facilitate cancer progression.


Subject(s)
MicroRNAs , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Bone Marrow/pathology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Toll-Like Receptor 8/metabolism , Tumor Microenvironment
7.
Hematology ; 27(1): 476-487, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35413231

ABSTRACT

OBJECTIVE: The interplay between intrinsic and extrinsic elements involved in the physiology of hematopoietic cells is not completely understood. In the present study, we analyzed the transcriptional profiles of human cord blood-derived hematopoietic stem cells (HSCs), as well as myeloid (MPCs) and erythroid (EPCs) progenitors, and assessed their proliferation and expansion kinetics in vitro. METHODS: All cell populations were obtained by cell-sorting, and were cultured in liquid cultures supplemented with different cytokine combinations. Their gene expression profiles were determined by RNA microarrays right after cell-sorting, before culture. RESULTS: HSCs showed the highest proliferation and expansion capacities in culture, and were found to be more closely related, in transcriptional terms, to MPCs than to EPCs. This correlated with the fact that after 30 days, only cultures initiated with HSCs and MPCs were sustained. Expression of cell cycle and cell division-related genes was enriched in EPCs. Such cells showed significantly higher proliferation than MPCs, however, their expansion potential was reduced, so that cultures initiated with EPCs declined after 15 days and became exhausted by day 30. Proliferation and expansion of HSCs and EPCs were higher in the presence of a cytokine combination that favors erythropoiesis, whereas the growth of MPCs was higher under a cytokine combination that favors myelopoiesis. CONCLUSION: This study shows a correlation between the transcriptional profiles of HSCs, MPCs, and EPCs, and their respective in vitro growth under particular culture conditions. These results may be relevant in the development of ex vivo systems for the expansion of hematopoietic cells for clinical application.


Subject(s)
Cytokines , Hematopoietic Stem Cells , Antigens, CD34/metabolism , Cell Proliferation , Cells, Cultured , Cytokines/genetics , Fetal Blood/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/physiology , Humans , Transcriptome
8.
J Cell Physiol ; 237(4): 2198-2210, 2022 04.
Article in English | MEDLINE | ID: mdl-35040139

ABSTRACT

Pericytes and glial cells are known to collaborate in dental pulp tissue repair. Cell-based therapies that stimulate these stromal components may be of therapeutic relevance for partially vital dental pulp conditions. This study aimed to examine the early effect of photobiomodulation (PBM) in pericytes from experimentally injured pulp tissue. To accomplish this, we used the Nestin-GFP/NG2-DsRed mice, which could allow the identification of distinct pericyte phenotypes. We discovered the presence of two pericytes subsets within the dental pulp, the Nestin + NG2+ (type-2) and Nestin- NG2+ (type-1). Upon injury, PBM treatment led to a significant increase in Nestin+ cells and pericytes. This boost was mainly conferred by the more committed pericyte subset (NestinNG2+ ). PBM also stimulated terminal blood vessels sprouting adjacent to the injury site while maintaining signs of pulp vitality. In vitro, PBM induced VEGF upregulation, improved dental pulp cells proliferation and migration, and favored their mineralization potential. Herein, different subsets of perivascular cells were unveiled in the pulp tissue. PBM enhanced not only NG2+ cells but nestin-expressing progenitors in the injured dental pulp.


Subject(s)
Dental Pulp/cytology , Neuroglia , Pericytes , Animals , Mice , Nestin/genetics , Transgenes
9.
Cell Biol Int ; 45(7): 1459-1467, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33675269

ABSTRACT

Although the existence of the renin-angiotensin system (RAS) in the bone marrow is clear, the exact role of this system in hematopoiesis has not yet been fully characterized. Here the direct role of angiotensin II (AngII) in hematopoietic stem cells (HSCs), common myeloid progenitors (CMPs), granulocyte/monocyte progenitors (GMPs), and megakaryocytes/erythroid progenitors (MEPs), using a system of coculture with stromal S17 cells. Flow cytometry analysis showed that AngII increases the percentage of HSC and GMP, while reducing CMP with no effect on MEP. According to these data, AngII increased the total number of mature Gr-1+ /Mac-1+ cells without changes in Terr119+ cells. AngII does not induce cell death in the population of LSK cells. In these populations, treatment with AngII decreases the expression of Ki67+ protein with no changes in the Notch1 expression, suggesting a role for AngII on the quiescence of immature cells. In addition, exposure to AngII from murine bone marrow cells increased the number of CFU-GM and BFU-E in a clonogenic assay. In conclusion, our data showed that AngII is involved in the regulation of hematopoiesis with a special role in HSC, suggesting that AngII should be evaluated in coculture systems, especially in cases that require the expansion of these cells in vitro, still a significant challenge for therapeutic applications in humans.


Subject(s)
Angiotensin II/pharmacology , Hematopoietic Stem Cells/drug effects , Stromal Cells/drug effects , Animals , Cell Differentiation , Cell Line , Coculture Techniques , Hematopoiesis , Hematopoietic Stem Cells/cytology , Mice , Stromal Cells/metabolism
10.
J Bone Miner Res ; 36(6): 1159-1173, 2021 06.
Article in English | MEDLINE | ID: mdl-33529374

ABSTRACT

Skeletal muscle has remarkable regenerative ability after injury. Mesenchymal fibro-adipogenic progenitors (FAPs) are necessary, active participants during this repair process, but the molecular signatures of these cells and their functional relevance remain largely unexplored. Here, using a lineage tracing mouse model (Gli1-CreER Tomato), we demonstrate that Gli1 marks a small subset of muscle-resident FAPs with elevated Hedgehog (Hh) signaling. Upon notexin muscle injury, these cells preferentially and rapidly expanded within FAPs. Ablation of Gli1+ cells using a DTA mouse model drastically reduced fibroblastic colony-forming unit (CFU-F) colonies generated by muscle cells and impaired muscle repair at 28 days. Pharmacologic manipulation revealed that Gli1+ FAPs rely on Hh signaling to increase the size of regenerating myofiber. Sorted Gli1+ FAPs displayed superior clonogenicity and reduced adipogenic differentiation ability in culture compared to sorted Gli1- FAPs. In a glycerol injury model, Gli1+ FAPs were less likely to give rise to muscle adipocytes compared to other FAPs. Further cell ablation and Hh activator/inhibitor treatments demonstrated their dual actions in enhancing myogenesis and reducing adipogenesis after injury. Examining single-cell RNA-sequencing dataset of FAPs from normal mice indicated that Gli1+ FAPs with increased Hh signaling provide trophic signals to myogenic cells while restrict their own adipogenic differentiation. Collectively, our findings identified a subpopulation of FAPs that play an essential role in skeletal muscle repair. © 2021 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Adipogenesis , Hedgehog Proteins , Animals , Cell Differentiation , Mice , Muscle Development , Muscle, Skeletal , Zinc Finger Protein GLI1
11.
Blood Cells Mol Dis ; 85: 102485, 2020 11.
Article in English | MEDLINE | ID: mdl-32836190

ABSTRACT

In vitro growth of hematopoietic cells depends on the presence of hematopoietic cytokines. To date, it is unclear if these cells would be able to respond to non-hematopoietic cytokines. In the present study, we have explored this by culturing human hematopoietic cells in presence of neurogenic cytokines. Lineage-negative (Lin-) umbilical cord blood (UCB)-derived cells -enriched for hematopoietic stem and progenitor cells- were cultured in presence of different combinations of hematopoietic cytokines, neurotrophins, epidermal growth factor, fibroblast growth factor, and neurogenic culture media, in a 3-phase culture system. A proportion (1-22%) of Lin- UCB hematopoietic cells normally express neural markers and are capable of responding to neural cytokines. Neural cytokines did not have effects on hematopoietic cell proliferation; however, we observed generation of neural-like cells, assessed by morphology, and a significant increase in the proportion of cells expressing neural markers. Such neural-like cells, however, retained expression of hematopoietic markers. It seems that under our culture conditions, no actual transdifferentiation of hematopoietic cells into neural cells occurred; instead, the cells generated in culture seem to be hematopoietic cells that acquired neural features upon contact with neurogenic factors. The identity of UCB cells that acquired a neural phenotype is still unclear.


Subject(s)
Fetal Blood/cytology , Hematopoietic Stem Cells/cytology , Neurogenesis , Cell Culture Techniques , Cells, Cultured , Cytokines/metabolism , Hematopoietic Stem Cells/metabolism , Humans , Nerve Growth Factors/metabolism , Neurons/cytology , Neurons/metabolism
12.
Biol Res ; 53(1): 22, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32430065

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is a devastating genetic muscular disorder with no effective treatment that is caused by the loss of dystrophin. Human induced pluripotent stem cells (hiPSCs) offer a promising unlimited resource for cell-based therapies of muscular dystrophy. However, their clinical applications are hindered by inefficient myogenic differentiation, and moreover, the engraftment of non-transgene hiPSC-derived myogenic progenitors has not been examined in the mdx mouse model of DMD. METHODS: We investigated the muscle regenerative potential of myogenic progenitors derived from hiPSCs in mdx mice. The hiPSCs were transfected with enhanced green fluorescent protein (EGFP) vector and defined as EGFP hiPSCs. Myogenic differentiation was performed on EGFP hiPSCs with supplementary of basic fibroblast growth factor, forskolin, 6-bromoindirubin-3'-oxime as well as horse serum. EGFP hiPSCs-derived myogenic progenitors were engrafted into mdx mice via both intramuscular and intravenous injection. The restoration of dystrophin expression, the ratio of central nuclear myofibers, and the transplanted cells-derived satellite cells were accessed after intramuscular and systemic transplantation. RESULTS: We report that abundant myogenic progenitors can be generated from hiPSCs after treatment with these three small molecules, with consequent terminal differentiation giving rise to mature myotubes in vitro. Upon intramuscular or systemic transplantation into mdx mice, these myogenic progenitors engrafted and contributed to human-derived myofiber regeneration in host muscles, restored dystrophin expression, ameliorated pathological lesions, and seeded the satellite cell compartment in dystrophic muscles. CONCLUSIONS: This study demonstrates the muscle regeneration potential of myogenic progenitors derived from hiPSCs using non-transgenic induction methods. Engraftment of hiPSC-derived myogenic progenitors could be a potential future therapeutic strategy to treat DMD in a clinical setting.


Subject(s)
Induced Pluripotent Stem Cells/transplantation , Muscular Dystrophy, Duchenne/therapy , Animals , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Green Fluorescent Proteins , Humans , Male , Mice , Mice, Inbred C57BL
13.
Dev Biol ; 462(1): 101-115, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32243888

ABSTRACT

Drosophila Larval hematopoiesis takes place at the lymph gland, where myeloid-like progenitors differentiate into Plasmatocytes and Crystal Cells, under regulation of conserved signaling pathways. It has been established that the Notch pathway plays a specific role in Crystal Cell differentiation and maintenance. In mammalian hematopoiesis, the Notch pathway has been proposed to fulfill broader functions, including Hematopoietic Stem Cell maintenance and cell fate decision in progenitors. In this work we describe different roles that Notch plays in the lymph gland. We show that Notch, activated by its ligand Serrate, expressed at the Posterior Signaling Center, is required to restrain Core Progenitor differentiation. We define a novel population of blood cell progenitors that we name Distal Progenitors, where Notch, activated by Serrate expressed in Lineage Specifying Cells at the Medullary Zone/Cortical Zone boundary, regulates a binary decision between Plasmatocyte and Crystal Cell fates. Thus, Notch plays context-specific functions in different blood cell progenitor populations of the Drosophila lymph gland.


Subject(s)
Hematopoietic Stem Cells/cytology , Lymph Nodes/metabolism , Receptors, Notch/metabolism , Animals , Blood Cells/cytology , Cell Differentiation/physiology , Cell Lineage , Drosophila Proteins/metabolism , Drosophila Proteins/physiology , Drosophila melanogaster/metabolism , Hematopoiesis/physiology , Jagged-1 Protein/metabolism , Larva/metabolism , Receptors, Notch/physiology , Signal Transduction/physiology
14.
J Neurosci ; 40(11): 2246-2258, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32001613

ABSTRACT

The ependyma of the adult spinal cord is a latent stem cell niche that is reactivated by spinal cord injury contributing new cells to the glial scar. The cellular events taking place in the early stages of the reaction of the ependyma to injury remain little understood. Ependymal cells are functionally heterogeneous with a mitotically active subpopulation lining the lateral domains of the central canal (CC) that are coupled via gap junctions. Gap junctions and connexin hemichannels are key regulators of the biology of neural progenitors during development and in adult neurogenic niches. Thus, we hypothesized that communication via connexins in the CC is developmentally regulated and may play a part in the reactivation of this latent stem cell niche after injury. To test these possibilities, we combined patch-clamp recordings of ependymal cells with immunohistochemistry for various connexins in the neonatal and the adult (P > 90) normal and injured spinal cord of male and female mice. We find that coupling among ependymal cells is downregulated as postnatal development proceeds but increases after injury, resembling the immature CC. The increase in gap junction coupling in the adult CC was paralleled by upregulation of connexin 26, which correlated with the resumption of proliferation and a reduction of connexin hemichannel activity. Connexin blockade reduced the injury-induced proliferation of ependymal cells. Our findings suggest that connexins are involved in the early reaction of ependymal cells to injury, representing a potential target to improve the contribution of the CC stem cell niche to repair.SIGNIFICANCE STATEMENT Ependymal cells in the adult spinal cord are latent progenitors that react to injury to support some degree of endogenous repair. Understanding the mechanisms by which these progenitor-like cells are regulated in the aftermath of spinal cord injury is critical to design future manipulations aimed at improving healing and functional recovery. Gap junctions and connexin hemichannels are key regulators of the biology of neural progenitors during development and in adult neurogenic niches. We find here that connexin signaling in the ependyma changes after injury of the adult spinal cord, functionally resembling the immature active-stem cell niche of neonatal animals. Our findings suggest that connexins in ependymal cells are potential targets to improve self-repair of the spinal cord.


Subject(s)
Connexins/physiology , Nerve Tissue Proteins/physiology , Spinal Cord Injuries/physiopathology , Stem Cell Niche/physiology , Age Factors , Amino Acid Sequence , Animals , Animals, Newborn , Cell Membrane/physiology , Cell Membrane Permeability , Connexins/antagonists & inhibitors , Ependyma/cytology , Ependyma/growth & development , Female , Fluorescent Dyes/pharmacokinetics , Gap Junctions/physiology , Hydrogels , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/antagonists & inhibitors , Patch-Clamp Techniques , Peptides/chemistry , Peptides/pharmacology , Poloxamer/pharmacology , Random Allocation
15.
Nutrition ; 69: 110540, 2020 01.
Article in English | MEDLINE | ID: mdl-31525700

ABSTRACT

OBJECTIVE: It is well known that protein malnutrition (PM) states can affect hematopoiesis, leading to severe leukopenia and reduced number of granulocytes, which act as the first line of defense, and are important to the innate immune response. The aim of this study was to elucidate some of the mechanisms involved in the impairment of granulopoiesis in PM. METHODS: Male C57BL/6 mice were submitted to PM with a low-protein diet containing 2% protein. Control mice were fed a 12% protein-containing diet. Bone marrow histology and the percentage of granulocytic progenitors were evaluated after in vivo granulocyte-colony stimulating factor (G-CSF) stimulus. Cell proliferation, STAT3 signaling, and the expression of G-CSF receptor were evaluated in hematopoietic progenitor cells. RESULTS: Malnourished animals presented with leukopenia associated with reduced number of granulocytes and reduced percentage of granulocytic progenitors; however, no differences were observed in the regulatory granulopoietic cytokine G-CSF. Additionally, the malnourished group presented with impaired response to in vivo G-CSF stimulus compared with control animals. PM was implicated in decreased ability of c-Kit+ cells to differentiate into myeloid progenitor cells and downregulated STAT3 signaling. Furthermore, the malnourished group exhibited reduced expression of G-CSF receptor on granule-monocytic progenitors. This reduced expression was not completely reversible with G-CSF treatment. CONCLUSIONS: This study implies that PM promotes intrinsic alterations to hematopoietic precursors, which result in hematologic changes, mainly neutropenia, observed in peripheral blood in PM states.


Subject(s)
Diet, Protein-Restricted/adverse effects , Granulocyte Precursor Cells/metabolism , Neutropenia/blood , Protein Deficiency/blood , Receptors, Granulocyte Colony-Stimulating Factor/blood , Animals , Male , Mice , Mice, Inbred C57BL , Neutropenia/etiology , Protein Deficiency/etiology
16.
J Cell Commun Signal ; 14(1): 131-133, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31865519

ABSTRACT

Skeletal muscle fibro-adipogenic progenitors (FAPs) are tissue-resident connective tissue cells and the main cellular source of pathological fibro-fatty scar associated with muscle disorders. Although our knowledge about skeletal muscle mesenchymal progenitor cells has exploded in the past decade, we still lack information about their origin, fate, gene regulation, function, and stemness. A recent study by Underhill and colleagues, published in Cell Stem Cell, described the last census of Hic1 mesenchymal progenitor/stem cells in skeletal muscle regeneration, providing valuable results and data to the ever-expanding community of scientists interested in tissue regeneration and fibrosis. This commentary contextualizes and summarizes these exciting new findings.

17.
Biol. Res ; 53: 22, 2020. graf
Article in English | LILACS | ID: biblio-1124207

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is a devastating genetic muscular disorder with no effective treatment that is caused by the loss of dystrophin. Human induced pluripotent stem cells (hiPSCs) offer a promising unlimited resource for cell-based therapies of muscular dystrophy. However, their clinical applications are hindered by inefficient myogenic differentiation, and moreover, the engraftment of non-transgene hiPSC-derived myogenic progenitors has not been examined in the mdx mouse model of DMD. METHODS: We investigated the muscle regenerative potential of myogenic progenitors derived from hiPSCs in mdx mice. The hiPSCs were transfected with enhanced green fluorescent protein (EGFP) vector and defined as EGFP hiPSCs. Myogenic differentiation was performed on EGFP hiPSCs with supplementary of basic fibroblast growth factor, forskolin, 6-bromoindirubin-3'-oxime as well as horse serum. EGFP hiPSCs-derived myogenic progenitors were engrafted into mdx mice via both intramuscular and intravenous injection. The restoration of dystrophin expression, the ratio of central nuclear myofibers, and the transplanted cells-derived satellite cells were accessed after intramuscular and systemic transplantation. RESULTS: We report that abundant myogenic progenitors can be generated from hiPSCs after treatment with these three small molecules, with consequent terminal differentiation giving rise to mature myotubes in vitro. Upon intramuscular or systemic transplantation into mdx mice, these myogenic progenitors engrafted and contributed to human-derived myofiber regeneration in host muscles, restored dystrophin expression, ameliorated pathological lesions, and seeded the satellite cell compartment in dystrophic muscles. CONCLUSIONS: This study demonstrates the muscle regeneration potential of myogenic progenitors derived from hiPSCs using non-transgenic induction methods. Engraftment of hiPSC-derived myogenic progenitors could be a potential future therapeutic strategy to treat DMD in a clinical setting.


Subject(s)
Humans , Animals , Male , Mice , Muscular Dystrophy, Duchenne/therapy , Induced Pluripotent Stem Cells/transplantation , Cell Differentiation , Cells, Cultured , Green Fluorescent Proteins , Disease Models, Animal , Mice, Inbred C57BL
18.
Front Cell Dev Biol ; 7: 303, 2019.
Article in English | MEDLINE | ID: mdl-31850342

ABSTRACT

The limited access to functional human brain tissue has led to the development of stem cell-based alternative models. The differentiation of human pluripotent stem cells into cerebral organoids with self-organized architecture has created novel opportunities to study the early stages of the human cerebral formation. Here we applied state-of-the-art label-free shotgun proteomics to compare the proteome of stem cell-derived cerebral organoids to the human fetal brain. We identified 3,073 proteins associated with different developmental stages, from neural progenitors to neurons, astrocytes, or oligodendrocytes. The major protein groups are associated with neurogenesis, axon guidance, synaptogenesis, and cortical brain development. Glial cell proteins related to cell growth and maintenance, energy metabolism, cell communication, and signaling were also described. Our data support the variety of cells and neural network functional pathways observed within cell-derived cerebral organoids, confirming their usefulness as an alternative model. The characterization of brain organoid proteome is key to explore, in a dish, atypical and disrupted processes during brain development or neurodevelopmental, neurodegenerative, and neuropsychiatric diseases.

19.
J Transl Med ; 17(1): 247, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31366356

ABSTRACT

BACKGROUND: The molecular pathways that drive bone marrow myeloid progenitors (BMMP) development are very well understood and include a tight controlled multi-stage gene hierarch. Monocytes are versatile cells that display remarkable plasticity and may give rise to specific subsets of macrophages to proper promote tissue homesostasis upon an injury. However, the epigenetic mechanisms that underlie monocyte differentiation into the pro-inflammatory Ly6Chigh or the repairing Ly6Clow subsets are yet to be elucidated. We have previously shown that Epigenetic mechanisms Histone Deacetylase (HDAC) dependent are crucial for monocyte behavior and plasticity and in this work, we propose that this same mechanism underlies BMMP plasticity upon an inflammatory challenge in vivo. METHODS: BMMP were culture in the presence of GM-CSF alone or in combination with HDAC inhibitor (iHDAC) and phenotyped by flow cytometry, immune staining or western blot. iHDAC was topically added to skin wounds for 7 consecutive days and wound healing was monitored by flow cytometry and histopathological analysis. RESULTS: When BMMP were cultured in the presence of iHDAC, we showed that the CD11blow/Ly6Clow subset was the specific target of iHDAC that underwent chromatin hyperacetylation in vitro. Upon 13 days in the presence of iHDAC, BMMP gave rise to very elongated macrophages, that in turn, displayed a remarkable plasticity in a HDAC activity dependent fashion. HDAC-dependent cell shape was tight related to macrophage behavior and phenotype through the control of iNOS protein levels, showing that chromatin remodeling is a key component of macrophage plasticity and function. We then hypothesized that iHDAC would modulate the inflammatory response and favor tissue repair in vivo. To test this hypothesis, we topically added iHDAC to skin wounds during 7 consecutive days and followed tissue repair dynamics. In fact, iHDAC treated skin wounds presented an increase in wound closure at day 5 that was correlated to an enrichment in the CD11blow/Ly6Clow subset and in very elongated F4/80 positives macrophages in vivo, fully recapitulating the behavior previously observed in vitro. CONCLUSION: Our work provides the biological basis that connects chromatin remodeling to phenotypic plasticity, which in turn, may become a tractable therapeutic strategy in further translational studies.


Subject(s)
Epigenome , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Myeloid Progenitor Cells/cytology , Skin/drug effects , Skin/pathology , Wound Healing , Animals , Chromatin/chemistry , Epigenesis, Genetic , Histone Deacetylases/genetics , Humans , Inflammation , Macrophages/cytology , Male , Mice , Mice, Inbred C57BL , Monocytes/cytology , Myeloid Progenitor Cells/drug effects , Phenotype
20.
Evol Dev ; 21(6): 330-341, 2019 11.
Article in English | MEDLINE | ID: mdl-31441209

ABSTRACT

Although the cerebral hemispheres are among the defining characters of vertebrates, each vertebrate class is characterized by a different anatomical organization of this structure, which has become highly problematic for comparative neurobiology. In this article, we discuss some mechanisms involved in the generation of this morphological divergence, based on simple spatial constraints for neurogenesis and mechanical forces generated by increasing neuronal numbers during development, and the different cellular strategies used by each group to overcome these limitations. We expect this view to contribute to unify the diverging vertebrate brain morphologies into general, simple mechanisms that help to establish homologies across groups.


Subject(s)
Biological Evolution , Prosencephalon , Vertebrates , Animals , Prosencephalon/anatomy & histology , Prosencephalon/physiology , Vertebrates/anatomy & histology , Vertebrates/physiology
SELECTION OF CITATIONS
SEARCH DETAIL