Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Biodivers Data J ; 12: e118448, 2024.
Article in English | MEDLINE | ID: mdl-39210961

ABSTRACT

Wetlands occupy up to 35% of the boreal biome in Russia, according to various estimates. Boreal bogs are global carbon sinks, accounting for more than 65% of the soil carbon stored in the wetland ecosystems of the world. The decomposition of plant residues is one of the most important components of the carbon cycle in wetland systems, while the violation of their fragile balance due to climate change increases the rate of mineralisation of organic matter and releases large amounts of carbon to the atmosphere. The biochemical processes occurring in a peat deposit determine the intensity of the destruction of organic matter and gas exchange. However, the microbial communities of the boreal ombrotrophic bogs, regulating those processes, are poorly studied. Hence, a study of the prokaryote communities of the peat deposits of the southern White Sea coastal ombrotrophic bogs (mostly spread in north-western Russia) was carried out. The taxonomic composition of archaea and bacteria sampled from the deposit's depth of 0-310 cm was studied using high-throughput sequencing of V4 sites of 16S rRNA gene by Illumina technology. As a result, 105 species belonging to 19 phylums were identified. The dominant specific phyla were Pseudomonadota, Acidobacteriota and Verrucomicrobiota, the non-specific phylum being Desulfobacterota. Various groups of methanogenic, methylotrophic and nitrogen-fixing microorganisms were identified. Shannon's biodiversity ranged from 3.5 to 4.6 and ChaO1 - from 232 to 351, decreasing within the depth.

2.
Int J Mol Sci ; 25(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39201358

ABSTRACT

Ubiquitination is an evolutionary, ancient system of post-translational modification of proteins that occurs through a cascade involving ubiquitin activation, transfer, and conjugation. The maturation of this system has followed two main pathways. The first is the conservation of a universal structural fold of ubiquitin and ubiquitin-like proteins, which are present in both Archaea and Bacteria, as well as in multicellular Eukaryotes. The second is the rise of the complexity of the superfamily of ligases, which conjugate ubiquitin-like proteins to substrates, in terms of an increase in the number of enzyme variants, greater variation in structural organization, and the diversification of their catalytic domains. Here, we examine the diversity of the ubiquitination system among different organisms, assessing the variety and conservation of the key domains of the ubiquitination enzymes and ubiquitin itself. Our data show that E2 ubiquitin-conjugating enzymes of metazoan phyla are highly conservative, whereas the homology of E3 ubiquitin ligases with human orthologues gradually decreases depending on "molecular clock" timing and evolutionary distance. Surprisingly, Chordata and Echinodermata, which diverged over 0.5 billion years ago during the Cambrian explosion, share almost the same homology with humans in the amino acid sequences of E3 ligases but not in their adaptor proteins. These observations may suggest that, firstly, the E2 superfamily already existed in its current form in the last common metazoan ancestor and was generally not affected by purifying selection in metazoans. Secondly, it may indicate convergent evolution of the ubiquitination system and highlight E3 adaptor proteins as the "upper deck" of the ubiquitination system, which plays a crucial role in chordate evolution.


Subject(s)
Evolution, Molecular , Signal Transduction , Ubiquitin-Conjugating Enzymes , Ubiquitin , Ubiquitination , Humans , Ubiquitin/metabolism , Animals , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/chemistry , Protein Processing, Post-Translational , Phylogeny
3.
Environ Pollut ; : 124817, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39197647

ABSTRACT

Coastal sediments are a critical domain for carbon sequestration and are profoundly impacted by human activities. Therefore, it is essential to understand the structure and components of benthic autotrophs that play a crucial role in carbon sequestration processes, as well as the influence of anthropogenic activities on their communities. This study utilized an urban estuary, an industrial sea bay, a maricultural sea region, and two mangrove coastlines within the coastal areas of Guangdong Province, China. The micro-benthos in these environments, including prokaryotes and eukaryotes, were identified through high-throughput sequencing of 16S rRNA and 18S rRNA genes. The findings show that the autotrophic composition was altered by the interactions of anthropogenic heavy metals (Cd and Zn) and micro-eukaryotes (protazoa, metazoa, and parasitic organisms). Industrial pollution reduced the abundance of both prokaryotic and eukaryotic autotrophs. Mangroves induced a substantial transformation in the sediment eukaryotic and prokaryotic composition, increasing the proportion of autotrophs, notably sulfur-oxidizing and iron-oxidizing bacteria and microalgae. This alteration suggests an increase in specific sulfur and iron cycling with simultaneous carbon sequestration within mangrove sediments. These results indicate that anthropogenic activities affect sediment carbon sequestration by altering autotrophic assemblages along coastlines, thereby inducing consequential shifts in overall elemental cycling processes.

4.
Microbiome ; 12(1): 134, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039555

ABSTRACT

BACKGROUND: Understanding the interactions and dynamics of microbiotas within biological wastewater treatment systems is essential for ensuring their stability and long-term sustainability. In this study, we developed a systematic framework employing multi-omics and Hi-C sequencing to extensively investigate prokaryotic and phage communities within a hybrid biofilm and activated sludge system. RESULTS: We uncovered distinct distribution patterns, metabolic capabilities, and activities of functional prokaryotes through the analysis of 454 reconstructed prokaryotic genomes. Additionally, we reconstructed a phage catalog comprising 18,645 viral operational taxonomic units (vOTUs) with high length and contiguity using hybrid assembly, and a distinct distribution of phages was depicted between activated sludge (AS) and biofilm. Importantly, 1340 host-phage pairs were established using Hi-C and conventional in silico methods, unveiling the host-determined phage prevalence. The majority of predicted hosts were found to be involved in various crucial metabolic processes, highlighting the potential vital roles of phages in influencing substance metabolism within this system. Moreover, auxiliary metabolic genes (AMGs) related to various categories (e.g., carbohydrate degradation, sulfur metabolism, transporter) were predicted. Subsequent activity analysis emphasized their potential ability to mediate host metabolism during infection. We also profiled the temporal dynamics of phages and their associated hosts using 13-month time-series metagenomic data, further demonstrating their tight interactions. Notably, we observed lineage-specific infection patterns, such as potentially host abundance- or phage/host ratio-driven phage population changes. CONCLUSIONS: The insights gained from this research contribute to the growing body of knowledge surrounding interactions and dynamics of host-phage and pave the way for further exploration and potential applications in the field of microbial ecology. Video Abstract.


Subject(s)
Bacteria , Bacteriophages , Sewage , Wastewater , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/physiology , Bacteriophages/isolation & purification , Sewage/virology , Sewage/microbiology , Wastewater/virology , Wastewater/microbiology , Bacteria/virology , Bacteria/genetics , Bacteria/classification , Biofilms , Metagenomics , Water Purification/methods , Microbiota
5.
Genome Biol ; 25(1): 170, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951884

ABSTRACT

Microbial pangenome analysis identifies present or absent genes in prokaryotic genomes. However, current tools are limited when analyzing species with higher sequence diversity or higher taxonomic orders such as genera or families. The Roary ILP Bacterial core Annotation Pipeline (RIBAP) uses an integer linear programming approach to refine gene clusters predicted by Roary for identifying core genes. RIBAP successfully handles the complexity and diversity of Chlamydia, Klebsiella, Brucella, and Enterococcus genomes, outperforming other established and recent pangenome tools for identifying all-encompassing core genes at the genus level. RIBAP is a freely available Nextflow pipeline at github.com/hoelzer-lab/ribap and zenodo.org/doi/10.5281/zenodo.10890871.


Subject(s)
Genome, Bacterial , Molecular Sequence Annotation , Software , Brucella/genetics , Brucella/classification , Bacteria/genetics , Bacteria/classification , Chlamydia/genetics , Enterococcus/genetics , Klebsiella/genetics
6.
J Biol Chem ; 300(7): 107476, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38879013

ABSTRACT

DJ-1, a causative gene for hereditary recessive Parkinsonism, is evolutionarily conserved across eukaryotes and prokaryotes. Structural analyses of DJ-1 and its homologs suggested the 106th Cys is a nucleophilic cysteine functioning as the catalytic center of hydratase or hydrolase activity. Indeed, DJ-1 and its homologs can convert highly electrophilic α-oxoaldehydes such as methylglyoxal into α-hydroxy acids as hydratase in vitro, and oxidation-dependent ester hydrolase (esterase) activity has also been reported for DJ-1. The mechanism underlying such plural activities, however, has not been fully characterized. To address this knowledge gap, we conducted a series of biochemical assays assessing the enzymatic activity of DJ-1 and its homologs. We found no evidence for esterase activity in any of the Escherichia coli DJ-1 homologs. Furthermore, contrary to previous reports, we found that oxidation inactivated rather than facilitated DJ-1 esterase activity. The E. coli DJ-1 homolog HchA possesses phenylglyoxalase and methylglyoxalase activities but lacks esterase activity. Since evolutionary trace analysis identified the 186th H as a candidate residue involved in functional differentiation between HchA and DJ-1, we focused on H186 of HchA and found that an esterase activity was acquired by H186A mutation. Introduction of reverse mutations into the equivalent position in DJ-1 (A107H) selectively eliminated its esterase activity without compromising α-oxoaldehyde hydratase activity. The obtained results suggest that differences in the amino acid sequences near the active site contributed to acquisition of esterase activity in vitro and provide an important clue to the origin and significance of DJ-1 esterase activity.


Subject(s)
Escherichia coli , Parkinson Disease , Protein Deglycase DJ-1 , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/chemistry , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Esterases/metabolism , Esterases/genetics , Esterases/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Evolution, Molecular , Oxidation-Reduction
7.
J Microbiol Biol Educ ; 25(2): e0003624, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-38829051

ABSTRACT

This paper presents two low-cost hands-on activities designed to enhance student understanding and address the pedagogical challenges faced by microbiology professors in teaching concepts related to cell structure and gene regulation. In the first activity, we used Shrinky Dinks and Jeopardy-style game questions to explore the differences between prokaryotic and eukaryotic cells. Students have to collect pieces and physically build their cell models. The second activity uses origami organelles sets from Edvotek to illustrate the regulation of gene expression in the lac and trp operons, incorporating mutation scenarios for analysis. The intended audience comprises undergraduate students in microbiology, including biology, pre-medical studies, and health profession majors. The activities were deployed in three microbiology lectures, and students were surveyed. Students' feedback highlights the efficacy of the hands-on approach and increased class participation, as two of the recurring words in the students' survey were "helpful" and "fun."

8.
Mol Microbiol ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690745

ABSTRACT

The bacterial chromosome is both highly supercoiled and bound by an ensemble of proteins and RNA, causing the DNA to form a compact structure termed the nucleoid. The nucleoid serves to condense, protect, and control access to the bacterial chromosome through a variety of mechanisms that remain incompletely understood. The nucleoid is also a dynamic structure, able to change both in size and composition. The dynamic nature of the bacterial nucleoid is particularly apparent when studying the effects of various stresses on bacteria, which require cells to protect their DNA and alter patterns of transcription. Stresses can lead to large changes in the organization and composition of the nucleoid on timescales as short as a few minutes. Here, we summarize some of the recent advances in our understanding of how stress can alter the organization of bacterial chromosomes.

9.
mSystems ; 9(6): e0046924, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38767347

ABSTRACT

Microbiomes are integral to ecological health and human well-being; however, their ecological and evolutionary drivers have not been systematically investigated, especially in urban park ecosystems. As microbes have different levels of tolerance to environmental changes and habitat preferences, they can be categorized into habitat generalists and specialists. Here, we explored the ecological and evolutionary characteristics of both prokaryotic and microeukaryotic habitat generalists and specialists from six urban parks across five habitat types, including moss, soil, tree hole, water, and sediment. Our results revealed that different ecological and evolutionary processes maintained and regulated microbial diversity in urban park ecosystems. Under ecological perspective, community assembly of microbial communities was mainly driven by stochastic processes; however, deterministic processes were higher for habitat specialists than generalists. Microbial interactions were highly dynamic among habitats, and habitat specialists played key roles as module hubs in intradomain networks. In aquatic interdomain networks, microeukaryotic habitat specialists and prokaryotic habitat specialists played crucial roles as module hubs and connectors, respectively. Furthermore, analyzing evolutionary characteristics, our results revealed that habitat specialists had a much higher diversification potential than generalists, while generalists showed shorter phylogenetic branch lengths as well as larger genomes than specialists. This study broadens our understanding of the ecological and evolutionary features of microbial habitat generalists and specialists in urban park ecosystems across multi-habitat. IMPORTANCE: Urban parks, as an important urban greenspace, play essential roles in ecosystem services and are important hotspots for microbes. Microbial diversity is driven by different ecological and evolutionary processes, while little is currently known about the distinct roles of ecological and evolutionary features in shaping microbial diversity in urban park ecosystems. We explored the ecological and evolutionary characteristics of prokaryotic and microeukaryotic habitat generalists and specialists in urban park ecosystems based on a representative set of different habitats. We found that different ecological and evolutionary drivers jointly maintained and regulated microbial diversity in urban park microbiomes through analyzing the community assembly process, ecological roles in hierarchical interaction, and species diversification potential. These findings significantly advance our understanding regarding the mechanisms governing microbial diversity in urban park ecosystems.


Subject(s)
Ecosystem , Microbiota , Parks, Recreational , Phylogeny , Soil Microbiology , Biological Evolution , Cities , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
10.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38709876

ABSTRACT

The microbiomes in macroalgal holobionts play vital roles in regulating macroalgal growth and ocean carbon cycling. However, the virospheres in macroalgal holobionts remain largely underexplored, representing a critical knowledge gap. Here we unveil that the holobiont of kelp (Saccharina japonica) harbors highly specific and unique epiphytic/endophytic viral species, with novelty (99.7% unknown) surpassing even extreme marine habitats (e.g. deep-sea and hadal zones), indicating that macroalgal virospheres, despite being closest to us, are among the least understood. These viruses potentially maintain microbiome equilibrium critical for kelp health via lytic-lysogenic infections and the expression of folate biosynthesis genes. In-situ kelp mesocosm cultivation and metagenomic mining revealed that kelp holobiont profoundly reshaped surrounding seawater and sediment virus-prokaryote pairings through changing surrounding environmental conditions and virus-host migrations. Some kelp epiphytic viruses could even infect sediment autochthonous bacteria after deposition. Moreover, the presence of ample viral auxiliary metabolic genes for kelp polysaccharide (e.g. laminarin) degradation underscores the underappreciated viral metabolic influence on macroalgal carbon cycling. This study provides key insights into understanding the previously overlooked ecological significance of viruses within macroalgal holobionts and the macroalgae-prokaryotes-virus tripartite relationship.


Subject(s)
Bacteria , Kelp , Microbiota , Seawater , Kelp/microbiology , Seawater/microbiology , Seawater/virology , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Metagenomics , Seaweed/microbiology , Seaweed/virology , Geologic Sediments/microbiology , Geologic Sediments/virology , Prokaryotic Cells/virology , Prokaryotic Cells/metabolism , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/isolation & purification , Virome
11.
Microbiome ; 12(1): 94, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790030

ABSTRACT

BACKGROUND: Microbial secondary metabolites play a crucial role in the intricate interactions within the natural environment. Among these metabolites, ribosomally synthesized and post-translationally modified peptides (RiPPs) are becoming a promising source of therapeutic agents due to their structural diversity and functional versatility. However, their biosynthetic capacity and ecological functions remain largely underexplored. RESULTS: Here, we aim to explore the biosynthetic profile of RiPPs and their potential roles in the interactions between microbes and viruses in the ocean, which encompasses a vast diversity of unique biomes that are rich in interactions and remains chemically underexplored. We first developed TrRiPP to identify RiPPs from ocean metagenomes, a deep learning method that detects RiPP precursors in a hallmark gene-independent manner to overcome the limitations of classic methods in processing highly fragmented metagenomic data. Applying this method to metagenomes from the global ocean microbiome, we uncover a diverse array of previously uncharacterized putative RiPP families with great novelty and diversity. Through correlation analysis based on metatranscriptomic data, we observed a high prevalence of antiphage defense-related and phage-related protein families that were co-expressed with RiPP families. Based on this putative association between RiPPs and phage infection, we constructed an Ocean Virus Database (OVD) and established a RiPP-involving host-phage interaction network through host prediction and co-expression analysis, revealing complex connectivities linking RiPP-encoding prokaryotes, RiPP families, viral protein families, and phages. These findings highlight the potential of RiPP families involved in prokaryote-phage interactions and coevolution, providing insights into their ecological functions in the ocean microbiome. CONCLUSIONS: This study provides a systematic investigation of the biosynthetic potential of RiPPs from the ocean microbiome at a global scale, shedding light on the essential insights into the ecological functions of RiPPs in prokaryote-phage interactions through the integration of deep learning approaches, metatranscriptomic data, and host-phage connectivity. This study serves as a valuable example of exploring the ecological functions of bacterial secondary metabolites, particularly their associations with unexplored microbial interactions. Video Abstract.


Subject(s)
Bacteria , Bacteriophages , Deep Learning , Metagenome , Metagenomics , Peptides , Ribosomes , Peptides/metabolism , Peptides/genetics , Bacteriophages/genetics , Metagenomics/methods , Ribosomes/metabolism , Ribosomes/genetics , Bacteria/genetics , Bacteria/metabolism , Bacteria/virology , Bacteria/classification , Microbiota/genetics , Protein Processing, Post-Translational , Seawater/microbiology , Seawater/virology , Oceans and Seas
12.
Annu Rev Chem Biomol Eng ; 15(1): 389-430, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38598861

ABSTRACT

In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.


Subject(s)
CRISPR-Cas Systems , Gene Editing , RNA, Guide, CRISPR-Cas Systems , Gene Editing/methods , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Bacteria/genetics , Bacteria/metabolism , Genetic Engineering/methods , Biosensing Techniques/methods , Prokaryotic Cells/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Synthetic Biology/methods , Humans
13.
Phytopathology ; 114(5): 869-884, 2024 May.
Article in English | MEDLINE | ID: mdl-38557216

ABSTRACT

An unprecedented plant health emergency in olives has been registered over the last decade in Italy, arguably more severe than what occurred repeatedly in grapes in the United States in the last 140 years. These emergencies are epidemics caused by a stealthy pathogen, the xylem-limited, insect-transmitted bacterium Xylella fastidiosa. Although these epidemics spurred research that answered many questions about the biology and management of this pathogen, many gaps in knowledge remain. For this review, we set out to represent both the U.S. and European perspectives on the most pressing challenges that need to be addressed. These are presented in 10 sections that we hope will stimulate discussion and interdisciplinary research. We reviewed intrinsic problems that arise from the fastidious growth of X. fastidiosa, the lack of specificity for insect transmission, and the economic and social importance of perennial mature woody plant hosts. Epidemiological models and predictions of pathogen establishment and disease expansion, vital for preparedness, are based on very limited data. Most of the current knowledge has been gathered from a few pathosystems, whereas several hundred remain to be studied, probably including those that will become the center of the next epidemic. Unfortunately, aspects of a particular pathosystem are not always transferable to others. We recommend diversification of research topics of both fundamental and applied nature addressing multiple pathosystems. Increasing preparedness through knowledge acquisition is the best strategy to anticipate and manage diseases caused by this pathogen, described as "the most dangerous plant bacterium known worldwide."


Subject(s)
Insect Vectors , Plant Diseases , Xylella , Xylem , Xylella/physiology , Xylella/pathogenicity , Plant Diseases/microbiology , Plant Diseases/prevention & control , Xylem/microbiology , Animals , Insect Vectors/microbiology , Olea/microbiology , Insecta/microbiology , United States , Vitis/microbiology
14.
Genome Biol ; 25(1): 93, 2024 04 11.
Article in English | MEDLINE | ID: mdl-38605417

ABSTRACT

Unraveling bacterial gene function drives progress in various areas, such as food production, pharmacology, and ecology. While omics technologies capture high-dimensional phenotypic data, linking them to genomic data is challenging, leaving 40-60% of bacterial genes undescribed. To address this bottleneck, we introduce Scoary2, an ultra-fast microbial genome-wide association studies (mGWAS) software. With its data exploration app and improved performance, Scoary2 is the first tool to enable the study of large phenotypic datasets using mGWAS. As proof of concept, we explore the metabolome of yogurts, each produced with a different Propionibacterium reichii strain and discover two genes affecting carnitine metabolism.


Subject(s)
Genome-Wide Association Study , Multiomics , Phenotype , Genes, Bacterial , Genomics
15.
J Hazard Mater ; 470: 134135, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574656

ABSTRACT

Sb(III) and As(III) share similar chemical features and coexist in the environment. However, their oxidase enzymes have completely different sequences and structures. This raises an intriguing question: Could Sb(III)-oxidizing prokaryotes (SOPs) also oxidize As(III), and vice versa? Regarding this issue, previous investigations have yielded unclear, incorrect and even conflicting data. This work aims to address this matter. First, we prepared an enriched population of SOPs that comprises 55 different AnoA genes, lacking AioAB and ArxAB genes. We found that these SOPs can oxidize both Sb(III) and As(III) with comparable capabilities. To further confirm this finding, we isolated three cultivable SOP strains that have AnoA gene, but lack AioAB and ArxAB genes. We observed that they also oxidize both Sb(III) and As(III) under both anaerobic and aerobic conditions. Secondly, we obtained an enriched population of As(III)-oxidizing prokaryotes (AOPs) from As-contaminated soils, which comprises 69 different AioA genes, lacking AnoA gene. We observed that the AOP population has significant As(III)-oxidizing activities, but lack detectable Sb(III)-oxidizing activities under both aerobic and anaerobic conditions. Therefore, we convincingly show that SOPs can oxidize As(III), but AOPs cannot oxidize Sb(III). These findings clarify the previous ambiguities, confusion, errors or contradictions regarding how SOPs and AOPs oxidize each other's substrate.


Subject(s)
Antimony , Oxidation-Reduction , Anaerobiosis , Aerobiosis , Antimony/metabolism , Prokaryotic Cells/metabolism , Soil Microbiology , Bacteria/metabolism , Bacteria/genetics , Soil Pollutants/metabolism
16.
Viruses ; 16(4)2024 03 29.
Article in English | MEDLINE | ID: mdl-38675877

ABSTRACT

The concentration of viruses in sewage sludge is significantly higher (10-1000-fold) than that found in natural environments, posing a potential risk for human and animal health. However, the composition of these viruses and their role in the transfer of pathogenic factors, as well as their role in the carbon, nitrogen, and phosphorus cycles remain poorly understood. In this study, we employed a shotgun metagenomic approach to investigate the pathogenic bacteria and viral composition and function in two wastewater treatment plants located on a campus. Our analysis revealed the presence of 1334 amplicon sequence variants (ASVs) across six sludge samples, with 242 ASVs (41.22% of total reads) identified as pathogenic bacteria. Arcobacter was found to be the most dominant pathogen accounting for 6.79% of total reads. The virome analysis identified 613 viral genera with Aorunvirus being the most abundant genus at 41.85%. Approximately 0.66% of these viruses were associated with human and animal diseases. More than 60% of the virome consisted of lytic phages. Host prediction analysis revealed that the phages primarily infected Lactobacillus (37.11%), Streptococcus (21.11%), and Staphylococcus (7.11%). Furthermore, our investigation revealed an abundance of auxiliary metabolic genes (AMGs) involved in carbon, nitrogen, and phosphorus cycling within the virome. We also detected a total of 113 antibiotic resistance genes (ARGs), covering major classes of antibiotics across all samples analyzed. Additionally, our findings indicated the presence of virulence factors including the clpP gene accounting for approximately 4.78%, along with toxin genes such as the RecT gene representing approximately 73.48% of all detected virulence factors and toxin genes among all samples analyzed. This study expands our understanding regarding both pathogenic bacteria and viruses present within sewage sludge while providing valuable insights into their ecological functions.


Subject(s)
Bacteria , Metagenomics , Sewage , Viruses , Wastewater , Wastewater/virology , Wastewater/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Sewage/virology , Sewage/microbiology , Humans , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Metagenome , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Virome/genetics , Water Purification , Animals
17.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38637300

ABSTRACT

Many organisms have formed symbiotic relationships with nitrogen (N)-fixing bacteria to overcome N limitation. Diatoms in the family Rhopalodiaceae host unicellular, N-fixing cyanobacterial endosymbionts called spheroid bodies (SBs). Although this relationship is relatively young, SBs share many key features with older endosymbionts, including coordinated cell division and genome reduction. Unlike free-living relatives that fix N exclusively at night, SBs fix N largely during the day; however, how SB metabolism is regulated and coordinated with the host is not yet understood. We compared four SB genomes, including those from two new host species (Rhopalodia gibba and Epithemia adnata), to build a genome-wide phylogeny which provides a better understanding of SB evolutionary origins. Contrary to models of endosymbiotic genome reduction, the SB chromosome is unusually stable for an endosymbiont genome, likely due to the early loss of all mobile elements. Transcriptomic data for the R. gibba SB and host organelles addressed whether and how the allocation of transcriptional resources depends on light and nitrogen availability. Although allocation to the SB was high under all conditions, relative expression of chloroplast photosynthesis genes increased in the absence of nitrate, but this pattern was suppressed by nitrate addition. SB expression of catabolism genes was generally greater during daytime rather than at night, although the magnitude of diurnal changes in expression was modest compared to free-living Cyanobacteria. We conclude that SB daytime catabolism likely supports N-fixation by linking the process to host photosynthetic carbon fixation.


Subject(s)
Diatoms , Nitrogen Fixation , Phylogeny , Symbiosis , Diatoms/genetics , Diatoms/metabolism , Nitrogen Fixation/genetics , Nitrogen/metabolism , Photosynthesis , Cyanobacteria/genetics , Cyanobacteria/metabolism , Circadian Rhythm/genetics
18.
Genes (Basel) ; 15(3)2024 03 03.
Article in English | MEDLINE | ID: mdl-38540387

ABSTRACT

Prokaryotic genomes are dynamic tapestries that are strongly influenced by mobile genetic elements (MGEs), including transposons (Tn's), plasmids, and bacteriophages. Of these, miniature inverted-repeat transposable elements (MITEs) are undoubtedly the least studied MGEs in bacteria and archaea. This review explores the diversity and distribution of MITEs in prokaryotes and describes what is known about their functional roles in the host and involvement in genomic plasticity and evolution.


Subject(s)
DNA Transposable Elements , Genomics , DNA Transposable Elements/genetics , Prokaryotic Cells , Bacteria/genetics , Archaea/genetics
19.
Sci Total Environ ; 916: 169893, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38185173

ABSTRACT

Sb and As are chemically similar, but the sequences and structures of Sb(III) and As(III) oxidase are totally distinct. It is thus interesting to explore whether Sb(III) oxidase oxidizes As(III), and if so, how microbial oxidations of Sb(III) and As(III) influence one another. Previous investigations have yielded ambiguous or even erroneous conclusions. This study aimed to clarify this issue. Firstly, we prepared a consortium of Sb(III)-oxidizing prokaryotes (SOPs) by enrichment cultivation. Metagenomic analysis reveals that SOPs with the Sb(III) oxidase gene, but lacking the As(III) oxidase gene are predominant in the SOP community. Despite this, SOPs exhibit comparable Sb(III) and As(III)-oxidizing activities in both aerobic and anaerobic conditions, indicating that at the microbial community level, Sb(III) oxidase can oxidize As(III). Secondly, we isolated a representative cultivable SOP, Ralstonia sp. SbOX with Sb(III) oxidase gene but without As(III) oxidase gene. Genomic analysis of SbOX reveals that this SOP strain has a complete Sb(III) oxidase (AnoA) gene, but lacks As(III) oxidase (AioAB or ArxAB) gene. It is interesting to discover that, besides its Sb(III) oxidation activities, SbOX also exhibits significant capabilities in oxidizing As(III) under both aerobic and anaerobic conditions. Moreover, under aerobic conditions and in the presence of both Sb(III) and As(III), SbOX exhibited a preference for oxidizing Sb(III). Only after the near complete oxidation of Sb(III) did SbOX initiate rapid oxidation of As(III). In contrast, under anaerobic conditions and in the presence of both Sb(III) and As(III), Sb(III) oxidation notably inhibited the As(III) oxidation pathway in SbOX, while As(III) exhibited minimal effects on the Sb(III) oxidation. These findings suggest that SOPs can oxidize As(III) under both aerobic and anaerobic conditions, exhibiting a strong preference for Sb(III) over As(III) oxidation in the presence of both. This study unveils a novel mechanism of interaction within the Sb and As biogeochemical cycles.


Subject(s)
Antimony , Oxidoreductases , Oxidoreductases/metabolism , Anaerobiosis , Antimony/metabolism , Oxidation-Reduction , Bacteria/metabolism
20.
Biochem Biophys Res Commun ; 687: 149186, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37931420

ABSTRACT

FtsZ, a major cytoskeletal protein in all bacteria and archaea, forms a ring that directs cytokinesis. Bacterial FtsZ is considered the ancestral homolog of the eukaryotic microtubule (MT)-forming tubulins, sharing GTPase activity and the ability to assemble into protofilaments, rings, and sheets, but not MTs. Previous studies from our laboratory demonstrated that structures of isolated brain MTs spontaneously generate electrical oscillations and bursts of electrical activity similar to action potentials. No information about whether the prokaryotic tubulins may share similar properties is available. Here, we obtained by ammonium sulfate precipitation an enriched protein fraction of the endogenous FtsZ from wild-type Escherichia coli ATCC 25922 without any transfection or overexpression of the protein. As revealed by electron microscopy, FtsZ was detected by dot blot analysis and immunofluorescence that assembled into filaments and sheets in a polymerization buffer. We used the patch-clamp technique to explore the electrical properties of sheets of FtsZ and bacterial cells. Electrical recordings at various holding potentials ranging from ±200 mV showed a complex oscillatory behavior, with several peak frequencies between 12 and 110 Hz in the power spectra and a linear mean current response. To confirm the oscillatory electrical behavior of FtsZ we also conducted experiments with commercial recombinant FtsZ, with similar results. We also detected, by local field potentials, similar electrical oscillations in K+-depolarized pellets of E. coli cultures. FtsZ oscillations had a wider range of frequency peaks than MT sheets from eukaryotic origin. The findings indicate that the bacterial cytoskeleton generates electrical oscillators that may play a relevant role in cell division and unknown signaling mechanisms in bacterial populations.


Subject(s)
Escherichia coli , Tubulin , Tubulin/metabolism , Escherichia coli/metabolism , Bacterial Proteins/metabolism , Cytoskeletal Proteins/metabolism , Bacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL