Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.036
Filter
1.
Int J Biol Macromol ; 277(Pt 3): 134126, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39097044

ABSTRACT

DNA chains with sequential guanine (G) repeats can lead to the formation of G-quadruplexes (G4), which are found in functional DNA and RNA regions like telomeres and oncogene promoters. The development of molecules with adequate structural features to selectively stabilize G4 structures can counteract cell immortality, highly described for cancer cells, and also downregulate transcription events underlying cell apoptosis and/or senescence processes. We describe here, the efficiency of four highly charged porphyrins-phosphonium conjugates to act as G4 stabilizing agents. The spectrophotometric results allowed to select the conjugates P2-PPh3 and P3-PPh3 as the most promising ones to stabilize selectively G4 structures. Molecular dynamics simulation experiments were performed and support the preferential binding of P2-PPh3 namely to MYC and of P3-PPh3 to KRAS. The ability of both ligands to block the activity of Taq polymerase was confirmed and also their higher cytotoxicity against the two melanoma cell lines A375 and SK-MEL-28 than to immortalized skin keratinocytes. Both ligands present efficient cellular uptake, nuclear co-localization and high ability to generate 1O2 namely when interacting with G4 structure. The obtained data points the synthesized porphyrins as promising ligands to be used in a dual approach that can combine G4 stabilization and Photodynamic therapy (PDT).

2.
Materials (Basel) ; 17(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39124374

ABSTRACT

Currently used organic coatings for the protection of bronze sculptures have a relatively short lifespan as a consequence of strict requirements of conservation ethics, which limit the selection of coatings. For that reason, enhancement of the corrosion protection level and durability of appropriate coatings is needed. The aim of this work was to examine if corrosion protection of bronze by selected acrylic and polyurethane coatings could be improved by using two phosphonic acids, 16-phosphonohexadecanoic acid (COOH-PA) and 12-aminododecylphosphonic acid (NH2-PA). Electrochemical measurements (linear polarization and electrochemical impedance spectroscopy, EIS) were performed to gain an insight into the influence of these phosphonic acids on the performance of the coatings during a two-week exposure to artificial acid rain and a three-month outdoor exposure. Besides the influence on the corrosion protection level, the influence on the coating adhesion was examined as well. A pull-off test clearly confirmed that the studied phosphonic acids act as adhesion promoters of both polyurethane and acrylic coatings, while electrochemical studies revealed improvements in corrosion protection levels, especially in the case of the acrylic coating Paraloid B72.

3.
Article in English | MEDLINE | ID: mdl-38976046

ABSTRACT

The greatest challenges that organisms face today are effective responses or detection of life-threatening environmental changes due to an obvious semblance of stress and metabolic fluctuations. These are associated with different pathological conditions among which cancer is most important. Sirtuins (SIRTs; NAD+-dependent enzymes) are versatile enzymes with diverse substrate preferences, cellular locations, crucial for cellular processes and pathological conditions. This article describes in detail the distinct roles of SIRT isoforms, unveiling their potential as either cancer promoters or suppressors and also explores how both natural and synthetic compounds influence the SIRT function, indicating promise for therapeutic applications. We also discussed the inhibitors/activators tailored to specific SIRTs, holding potential for diseases lacking effective treatments. It may uncover the lesser-studied SIRT isoforms (e.g., SIRT6, SIRT7) and their unique functions. This article also offers a comprehensive overview of SIRTs, linking them to a spectrum of diseases and highlighting their potential for targeted therapies, combination approaches, disease management, and personalized medicine. We aim to contribute to a transformative era in healthcare and innovative treatments by unraveling the intricate functions of SIRTs.

4.
Methods Mol Biol ; 2844: 69-83, 2024.
Article in English | MEDLINE | ID: mdl-39068332

ABSTRACT

Synthetic promoters are powerful tools to boost the biotechnological potential of microalgae as eco-sustainable industrial hosts. The increasing availability of transcriptome data on microalgae in a variety of environmental conditions allows to identify cis-regulatory elements (CREs) that are responsible for the transcriptional output. Furthermore, advanced cloning technologies, such as golden gate-based MoClo toolkits, enable the creation of modular constructs for testing multiple promoters and a range of reporter systems in a convenient manner. In this chapter, we will describe how to introduce in silico-identified CREs into promoter sequences, and how to clone the modified promoters into MoClo compatible vectors. We will then describe how these promoters can be evaluated and screened for transgene expression in an established microalgal model for genetic perturbation, i.e., Chlamydomonas reinhardtii.


Subject(s)
Chlamydomonas reinhardtii , Promoter Regions, Genetic , Chlamydomonas reinhardtii/genetics , Genetic Vectors/genetics , Cloning, Molecular/methods , Transgenes , Synthetic Biology/methods , Microalgae/genetics , Genetic Engineering/methods
5.
Methods Mol Biol ; 2844: 3-31, 2024.
Article in English | MEDLINE | ID: mdl-39068329

ABSTRACT

We discuss the formalism of chemical reaction networks (CRNs) as a computer-aided design interface for using formal methods in engineering living technologies. We set out by reviewing formal methods within a broader view of synthetic biology. Based on published results, we illustrate, step by step, how mathematical and computational techniques on CRNs can be used to study the structural and dynamic properties of the designed systems. As a case study, we use an E. coli two-component system that relays the external inorganic phosphate concentration signal to genetic components. We show how CRN models can scan and explore phenotypic regimes of synthetic promoters with varying detection thresholds, thereby providing a means for fine-tuning the promoter strength to match the specification.


Subject(s)
Escherichia coli , Promoter Regions, Genetic , Synthetic Biology , Synthetic Biology/methods , Escherichia coli/genetics , Models, Chemical , Phosphates/chemistry , Phosphates/metabolism
6.
Methods Mol Biol ; 2844: 33-44, 2024.
Article in English | MEDLINE | ID: mdl-39068330

ABSTRACT

Promoters are the genomic regions upstream of genes that RNA polymerase binds in order to initiate gene transcription. Understanding the regulation of gene expression depends on being able to identify promoters, because they are the most important component of gene expression. Agrobacterium tumefaciens (A. tumefaciens) strain C58 was the subject of this study with the goal of creating a machine learning-based model to predict promoters. In this study, nucleotide density (ND), k-mer, and one-hot were used to encode the promoter sequence. Support vector machine (SVM) on fivefold cross-validation with incremental feature selection (IFS) was used to optimize the generated features. These improved characteristics were then used to distinguish promoter sequences by feeding them into the random forest (RF) classifier. Tenfold cross-validation (CV) analysis revealed that the projected model has the ability to produce an accuracy of 84.22%.


Subject(s)
Agrobacterium tumefaciens , Artificial Intelligence , Promoter Regions, Genetic , Support Vector Machine , Agrobacterium tumefaciens/genetics , Computational Biology/methods , Algorithms
7.
Methods Mol Biol ; 2844: 47-68, 2024.
Article in English | MEDLINE | ID: mdl-39068331

ABSTRACT

Trichoderma reesei holds immense promise for large-scale protein production, rendering it an excellent subject for deeper exploration using genetic engineering methods to achieve a comprehensive grasp of its cellular physiology. Understanding the genetic factors governing its intrinsic regulatory network is crucial, as lacking this knowledge could impede the expression of target genes. Prior and ongoing studies have concentrated on advancing new expression systems grounded in synthetic biology principles. These methodologies involve utilizing established potent promoters or engineered variations. Genomic and transcriptomic analyses have played a pivotal role in identifying robust promoters and expression systems, including light-responsive, copper-inducible, L-methionine-inducible, and Tet-On systems, among others. This chapter seeks to highlight various research endeavors focusing on tunable and constitutive promoters, the impact of different promoters on both native and foreign protein expression, the discovery of fresh promoters, and strategies conducive to future research aimed at refining and enhancing protein expression in T. reesei. Characterizing new promoters and adopting innovative expression systems hold the potential to significantly expand the molecular toolkit accessible for genetically engineering T. reesei strains. For instance, modifying potent inducible promoters such as Pcbh1 by replacing transcriptional repressors (cre1, ace1) with activators (xyr1, ace2, ace3, hap2/3/5) and integrating synthetic expression systems can result in increased production of crucial enzymes such as endoglucanases (EGLs), ß-glucosidases (BGLs), and cellobiohydrolases (CBHs). Similarly, robust constitutive promoters such as Pcdna1 can be converted into synthetic hybrid promoters by incorporating activation elements from potent inducible promoters, facilitating cellulase induction and expression even under repressive conditions. Nevertheless, further efforts are necessary to uncover innovative promoters and devise novel expression strategies to enhance the production of desired proteins on an industrial scale.


Subject(s)
Gene Expression Regulation, Fungal , Hypocreales , Promoter Regions, Genetic , Hypocreales/genetics , Genetic Engineering/methods , Synthetic Biology/methods
8.
Methods Mol Biol ; 2844: 109-119, 2024.
Article in English | MEDLINE | ID: mdl-39068335

ABSTRACT

Traditionally, hybrid promoters are constructed, in Saccharomyces cerevisiae, by joining the core region and the upstream activating sequences from different native promoters. Here, we describe a new design that makes use of the core promoters from foreign organisms: viruses, humans, and the yeast Schizosaccharomyces pombe. With this approach, we realized a library of 59 new constitutive promoters that span over nine folds in gene expression.


Subject(s)
Promoter Regions, Genetic , Saccharomyces cerevisiae , Promoter Regions, Genetic/genetics , Saccharomyces cerevisiae/genetics , Gene Library , Schizosaccharomyces/genetics , Humans , Genetic Engineering/methods
9.
Methods Mol Biol ; 2844: 159-178, 2024.
Article in English | MEDLINE | ID: mdl-39068339

ABSTRACT

This chapter reviews the different promoters used to control gene expression in the yeast Pichia pastoris, mainly for recombinant protein production. It covers natural inducible, derepressed, and constitutive promoters, as well as engineered synthetic/hybrid promoters, orthologous promoters from related yeasts, and emerging bidirectional promoters. Key examples, characteristics, and regulatory mechanisms are discussed for each promoter class. Recent efforts in promoter engineering through rational design, mutagenesis, and computational approaches are also highlighted. Looking ahead, we anticipate further developments that will enhance promoter design for Pichia pastoris. Overall, this comprehensive overview underscores the importance of promoter choice and engineering for fully harnessing Pichia pastoris biotechnological potential.


Subject(s)
Gene Expression Regulation, Fungal , Promoter Regions, Genetic , Recombinant Proteins , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Genetic Engineering/methods , Saccharomycetales/genetics , Saccharomycetales/metabolism , Pichia/genetics , Pichia/metabolism
10.
ACS Synth Biol ; 13(7): 2060-2072, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38968167

ABSTRACT

Genomic integration is commonly used to engineer stable production hosts. However, so far, for many microbial workhorses, only a few integration sites have been characterized, thereby restraining advanced strain engineering that requires multiple insertions. Here, we report on the identification of novel genomic integration sites, so-called landing pads, for Pseudomonas putida KT2440. We identified genomic regions with constant expression patterns under diverse experimental conditions by using RNA-Seq data. Homologous recombination constructs were designed to insert heterologous genes into intergenic sites in these regions, allowing condition-independent gene expression. Ten potential landing pads were characterized using four different msfGFP expression cassettes. An insulated probe sensor was used to study locus-dependent effects on recombinant gene expression, excluding genomic read-through of flanking promoters under changing cultivation conditions. While the reproducibility of expression in the landing pads was very high, the msfGFP signals varied strongly between the different landing pads, confirming a strong influence of the genomic context. To showcase that the identified landing pads are also suitable candidates for heterologous gene expression in other Pseudomonads, four equivalent landing pads were identified and characterized in Pseudomonas taiwanensis VLB120. This study shows that genomic "hot" and "cold" spots exist, causing strong promoter-independent variations in gene expression. This highlights that the genomic context is an additional parameter to consider when designing integrable genomic cassettes for tailored heterologous expression. The set of characterized genomic landing pads presented here further increases the genetic toolbox for deep metabolic engineering in Pseudomonads.


Subject(s)
Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Gene Expression Profiling/methods , Promoter Regions, Genetic/genetics , Genome, Bacterial/genetics , Homologous Recombination , Transcriptome/genetics
11.
ACS Synth Biol ; 13(7): 2150-2165, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38986010

ABSTRACT

Algae biotechnology holds immense promise for revolutionizing the bioeconomy through the sustainable and scalable production of various bioproducts. However, their development has been hindered by the lack of advanced genetic tools. This study introduces a synthetic biology approach to develop such tools, focusing on the construction and testing of synthetic promoters. By analyzing conserved DNA motifs within the promoter regions of highly expressed genes across six different algal species, we identified cis-regulatory elements (CREs) associated with high transcriptional activity. Combining the algorithms POWRS, STREME, and PhyloGibbs, we predicted 1511 CREs and inserted them into a minimal synthetic promoter sequence in 1, 2, or 3 copies, resulting in 4533 distinct synthetic promoters. These promoters were evaluated in vivo for their capacity to drive the expression of a transgene in a high-throughput manner through next-generation sequencing post antibiotic selection and fluorescence-activated cell sorting. To validate our approach, we sequenced hundreds of transgenic lines showing high levels of GFP expression. Further, we individually tested 14 identified promoters, revealing substantial increases in GFP expression─up to nine times higher than the baseline synthetic promoter, with five matching or even surpassing the performance of the native AR1 promoter. As a result of this study, we identified a catalog of CREs that can now be used to build superior synthetic algal promoters. More importantly, here we present a validated pipeline to generate building blocks for innovative synthetic genetic tools applicable to any algal species with a sequenced genome and transcriptome data set.


Subject(s)
Computational Biology , Promoter Regions, Genetic , Synthetic Biology , Promoter Regions, Genetic/genetics , Computational Biology/methods , Synthetic Biology/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , High-Throughput Nucleotide Sequencing/methods , Algorithms
12.
Microb Pathog ; 193: 106788, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986823

ABSTRACT

The use of antimicrobials in poultry leaves residues in the litter, favoring the emergence of antimicrobial-resistant pathogens and making it a source of contamination. An in vitro 4 × 4 factorial trial was performed to investigate the influence of four treatments, consisting of antimicrobial sub-concentrations, on the transference of IncB/O-plasmid through conjugation in four groups. Each group was composed of one plasmid donor bacterium (Escherichia coli H2332) and a recipient bacterium (Escherichia coli J62 or Salmonella enterica serovars, Enteritidis, Typhimurium, or Heidelberg). Our results showed a little decrease in the conjugation frequency in almost all treatments between the two bacterial species, which varied according to each strain. The MIC test revealed an increase of up to 4096-fold in resistance to beta-lactams in Salmonella serovars after plasmid acquisition. This finding suggests that some genetic apparatus may be involved in increased antimicrobial resistance in Salmonella serovars after the acquisition of primary resistance determinants.


Subject(s)
Anti-Bacterial Agents , Conjugation, Genetic , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Salmonella enterica , beta-Lactams , Salmonella enterica/drug effects , Salmonella enterica/genetics , Plasmids/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , beta-Lactams/pharmacology , Anti-Bacterial Agents/pharmacology
13.
ChemMedChem ; : e202400198, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083696

ABSTRACT

A group of N-phenylbenzofuran-2-carboxamide and N-phenylbenzo[b]thiophene-2-carboxamide derivatives were designed and synthesized as a novel class of Aß42 aggregation modulators. In the thioflavin-T based fluorescence aggregation kinetics study, compounds 4a, 4b, 5a and 5b possessing a methoxyphenol pharmacophore were able to demonstrate concentration dependent inhibition of Aß42 aggregation with maximum inhibition of 54% observed for compound 4b. In contrast, incorporation of a 4-methoxyphenyl ring in compounds 4d and 5d led to a significant increase in Aß42 fibrillogenesis demonstrating their ability to accelerate Aß42 aggregation. Compound 4d exhibited 2.7-fold increase in Aß42 fibrillogenesis when tested at the maximum concentration of 25 µM. These results were further confirmed by electron microscopy studies which demonstrates the ability of compounds 4a, 4b, 4d, 5a, 5b and 5d to modulate Aß42 fibrillogenesis. Compounds 5a and 5b provided significant neuroprotection to mouse hippocampal neuronal HT22 cells against Aß42-induced cytotoxicity. Molecular docking studies suggest that the orientation of the bicyclic aromatic rings (either benzofuran or benzo[b]thiophene) plays a major role in moderating their ability to either inhibit or accelerate Aß42 aggregation. Our findings support the application of these novel derivatives as pharmacological tools to study the mechanisms of Aß42 aggregation.

14.
Cell Mol Life Sci ; 81(1): 274, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902506

ABSTRACT

Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.


Subject(s)
Mutation , Neoplasms , Humans , Neoplasms/genetics , Regulatory Sequences, Nucleic Acid/genetics , Genome, Human , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic
15.
Microbiol Spectr ; 12(7): e0048724, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38860795

ABSTRACT

Iron scavenging is required for full virulence of mycobacterial pathogens. During infection, the host immune response restricts mycobacterial access to iron, which is essential for bacterial respiration and DNA synthesis. The Mycobacterium tuberculosis iron-dependent regulator (IdeR) responds to changes in iron accessibility by repressing iron-uptake genes when iron is available. In contrast, iron-uptake gene transcription is induced when iron is depleted. The ideR gene is essential in M. tuberculosis and is required for bacterial growth. To further study how iron regulates transcription, wee developed an iron responsive reporter system that relies on an IdeR-regulated promoter to drive Cre and loxP mediated recombination in Mycobacterium smegmatis. Recombination leads to the expression of an antibiotic resistance gene so that mutations that activate the IdeR-regulated promoter can be selected. A transposon library in the background of this reporter system was exposed to media containing iron and hemin, and this resulted in the selection of mutants in the antioxidant mycothiol synthesis pathway. We validated that inactivation of the mycothiol synthesis gene mshA results in increased recombination and increased IdeR-regulated promoter activity in the reporter system. Further, we show that vitamin C, which has been shown to oxidize iron through the Fenton reaction, can decrease promoter activity in the mshA mutant. We conclude that the intracellular redox state balanced by mycothiol can alter IdeR activity in the presence of iron.IMPORTANCEMycobacterium smegmatis is a tractable organism to study mycobacterial gene regulation. We used M. smegmatis to construct a novel recombination-based reporter system that allows for the selection of mutations that deregulate a promoter of interest. Transposon mutagenesis and insertion sequencing (TnSeq) in the recombination reporter strain identified genes that impact iron regulated promoter activity in mycobacteria. We found that the mycothiol synthesis gene mshA is required for IdeR mediated transcriptional regulation by maintaining intracellular redox balance. By affecting the oxidative state of the intracellular environment, mycothiol can modulate iron-dependent transcriptional activity. Taken more broadly, this novel reporter system can be used in combination with transposon mutagenesis to identify genes that are required by Mycobacterium tuberculosis to overcome temporary or local changes in iron availability during infection.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Genes, Reporter , Glycopeptides , Inositol , Iron , Mycobacterium smegmatis , Oxidation-Reduction , Iron/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Inositol/metabolism , Glycopeptides/metabolism , Glycopeptides/biosynthesis , Promoter Regions, Genetic , Cysteine/metabolism , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/genetics , DNA Transposable Elements , Repressor Proteins
16.
Epigenomes ; 8(2)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38920624

ABSTRACT

The post-genomic era has ushered in the extensive application of epigenetic editing tools, allowing for precise alterations of gene expression. The use of reprogrammable editors that carry transcriptional corepressors has significant potential for long-term epigenetic silencing for the treatment of human diseases. The ideal scenario involves precise targeting of a specific genomic location by a DNA-binding domain, ensuring there are no off-target effects and that the process yields no genetic remnants aside from specific epigenetic modifications (i.e., DNA methylation). A notable example is a recent study on the mouse Pcsk9 gene, crucial for cholesterol regulation and expressed in hepatocytes, which identified synthetic zinc-finger (ZF) proteins as the most effective DNA-binding editors for silencing Pcsk9 efficiently, specifically, and persistently. This discussion focuses on enhancing the specificity of ZF-array DNA binding by optimizing interactions between specific amino acids and DNA bases across three promoters containing CpG islands.

17.
Front Bioeng Biotechnol ; 12: 1392967, 2024.
Article in English | MEDLINE | ID: mdl-38895554

ABSTRACT

Boolean gates, the fundamental components of digital circuits, have been widely investigated in synthetic biology because they permit the fabrication of biosensors and facilitate biocomputing. This study was conducted to design and construct Boolean gates in the yeast Saccharomyces cerevisiae, the main component of which was the RNA interference pathway (RNAi) that is naturally absent from the budding yeast cells. We tested different expression cassettes for the siRNA precursor (a giant hairpin sequence, a DNA fragment-flanked by one or two introns-between convergent promoters or transcribed separately in the sense and antisense directions) and placed different components under the control of the circuit inputs (i.e., the siRNA precursor or proteins such as the Dicer and the Argonaute). We found that RNAi-based logic gates are highly sensitive to promoter leakage and, for this reason, challenging to implement in vivo. Convergent-promoter architecture turned out to be the most reliable solution, even though the overall best performance was achieved with the most difficult design based on the siRNA precursor as a giant hairpin.

18.
Article in English | MEDLINE | ID: mdl-38879794

ABSTRACT

Aquafeed additive quality and quantity remain pivotal factors that constrain the sustainability and progress of aquaculture feed development. This study investigates the impact of incorporating the benthic diatom Amphora coffeaeformis into the diet of Nile tilapia (Oreochromis niloticus) broodstock, on the blood biochemistry, steroid hormone (SH) levels and seed production efficiency. Broodstock females displaying mature ovary indications were initially combined with males at a ratio of three females to one male. A total of 384 adult Nile tilapia (288 females and 96 males) were used, with 32 fish (24 females and eight males) assigned to each of 12 concrete tanks (8 m³; 2 m × 4 m × 1 m), with three replicate tanks for each dietary treatment, throughout a 14-day spawning cycle until egg harvest. Fish were fed one of four different dietary treatments: AM0% (control diet), and AM2%, AM4% and AM6% enriched with the diatom A. coffeaeformis at levels of 20, 40 and 60 g/kg of diet respectively. At the trial's conclusion, total protein, albumin, triglyceride and creatinine), SHs (follicle-stimulating hormone, luteinizing hormone, free testosterone, total testosterone, progesterone and prolactin) and seeds production efficiency of Nile tilapia improved significantly (p < 0.05) in alignment with the increment of A. coffeaeformis supplementation. The findings propose that including A. coffeaeformis at levels ranging from 4% to 6% could be effectively employed as a feed additive during the Nile tilapia broodstock's spawning season.

19.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38701419

ABSTRACT

It is a vital step to recognize cyanobacteria promoters on a genome-wide scale. Computational methods are promising to assist in difficult biological identification. When building recognition models, these methods rely on non-promoter generation to cope with the lack of real non-promoters. Nevertheless, the factitious significant difference between promoters and non-promoters causes over-optimistic prediction. Moreover, designed for E. coli or B. subtilis, existing methods cannot uncover novel, distinct motifs among cyanobacterial promoters. To address these issues, this work first proposes a novel non-promoter generation strategy called phantom sampling, which can eliminate the factitious difference between promoters and generated non-promoters. Furthermore, it elaborates a novel promoter prediction model based on the Siamese network (SiamProm), which can amplify the hidden difference between promoters and non-promoters through a joint characterization of global associations, upstream and downstream contexts, and neighboring associations w.r.t. k-mer tokens. The comparison with state-of-the-art methods demonstrates the superiority of our phantom sampling and SiamProm. Both comprehensive ablation studies and feature space illustrations also validate the effectiveness of the Siamese network and its components. More importantly, SiamProm, upon our phantom sampling, finds a novel cyanobacterial promoter motif ('GCGATCGC'), which is palindrome-patterned, content-conserved, but position-shifted.


Subject(s)
Cyanobacteria , Promoter Regions, Genetic , Cyanobacteria/genetics , Computational Biology/methods , Algorithms
20.
Pharmaceutics ; 16(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38794341

ABSTRACT

In this study, we evaluated the effect of several promoters on the transfection activity and immune-induction efficiency of a plasmid DNA (pDNA)/polyethylenimine/γ-polyglutamic acid complex (pDNA ternary complex). Model pDNAs encoding firefly luciferase (Luc) were constructed with several promoters, such as simian virus 40 (SV40), eukaryotic elongation factor 1 alpha (EF1), cytomegalovirus (CMV), and chicken beta actin hybrid (CBh) (pSV40-Luc, pEF1-Luc, pCMV-Luc, and pCBh-Luc, respectively). Four types of pDNA ternary complexes, each with approximately 145-nm particle size and -30-mV ζ-potential, were stably constructed. The pDNA ternary complex containing pSV40-Luc showed low gene expression, but the other complexes containing pEF1-Luc, pCMV-Luc, and pCBh-Luc showed high gene expression in DC2.4 cells and spleen after intravenous administration. After immunization using various pDNA encoding ovalbumin (OVA) such as pEF1-OVA, pCMV-OVA, and pCBh-OVA, only the pDNA ternary complex containing pCBh-OVA showed significant anti-OVA immunoglobulin G (IgG) induction. In conclusion, our results showed that the CBh promoter is potentially suitable for use in pDNA ternary complex-based DNA vaccination.

SELECTION OF CITATIONS
SEARCH DETAIL