Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Microbiol Spectr ; : e0354122, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36916913

ABSTRACT

Escherichia coli (E. coli), a Gram-negative bacterium, is an important pathogen that causes several mammalian diseases. The outer membrane components of E. coli, namely, lipopolysaccharide (LPS) and bacterial lipoprotein, can induce the host innate immune response through pattern recognition receptors (PRRs). However, the detailed roles of the E. coli Braun lipoprotein (BLP) in the regulation of host inflammatory response to E. coli infection remain unclear. In this study, we sought to determine the effects of BLP on E. coli-induced host inflammatory response and lethality using mouse models. Experiments using the E. coli DH5α strain (BLP-positive), E. coli JE5505 strain (BLP-negative), and E. coli JE5505 strain combined with BLP indicated that the presence of BLP could alleviate mortality and organ (liver and lung) damage and decrease proinflammatory cytokine (tumor necrosis factor alpha [TNF-α] and interleukin-1ß [IL-1ß]) and chemokine (regulated on activation normal T-cell expressed and secreted [RANTES]) production in mouse serum and organs. Conversely, E. coli JE5505, E. coli DH5α strain, and E. coli JE5505 combined with BLP treatment induce enhanced anti-inflammatory cytokine (interleukin 10 [IL-10]) production in mouse serum and organs. In addition, BLP could regulate the secretion of proinflammatory cytokines (TNF-α and IL-1ß), chemokines (RANTES), and anti-inflammatory factors (IL-10) through mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-κB) signaling pathways in macrophages. Altogether, our results demonstrate that the bacterial component BLP plays crucial and protective roles in E. coli-infected mice, which may influence the outcome of inflammation in host response to E. coli infection. IMPORTANCE In this study, we investigated the roles of bacterial outer membrane component BLP in regulating inflammatory responses and lethality in mice that were induced by a ubiquitous and serious pathogen, Escherichia coli. BLP could alleviate the mortality of mice and organ damage, as well as decrease proinflammatory cytokines and chemokine production and enhance anti-inflammatory cytokine production in mouse serum and organs. Overall, our results demonstrate that the bacterial component BLP plays crucial and protective roles in E. coli-infected mice through regulating the production of an inflammatory mediator, which may influence the outcome of inflammation in host response to E. coli infection. Our findings provide new information about the basic biology involved in immune responses to E. coli and host-bacterial interactions, which have the potential to translate into novel approaches for the diagnosis and treatment of E. coli-related medical conditions, such as bacteremia and sepsis.

2.
Curr Drug Metab ; 22(9): 698-708, 2021.
Article in English | MEDLINE | ID: mdl-34325630

ABSTRACT

BACKGROUND: In recent years, the significance of cytochrome P450 enzymes (CYPs) has expanded beyond their role in the liver. Factors such as genetics, environmental toxins, drug biotransformation and underlying diseases mediate the expression of these enzymes. Among the CYP enzymes, CYP2E1, a well-recognized monooxygenase enzyme involved in the metabolism of various endogenous and exogenous substances, plays a crucial role in the brain concerning the development of Parkinson's disease. The expression of CYP2E1 varies in different brain regions making certain regions more vulnerable than others. CYP2E1 expression is inducible which generates tissuedamaging radicals leading to oxidative stress, mitochondrial dysfunction and ultimately neurodegeneration. OBJECTIVE: Less is understood about the role of CYP2E1 in the central nervous system, therefore the purpose of the study was to investigate the relationship between the expression and activity of CYP2E1 enzyme relevant to Parkinson's disease and to identify whether an increase in the expression of CYP2E1 is associated with neurodegeneration. METHODS: The objectives of the study were achieved by implicating an unsystematic integrative literature review approach in which the literature was qualitatively analysed, critically evaluated and a new theory with an overall view of the mechanism was presented. RESULTS: The contribution of CYP2E1 in the development of Parkinson's disease was found to be significant as the negative effects of CYP2E1 overshadowed its protective detoxifying role. CONCLUSION: Overexpression of CYP2E1 seems detrimental to dopaminergic neurons, therefore, to overcome this, a synthetic biochemical is required, which paves the way for further research and development of valuable biomolecules.


Subject(s)
Brain/metabolism , Cytochrome P-450 CYP2E1/metabolism , Parkinson Disease , Dopaminergic Neurons/metabolism , Drug Discovery , Gene Expression Regulation , Humans , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Parkinson Disease/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL