Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biotechnol Bioeng ; 121(7): 2057-2066, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38650386

ABSTRACT

High hydrostatic pressure stabilized galactose oxidase (GaOx) at 70.0-80.0°C against thermal inactivation. The pseudo-first-order rate constant of inactivation kinact decreased by a factor of 8 at 80°C and by a factor of 44 at 72.5°C. The most pronounced effect of pressure was at the lowest studied temperature of 70.0°C with an activation volume of inactivation ΔV‡ of 78.8 cm3 mol-1. The optimal pressure against thermal inactivation was between 200 and 300 MPa. Unlike other enzymes, as temperature increased the ΔV‡ of inactivation decreased, and as pressure increased the activation energy of inactivation Eai increased. Combining the results for GaOx with earlier research on the pressure-induced stabilization of other enzymes suggests that ΔV‡ of inactivation correlates with the total molar volume of cavities larger than ~100 Å3 in enzyme monomers for enzymes near the optimal pH and whose thermal unfolding is not accompanied by oligomer dissociation.


Subject(s)
Enzyme Stability , Galactose Oxidase , Hydrostatic Pressure , Galactose Oxidase/chemistry , Galactose Oxidase/metabolism , Hot Temperature , Temperature
2.
J Cheminform ; 16(1): 12, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291536

ABSTRACT

Numerous computational methods, including evolutionary-based, energy-based, and geometrical-based methods, are utilized to identify cavities inside proteins. Cavity information aids protein function annotation, drug design, poly-pharmacology, and allosteric site investigation. This article introduces "flow transfer algorithm" for rapid and effective identification of diverse protein cavities through multidimensional cavity scan. Initially, it identifies delimiter and susceptible tetrahedra to establish boundary regions and provide seed tetrahedra. Seed tetrahedron faces are precisely scanned using the maximum circle radius to transfer seed flow to neighboring tetrahedra. Seed flow continues until terminated by boundaries or forbidden faces, where a face is forbidden if the estimated maximum circle radius is less or equal to the user-defined maximum circle radius. After a seed scanning, tetrahedra involved in the flow are clustered to locate the cavity. The CRAFT web interface integrates this algorithm for protein cavity identification with enhanced user control. It supports proteins with cofactors, hydrogens, and ligands and provides comprehensive features such as 3D visualization, cavity physicochemical properties, percentage contribution graphs, and highlighted residues for each cavity. CRAFT can be accessed through its web interface at http://pitools.niper.ac.in/CRAFT , complemented by the command version available at https://github.com/PGlab-NIPER/CRAFT/ .Scientific contribution: Flow transfer algorithm is a novel geometric approach for accurate and reliable prediction of diverse protein cavities. This algorithm employs a distinct concept involving maximum circle radius within the 3D Delaunay triangulation to address diverse van der Waals radii while existing methods overlook atom specific van der Waals radii or rely on complex weighted geometric techniques.

3.
Plants (Basel) ; 12(14)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37514209

ABSTRACT

It has been well known for a long time that inert gases, such as xenon (Xe), have significant biological effects. As these atoms are extremely unlikely to partake in direct chemical reactions with biomolecules such as proteins, lipids, and nucleic acids, there must be some other mode of action to account for the effects reported. It has been shown that the topology of proteins allows for cavities and hydrophobic pockets, and it is via an interaction with such protein structures that inert gases are thought to have their action. Recently, it has been mooted that the relatively inert gas molecular hydrogen (H2) may also have its effects via such a mechanism, influencing protein structures and actions. H2 is thought to also act via interaction with redox active compounds, particularly the hydroxyl radical (·OH) and peroxynitrite (ONOO-), but not nitric oxide (NO·), superoxide anions (O2·-) or hydrogen peroxide (H2O2). However, instead of having a direct interaction with H2, is there any evidence that these redox compounds can also interact with Xe pockets and cavities in proteins, either having an independent effect on proteins or interfering with the action of inert gases? This suggestion will be explored here.

4.
ACS Chem Neurosci ; 13(17): 2646-2657, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36001084

ABSTRACT

Recent high-resolution structures of alpha-synuclein (aSyn) fibrils offer promise for rational approaches to drug discovery for Parkinson's disease and Lewy body dementia. Harnessing the first such structures, we previously used molecular dynamics and free energy calculations to suggest that threonines 72 and 75─which line water-filled cavities within the fibril stacks─may be of central importance in stabilizing fibrils. Here, we used experimental mutagenesis of both wild-type and A53T aSyn to show that both threonine residues play important but surprisingly disparate roles in fibril nucleation and elongation. The T72A mutant, but not T75A, resulted in a large increase in the extent of fibrillization during primary nucleation, leading us to posit that T72 acts as a "brake" on run-away aggregation. An expanded set of simulations of five recent high-resolution fibril structures suggests that confinement of cavity waters around T72 correlates with this finding. In contrast, the T75A mutation led to a modest decrease in the extent of fibrillization. Furthermore, both T72A and T75A completely blocked the initial fibril elongation in seeded fibrillization. To test whether these threonine-lined cavities are druggable targets, we used computational docking to identify potential small-molecule binders. We show that the top-scoring hit, aprepitant, strongly promotes fibril growth while specifically interacting with aSyn fibrils and not monomer, and we offer speculation as to how such compounds could be used therapeutically.


Subject(s)
Lewy Body Disease , Parkinson Disease , Humans , Mutation/genetics , Parkinson Disease/genetics , Threonine/genetics , alpha-Synuclein/chemistry
5.
Proteins ; 85(12): 2209-2216, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28905430

ABSTRACT

Elemental sulfur exists primarily as an S80 ring and serves as terminal electron acceptor for a variety of sulfur-fermenting bacteria. Hyperthermophilic archaea from black smoker vents are an exciting research tool to advance our knowledge of sulfur respiration under extreme conditions. Here, we use a hybrid method approach to demonstrate that the proteinaceous cavities of the S-layer nanotube of the hyperthermophilic archaeon Staphylothermus marinus act as a storage reservoir for cyclo-octasulfur S8. Fully atomistic molecular dynamics (MD) simulations were performed and the method of multiconfigurational thermodynamic integration was employed to compute the absolute free energy for transferring a ring of elemental sulfur S8 from an aqueous bath into the largest hydrophobic cavity of a fragment of archaeal tetrabrachion. Comparisons with earlier MD studies of the free energy of hydration as a function of water occupancy in the same cavity of archaeal tetrabrachion show that the sulfur ring is energetically favored over water.


Subject(s)
Desulfurococcaceae/chemistry , Nanotubes/chemistry , Sulfur/chemistry , Water/chemistry , Amino Acid Motifs , Archaeal Proteins , Crystallography, X-Ray , Desulfurococcaceae/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrophobic and Hydrophilic Interactions , Hydrothermal Vents , Molecular Dynamics Simulation , Nanotubes/ultrastructure , Plasmids/chemistry , Plasmids/metabolism , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sulfur/metabolism , Thermodynamics , Water/metabolism
6.
Front Physiol ; 7: 360, 2016.
Article in English | MEDLINE | ID: mdl-27656147

ABSTRACT

Globins contain one or more cavities that control or affect such functions as ligand movement and ligand binding. Here we report that the extended globin family [cytoglobin (Cygb); neuroglobin (Ngb); myoglobin (Mb); hemoglobin (Hb) subunits Hba(α); and Hbb(ß)] contain either a transmembrane (TM) helix or pore-lining region as well as internal cavities. Protein motif/domain analyses indicate that Ngb and Hbb each contain 5 cholesterol- binding (CRAC/CARC) domains and 1 caveolin binding motif, whereas the Cygb dimer has 6 cholesterol-binding domains but lacks caveolin-binding motifs. Mb and Hba each exhibit 2 cholesterol-binding domains and also lack caveolin-binding motifs. The Hb αß-tetramer contains 14 cholesterol-binding domains. Computer algorithms indicate that Cygb and Ngb cavities display multiple partitions and C-terminal pore-lining regions, whereas Mb has three major cavities plus a C-terminal pore-lining region. The Hb tetramer exhibits a large internal cavity but the subunits differ in that they contain a C-terminal TM helix (Hba) and pore-lining region (Hbb). The cavities include 43 of 190 Cygb residues, 38 of 151 of Ngb residues, 55 of 154 Mb residues, and 137 of 688 residues in the Hb tetramer. Each cavity complex includes 6 to 8 residues of the TM helix or pore-lining region and CRAC/CARC domains exist within all cavities. Erythrocyte Hb αß-tetramers are largely cytosolic but also bind to a membrane anion exchange protein, "band 3," which contains a large internal cavity and 12 TM helices (5 being pore-lining regions). The Hba TM helix may be the erythrocyte membrane "band 3" attachment site. "Band 3" contributes 4 caveolin binding motifs and 10 CRAC/CARC domains. Cholesterol binding may create lipid-disordered phases that alter globin cavities and facilitate ligand movement, permitting ion channel formation and conformational changes that orchestrate anion and ligand (O2, CO2, NO) movement within the large internal cavities and channels of the globins.

7.
Chem Biodivers ; 13(6): 798-806, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27151738

ABSTRACT

This work describes molecular dynamics (MD) simulations in aqueous media for the complex of the homotetrameric urate oxidase (UOX) from Aspergillus flavus with xanthine anion (5) in the presence of dioxygen (O2 ). After 196.6 ns of trajectory from unrestrained MD, a O2 molecule was observed leaving the bulk solvent to penetrate the enzyme between two subunits, A/C. From here, the same O2 molecule was observed migrating, across subunit C, to the hydrophobic cavity that shares residue V227 with the active site. The latter was finally attained, after 378.3 ns of trajectory, with O2 at a bonding distance from 5. The reverse same O2 pathway, from 5 to the bulk solvent, was observed as preferred pathway under random acceleration MD (RAMD), where an external, randomly oriented force was acting on O2 . Both MD and RAMD simulations revealed several cavities populated by O2 during its migration from the bulk solvent to the active site or backwards. Paying attention to the last hydrophobic cavity that apparently serves as O2 reservoir for the active site, it was noticed that its volume undergoes ample fluctuations during the MD simulation, as expected from the thermal motion of a flexible protein, independently from the particular subunit and no matter whether the cavity is filled or not by O2 .


Subject(s)
Aspergillus flavus/enzymology , Molecular Dynamics Simulation , Oxygen/metabolism , Urate Oxidase/metabolism , Xanthine/metabolism , Anions/chemistry , Anions/metabolism , Aspergillus flavus/metabolism , Molecular Structure , Oxygen/chemistry , Solutions , Urate Oxidase/chemistry , Water/chemistry , Water/metabolism , Xanthine/chemistry
8.
J Comput Chem ; 37(4): 437-47, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26558715

ABSTRACT

Molecular docking is a computational approach for predicting the most probable position of ligands in the binding sites of macromolecules and constitutes the cornerstone of structure-based computer-aided drug design. Here, we present a new algorithm called Attracting Cavities that allows molecular docking to be performed by simple energy minimizations only. The approach consists in transiently replacing the rough potential energy hypersurface of the protein by a smooth attracting potential driving the ligands into protein cavities. The actual protein energy landscape is reintroduced in a second step to refine the ligand position. The scoring function of Attracting Cavities is based on the CHARMM force field and the FACTS solvation model. The approach was tested on the 85 experimental ligand-protein structures included in the Astex diverse set and achieved a success rate of 80% in reproducing the experimental binding mode starting from a completely randomized ligand conformer. The algorithm thus compares favorably with current state-of-the-art docking programs.


Subject(s)
Algorithms , Molecular Docking Simulation , Proteins/chemistry , Thermodynamics , Ligands
9.
J Mol Graph Model ; 55: 13-24, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25424655

ABSTRACT

Protein conformation has been recognized as the key feature determining biological function, as it determines the position of the essential groups specifically interacting with substrates. Hence, the shape of the cavities or grooves at the protein surface appears to drive those functions. However, only a few studies describe the geometrical evolution of protein cavities during molecular dynamics simulations (MD), usually with a crude representation. To unveil the dynamics of cavity geometry evolution, we developed an approach combining cavity detection and Principal Component Analysis (PCA). This approach was applied to four systems subjected to MD (lysozyme, sperm whale myoglobin, Dengue envelope protein and EF-CaM complex). PCA on cavities allows us to perform efficient analysis and classification of the geometry diversity explored by a cavity. Additionally, it reveals correlations between the evolutions of the cavities and structures, and can even suggest how to modify the protein conformation to induce a given cavity geometry. It also helps to perform fast and consensual clustering of conformations according to cavity geometry. Finally, using this approach, we show that both carbon monoxide (CO) location and transfer among the different xenon sites of myoglobin are correlated with few cavity evolution modes of high amplitude. This correlation illustrates the link between ligand diffusion and the dynamic network of internal cavities.


Subject(s)
Motion , Principal Component Analysis , Proteins/chemistry , Animals , Binding Sites , Carbon Monoxide/chemistry , Chickens , Molecular Dynamics Simulation , Muramidase/chemistry , Myoglobin/chemistry , Protein Conformation , Whales
10.
Int J Mol Sci ; 10(9): 4137-4156, 2009 Sep 22.
Article in English | MEDLINE | ID: mdl-19865536

ABSTRACT

Dynamics and reactivity in heme proteins include direct and indirect interactions of the ligands/substrates like CO, NO and O(2) with the environment. Direct electrostatic interactions result from amino acid side chains in the inner cavities and/or metal coordination in the active site, whereas indirect interactions result by ligands in the same coordination sphere. Interactions play a crucial role in stabilizing transition states in catalysis or altering ligation chemistry. We have probed, by Density Functional Theory (DFT), the perturbation degree in the stretching vibrational frequencies of CO, NO and O(2) molecules in the presence of electrostatic interactions or hydrogen bonds, under conditions simulating the inner cavities. Moreover, we have studied the vibrational characteristics of the heme bound form of the CO and NO ligands by altering the chemistry of the proximal to the heme ligand. CO, NO and O(2) molecules are highly polarizable exerting vibrational shifts up to 80, 200 and 120 cm(-1), respectively, compared to the non-interacting ligand. The importance of Density Functional Theory (DFT) methodology in the investigation of the heme-ligand-protein interactions is also addressed.


Subject(s)
Carbon Monoxide/chemistry , Hemeproteins/chemistry , Nitric Oxide/chemistry , Oxygen/chemistry , Binding Sites , Hydrogen Bonding , Models, Chemical , Models, Molecular , Protein Binding , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL