Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 488
Filter
1.
J Neuromuscul Dis ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39121134

ABSTRACT

HNRNPA1 variants are known to cause degenerative motoneuron and muscle diseases which manifests in middle age or later. We report on a girl with early childhood onset, rapidly progressive generalized myopathy including ultrastructural findings in line with a proteinopathy. Proteomics of patient-derived muscle and combined screening of genomic data for copy number variations identified a HNRNPA1 de novo intragenic deletion as causative for the phenotype. Our report expands the spectrum of HNRNPA1-related diseases towards early-childhood onset and adds HNRNPA1 to the growing list of ALS and myopathy genes for which certain mutations may cause severe pediatric phenotypes.

2.
Methods Mol Biol ; 2836: 3-17, 2024.
Article in English | MEDLINE | ID: mdl-38995532

ABSTRACT

Proteogenomics has revealed the translation of unannotated open reading frames (ORFs) present in mRNAs and in noncoding RNAs (ncRNAs). OpenProt annotates all ORFs with a minimum of 30 codons in the transcriptome of several species and displays many functional features associated with the corresponding proteins. Two types of proteins are annotated: reference or canonical proteins which are proteins already annotated in UniProt, RefSeq, or Ensembl and noncanonical proteins. Noncanonical proteins form two groups: predicted novel isoforms that display a significant level of homology with a reference protein and alternative proteins that are new proteins with no significant homology to known proteins. This chapter describes how to check whether a gene and/or transcript contains multiple open reading frames and how to use OpenProt databases for the detection of alternative proteins and novel isoforms by mass spectrometry-based proteomics.


Subject(s)
Mass Spectrometry , Open Reading Frames , Proteome , Mass Spectrometry/methods , Proteomics/methods , Databases, Protein , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , Molecular Sequence Annotation , Proteogenomics/methods
3.
Methods Mol Biol ; 2823: 55-75, 2024.
Article in English | MEDLINE | ID: mdl-39052214

ABSTRACT

Combining proteogenomics with laser capture microdissection (LCM) in cancer research offers a targeted way to explore the intricate interactions between tumor cells and the different microenvironment components. This is especially important for immuno-oncology (IO) research where improvements in the predictability of IO-based drugs are sorely needed, and depends on a better understanding of the spatial relationships involving the tumor, blood supply, and immune cell interactions, in the context of their associated microenvironments. LCM is used to isolate and obtain distinct histological cell types, which may be routinely performed on complex and heterogeneous solid tumor specimens. Once cells have been captured, nucleic acids and proteins may be extracted for in-depth multimodality molecular profiling assays. Optimizing the minute tissue quantities from LCM captured cells is challenging. Following the isolation of nucleic acids, RNA-seq may be performed for gene expression and DNA sequencing performed for the discovery and analysis of actionable mutations, copy number variation, methylation profiles, etc. However, there remains a need for highly sensitive proteomic methods targeting small-sized samples. A significant part of this protocol is an enhanced liquid chromatography mass spectrometry (LC-MS) analysis of micro-scale and/or nano-scale tissue sections. This is achieved with a silver-stained one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1D-SDS-PAGE) approach developed for LC-MS analysis of fresh-frozen tissue specimens obtained via LCM. Included is a detailed in-gel digestion method adjusted and specifically designed to maximize the proteome coverage from amount-limited LCM samples to better facilitate in-depth molecular profiling. Described is a proteogenomic approach leveraged from microdissected fresh frozen tissue. The protocols may also be applicable to other types of specimens having limited nucleic acids, protein quantity, and/or sample volume.


Subject(s)
Laser Capture Microdissection , Proteogenomics , Proteogenomics/methods , Humans , Laser Capture Microdissection/methods , Chromatography, Liquid/methods , Neoplasms/pathology , Neoplasms/genetics , Drug Discovery/methods , Mass Spectrometry/methods , Proteomics/methods , Tumor Microenvironment , Microdissection/methods
4.
Am J Hum Genet ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39079539

ABSTRACT

A major fraction of loci identified by genome-wide association studies (GWASs) mediate alternative splicing, but mechanistic interpretation is hindered by the technical limitations of short-read RNA sequencing (RNA-seq), which cannot directly link splicing events to full-length protein isoforms. Long-read RNA-seq represents a powerful tool to characterize transcript isoforms, and recently, infer protein isoform existence. Here, we present an approach that integrates information from GWASs, splicing quantitative trait loci (sQTLs), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects of sQTLs on the ultimate protein isoform products they encode. We demonstrate the utility of our approach using bone mineral density (BMD) GWAS data. We identified 1,863 sQTLs from the Genotype-Tissue Expression (GTEx) project in 732 protein-coding genes that colocalized with BMD associations (H4PP ≥ 0.75). We generated PacBio Iso-Seq data (N = ∼22 million full-length reads) on human osteoblasts, identifying 68,326 protein-coding isoforms, of which 17,375 (25%) were unannotated. By casting the sQTLs onto protein isoforms, we connected 809 sQTLs to 2,029 protein isoforms from 441 genes expressed in osteoblasts. Overall, we found that 74 sQTLs influenced isoforms likely impacted by nonsense-mediated decay and 190 that potentially resulted in the expression of unannotated protein isoforms. Finally, we functionally validated colocalizing sQTLs in TPM2, in which siRNA-mediated knockdown in osteoblasts showed two TPM2 isoforms with opposing effects on mineralization but exhibited no effect upon knockdown of the entire gene. Our approach should be to generalize across diverse clinical traits and to provide insights into protein isoform activities modulated by GWAS loci.

5.
Biomolecules ; 14(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38927095

ABSTRACT

As an essential component of modern drug discovery, the role of drug-target identification is growing increasingly prominent. Additionally, single-omics technologies have been widely utilized in the process of discovering drug targets. However, it is difficult for any single-omics level to clearly expound the causal connection between drugs and how they give rise to the emergence of complex phenotypes. With the progress of large-scale sequencing and the development of high-throughput technologies, the tendency in drug-target identification has shifted towards integrated multi-omics techniques, gradually replacing traditional single-omics techniques. Herein, this review centers on the recent advancements in the domain of integrated multi-omics techniques for target identification, highlights the common multi-omics analysis strategies, briefly summarizes the selection of multi-omics analysis tools, and explores the challenges of existing multi-omics analyses, as well as the applications of multi-omics technology in drug-target identification.


Subject(s)
Drug Discovery , Genomics , Proteomics , Humans , Genomics/methods , Drug Discovery/methods , Proteomics/methods , Metabolomics/methods , Computational Biology/methods , Multiomics
6.
Genes (Basel) ; 15(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927711

ABSTRACT

The high-throughput proteomics data generated by increasingly more sensible mass spectrometers greatly contribute to our better understanding of molecular and cellular mechanisms operating in live beings. Nevertheless, proteomics analyses are based on accurate genomic and protein annotations, and some information may be lost if these resources are incomplete. Here, we show that most proteomics data may be recovered by interconnecting genomics and proteomics approaches (i.e., following a proteogenomic strategy), resulting, in turn, in an improvement of gene/protein models. In this study, we generated proteomics data from Leishmania donovani (HU3 strain) promastigotes that allowed us to detect 1908 proteins in this developmental stage on the basis of the currently annotated proteins available in public databases. However, when the proteomics data were searched against all possible open reading frames existing in the L. donovani genome, twenty new protein-coding genes could be annotated. Additionally, 43 previously annotated proteins were extended at their N-terminal ends to accommodate peptides detected in the proteomics data. Also, different post-translational modifications (phosphorylation, acetylation, methylation, among others) were found to occur in a large number of Leishmania proteins. Finally, a detailed comparative analysis of the L. donovani and Leishmania major experimental proteomes served to illustrate how inaccurate conclusions can be raised if proteomes are compared solely on the basis of the listed proteins identified in each proteome. Finally, we have created data entries (based on freely available repositories) to provide and maintain updated gene/protein models. Raw data are available via ProteomeXchange with the identifier PXD051920.


Subject(s)
Genome, Protozoan , Leishmania donovani , Proteogenomics , Protozoan Proteins , Leishmania donovani/genetics , Leishmania donovani/metabolism , Proteogenomics/methods , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protein Processing, Post-Translational/genetics , Proteomics/methods , Proteome/genetics , Molecular Sequence Annotation
7.
Cancer Cell ; 42(7): 1185-1201.e14, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38906156

ABSTRACT

Multiple myeloma (MM) is an incurable plasma cell malignancy that exploits transcriptional networks driven by IRF4. We employ a multi-omics approach to discover IRF4 vulnerabilities, integrating functional genomics screening, spatial proteomics, and global chromatin mapping. ARID1A, a member of the SWI/SNF chromatin remodeling complex, is required for IRF4 expression and functionally associates with IRF4 protein on chromatin. Deleting Arid1a in activated murine B cells disrupts IRF4-dependent transcriptional networks and blocks plasma cell differentiation. Targeting SWI/SNF activity leads to rapid loss of IRF4-target gene expression and quenches global amplification of oncogenic gene expression by MYC, resulting in profound toxicity to MM cells. Notably, MM patients with aggressive disease bear the signature of SWI/SNF activity, and SMARCA2/4 inhibitors remain effective in immunomodulatory drug (IMiD)-resistant MM cells. Moreover, combinations of SWI/SNF and MEK inhibitors demonstrate synergistic toxicity to MM cells, providing a promising strategy for relapsed/refractory disease.


Subject(s)
DNA-Binding Proteins , Interferon Regulatory Factors , Multiple Myeloma , Plasma Cells , Transcription Factors , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Plasma Cells/drug effects , Plasma Cells/metabolism , Plasma Cells/pathology , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Cell Differentiation/drug effects
8.
Cell ; 187(16): 4389-4407.e15, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38917788

ABSTRACT

Fewer than 200 proteins are targeted by cancer drugs approved by the Food and Drug Administration (FDA). We integrate Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomics data from 1,043 patients across 10 cancer types with additional public datasets to identify potential therapeutic targets. Pan-cancer analysis of 2,863 druggable proteins reveals a wide abundance range and identifies biological factors that affect mRNA-protein correlation. Integration of proteomic data from tumors and genetic screen data from cell lines identifies protein overexpression- or hyperactivation-driven druggable dependencies, enabling accurate predictions of effective drug targets. Proteogenomic identification of synthetic lethality provides a strategy to target tumor suppressor gene loss. Combining proteogenomic analysis and MHC binding prediction prioritizes mutant KRAS peptides as promising public neoantigens. Computational identification of shared tumor-associated antigens followed by experimental confirmation nominates peptides as immunotherapy targets. These analyses, summarized at https://targets.linkedomics.org, form a comprehensive landscape of protein and peptide targets for companion diagnostics, drug repurposing, and therapy development.


Subject(s)
Neoplasms , Proteogenomics , Humans , Proteogenomics/methods , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/metabolism , Molecular Targeted Therapy , Immunotherapy/methods , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Cell Line, Tumor , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Peptides/metabolism , Proteomics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
9.
Cell Rep Med ; 5(5): 101547, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38703764

ABSTRACT

Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell , Kidney Neoplasms , Proteogenomics , Humans , Proteogenomics/methods , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Transcriptome/genetics , Male , Female , Middle Aged , Gene Expression Regulation, Neoplastic
10.
Breast Cancer Res ; 26(1): 76, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745208

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer death among women globally. Despite advances, there is considerable variation in clinical outcomes for patients with non-luminal A tumors, classified as difficult-to-treat breast cancers (DTBC). This study aims to delineate the proteogenomic landscape of DTBC tumors compared to luminal A (LumA) tumors. METHODS: We retrospectively collected a total of 117 untreated primary breast tumor specimens, focusing on DTBC subtypes. Breast tumors were processed by laser microdissection (LMD) to enrich tumor cells. DNA, RNA, and protein were simultaneously extracted from each tumor preparation, followed by whole genome sequencing, paired-end RNA sequencing, global proteomics and phosphoproteomics. Differential feature analysis, pathway analysis and survival analysis were performed to better understand DTBC and investigate biomarkers. RESULTS: We observed distinct variations in gene mutations, structural variations, and chromosomal alterations between DTBC and LumA breast tumors. DTBC tumors predominantly had more mutations in TP53, PLXNB3, Zinc finger genes, and fewer mutations in SDC2, CDH1, PIK3CA, SVIL, and PTEN. Notably, Cytoband 1q21, which contains numerous cell proliferation-related genes, was significantly amplified in the DTBC tumors. LMD successfully minimized stromal components and increased RNA-protein concordance, as evidenced by stromal score comparisons and proteomic analysis. Distinct DTBC and LumA-enriched clusters were observed by proteomic and phosphoproteomic clustering analysis, some with survival differences. Phosphoproteomics identified two distinct phosphoproteomic profiles for high relapse-risk and low relapse-risk basal-like tumors, involving several genes known to be associated with breast cancer oncogenesis and progression, including KIAA1522, DCK, FOXO3, MYO9B, ARID1A, EPRS, ZC3HAV1, and RBM14. Lastly, an integrated pathway analysis of multi-omics data highlighted a robust enrichment of proliferation pathways in DTBC tumors. CONCLUSIONS: This study provides an integrated proteogenomic characterization of DTBC vs LumA with tumor cells enriched through laser microdissection. We identified many common features of DTBC tumors and the phosphopeptides that could serve as potential biomarkers for high/low relapse-risk basal-like BC and possibly guide treatment selections.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Proteogenomics , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Biomarkers, Tumor/genetics , Proteogenomics/methods , Mutation , Laser Capture Microdissection , Middle Aged , Retrospective Studies , Aged , Adult , Proteomics/methods , Prognosis
11.
Curr Issues Mol Biol ; 46(5): 4595-4608, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38785547

ABSTRACT

Proteogenomics represents a transformative intersection in nephrology, uniting genomics, transcriptomics, and proteomics to unravel the molecular intricacies of kidney diseases. This review encapsulates the methodological essence of proteogenomics and its profound implications in chronic kidney disease (CKD) research. We explore the proteogenomic pipeline, highlighting the integrated analysis of genomic, transcriptomic, and proteomic data and its pivotal role in enhancing our understanding of kidney pathologies. Through case studies, we showcase the application of proteogenomics in clear cell renal cell carcinoma (ccRCC) and Autosomal Recessive Polycystic Kidney Disease (ARPKD), emphasizing its potential in personalized treatment strategies and biomarker discovery. The review also addresses the challenges in proteogenomic analysis, including data integration complexities and bioinformatics limitations, and proposes solutions for advancing the field. Ultimately, this review underscores the prospective future of proteogenomics in nephrology, particularly in advancing personalized medicine and providing novel therapeutic insights.

12.
J Proteome Res ; 23(5): 1583-1592, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38651221

ABSTRACT

MD2 pineapple (Ananas comosus) is the second most important tropical crop that preserves crassulacean acid metabolism (CAM), which has high water-use efficiency and is fast becoming the most consumed fresh fruit worldwide. Despite the significance of environmental efficiency and popularity, until very recently, its genome sequence has not been determined and a high-quality annotated proteome has not been available. Here, we have undertaken a pilot proteogenomic study, analyzing the proteome of MD2 pineapple leaves using liquid chromatography-mass spectrometry (LC-MS/MS), which validates 1781 predicted proteins in the annotated F153 (V3) genome. In addition, a further 603 peptide identifications are found that map exclusively to an independent MD2 transcriptome-derived database but are not found in the standard F153 (V3) annotated proteome. Peptide identifications derived from these MD2 transcripts are also cross-referenced to a more recent and complete MD2 genome annotation, resulting in 402 nonoverlapping peptides, which in turn support 30 high-quality gene candidates novel to both pineapple genomes. Many of the validated F153 (V3) genes are also supported by an independent proteomics data set collected for an ornamental pineapple variety. The contigs and peptides have been mapped to the current F153 genome build and are available as bed files to display a custom gene track on the Ensembl Plants region viewer. These analyses add to the knowledge of experimentally validated pineapple genes and demonstrate the utility of transcript-derived proteomics to discover both novel genes and genetic structure in a plant genome, adding value to its annotation.


Subject(s)
Ananas , Genome, Plant , Plant Proteins , Proteogenomics , Tandem Mass Spectrometry , Ananas/genetics , Ananas/chemistry , Proteogenomics/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Chromatography, Liquid , Proteome/genetics , Proteome/analysis , Molecular Sequence Annotation , Plant Leaves/genetics , Plant Leaves/chemistry , Peptides/genetics , Peptides/analysis , Peptides/chemistry
13.
Mol Cell Proteomics ; 23(6): 100764, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604503

ABSTRACT

Efforts to address the poor prognosis associated with esophageal adenocarcinoma (EAC) have been hampered by a lack of biomarkers to identify early disease and therapeutic targets. Despite extensive efforts to understand the somatic mutations associated with EAC over the past decade, a gap remains in understanding how the atlas of genomic aberrations in this cancer impacts the proteome and which somatic variants are of importance for the disease phenotype. We performed a quantitative proteomic analysis of 23 EACs and matched adjacent normal esophageal and gastric tissues. We explored the correlation of transcript and protein abundance using tissue-matched RNA-seq and proteomic data from seven patients and further integrated these data with a cohort of EAC RNA-seq data (n = 264 patients), EAC whole-genome sequencing (n = 454 patients), and external published datasets. We quantified protein expression from 5879 genes in EAC and patient-matched normal tissues. Several biomarker candidates with EAC-selective expression were identified, including the transmembrane protein GPA33. We further verified the EAC-enriched expression of GPA33 in an external cohort of 115 patients and confirm this as an attractive diagnostic and therapeutic target. To further extend the insights gained from our proteomic data, an integrated analysis of protein and RNA expression in EAC and normal tissues revealed several genes with poorly correlated protein and RNA abundance, suggesting posttranscriptional regulation of protein expression. These outlier genes, including SLC25A30, TAOK2, and AGMAT, only rarely demonstrated somatic mutation, suggesting post-transcriptional drivers for this EAC-specific phenotype. AGMAT was demonstrated to be overexpressed at the protein level in EAC compared to adjacent normal tissues with an EAC-selective, post-transcriptional mechanism of regulation of protein abundance proposed. Integrated analysis of proteome, transcriptome, and genome in EAC has revealed several genes with tumor-selective, posttranscriptional regulation of protein expression, which may be an exploitable vulnerability.


Subject(s)
Adenocarcinoma , Biomarkers, Tumor , Esophageal Neoplasms , Gene Expression Regulation, Neoplastic , Proteomics , Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Proteomics/methods , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Male , Female , RNA Processing, Post-Transcriptional , Proteome/metabolism , Multiomics
15.
Cancers (Basel) ; 16(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38539567

ABSTRACT

BACKGROUND: Lung cancer is associated with a high incidence of mortality worldwide. Molecular mechanisms governing the disease have been explored by genomic studies; however, several aspects remain elusive. The integration of genomic profiling with in-depth proteomic profiling has introduced a new dimension to lung cancer research, termed proteogenomics. The aim of this review article was to investigate proteogenomic approaches in lung cancer, focusing on how elucidation of proteogenomic features can evoke tangible clinical outcomes. METHODS: A strict methodological approach was adopted for study selection and key article features included molecular attributes, tumor biomarkers, and major hallmarks involved in oncogenesis. RESULTS: As a consensus, in all studies it becomes evident that proteogenomics is anticipated to fill significant knowledge gaps and assist in the discovery of novel treatment options. Genomic profiling unravels patient driver mutations, and exploration of downstream effects uncovers great variability in transcript and protein correlation. Also, emphasis is placed on defining proteogenomic traits of tumors of major histological classes, generating a diverse portrait of predictive markers and druggable targets. CONCLUSIONS: An up-to-date synthesis of landmark lung cancer proteogenomic studies is herein provided, underpinning the importance of proteogenomics in the landscape of personalized medicine for combating lung cancer.

16.
Cell Rep Methods ; 4(2): 100708, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38412834

ABSTRACT

Tumor deconvolution enables the identification of diverse cell types that comprise solid tumors. To date, however, both the algorithms developed to deconvolve tumor samples, and the gold-standard datasets used to assess the algorithms are geared toward the analysis of gene expression (e.g., RNA sequencing) rather than protein levels. Despite the popularity of gene expression datasets, protein levels often provide a more accurate view of rare cell types. To facilitate the use, development, and reproducibility of multiomic deconvolution algorithms, we introduce Decomprolute, a Common Workflow Language framework that leverages containerization to compare tumor deconvolution algorithms across multiomic datasets. Decomprolute incorporates the large-scale multiomic datasets produced by the Clinical Proteomic Tumor Analysis Consortium (CPTAC), which include matched mRNA expression and proteomic data from thousands of tumors across multiple cancer types to build a fully open-source, containerized proteogenomic tumor deconvolution benchmarking platform. http://pnnl-compbio.github.io/decomprolute.


Subject(s)
Neoplasms , Proteomics , Humans , Multiomics , Benchmarking , Reproducibility of Results , Neoplasms/genetics
17.
Mol Cell Proteomics ; 23(4): 100743, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403075

ABSTRACT

Discovering noncanonical peptides has been a common application of proteogenomics. Recent studies suggest that certain noncanonical peptides, known as noncanonical major histocompatibility complex-I (MHC-I)-associated peptides (ncMAPs), that bind to MHC-I may make good immunotherapeutic targets. De novo peptide sequencing is a great way to find ncMAPs since it can detect peptide sequences from their tandem mass spectra without using any sequence databases. However, this strategy has not been widely applied for ncMAP identification because there is not a good way to estimate its false-positive rates. In order to completely and accurately identify immunopeptides using de novo peptide sequencing, we describe a unique pipeline called proteomics X genomics. In contrast to current pipelines, it makes use of genomic data, RNA-Seq abundance and sequencing quality, in addition to proteomic features to increase the sensitivity and specificity of peptide identification. We show that the peptide-spectrum match quality and genetic traits have a clear relationship, showing that they can be utilized to evaluate peptide-spectrum matches. From 10 samples, we found 24,449 canonical MHC-I-associated peptides and 956 ncMAPs by using a target-decoy competition. Three hundred eighty-seven ncMAPs and 1611 canonical MHC-I-associated peptides were new identifications that had not yet been published. We discovered 11 ncMAPs produced from a squirrel monkey retrovirus in human cell lines in addition to the two ncMAPs originating from a complementarity determining region 3 in an antibody thanks to the unrestricted search space assumed by de novo sequencing. These entirely new identifications show that proteomics X genomics can make the most of de novo peptide sequencing's advantages and its potential use in the search for new immunotherapeutic targets.


Subject(s)
Histocompatibility Antigens Class I , Peptides , Peptides/metabolism , Peptides/chemistry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Proteomics/methods , RNA-Seq/methods , Animals
18.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38359819

ABSTRACT

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Subject(s)
Neoplasms , Proteogenomics , Humans , Combined Modality Therapy , Genomics , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Proteomics , Tumor Escape
19.
Int J Cancer ; 154(12): 2162-2175, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38353498

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, often diagnosed at stages that dis-qualify for surgical resection. Neoadjuvant therapies offer potential tumor regression and improved resectability. Although features of the tumor biology (e.g., molecular markers) may guide adjuvant therapy, biological alterations after neoadjuvant therapy remain largely unexplored. We performed mass spectrometry to characterize the proteomes of 67 PDAC resection specimens of patients who received either neoadjuvant chemo (NCT) or chemo-radiation (NCRT) therapy. We employed data-independent acquisition (DIA), yielding a proteome coverage in excess of 3500 proteins. Moreover, we successfully integrated two publicly available proteome datasets of treatment-naïve PDAC to unravel proteome alterations in response to neoadjuvant therapy, highlighting the feasibility of this approach. We found highly distinguishable proteome profiles. Treatment-naïve PDAC was characterized by enrichment of immunoglobulins, complement and extracellular matrix (ECM) proteins. Post-NCT and post-NCRT PDAC presented high abundance of ribosomal and metabolic proteins as compared to treatment-naïve PDAC. Further analyses on patient survival and protein expression identified treatment-specific prognostic candidates. We present the first proteomic characterization of the residual PDAC mass after NCT and NCRT, and potential protein candidate markers associated with overall survival. We conclude that residual PDAC exhibits fundamentally different proteome profiles as compared to treatment-naïve PDAC, influenced by the type of neoadjuvant treatment. These findings may impact adjuvant or targeted therapy options.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Neoadjuvant Therapy , Ribosomal Proteins , Proteome , Neoplasm, Residual , Proteomics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Complement Activation , Energy Metabolism
20.
Cell Rep ; 43(2): 113723, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38300801

ABSTRACT

Stop codon readthrough (SCR) has important biological implications but remains largely uncharacterized. Here, we identify 1,009 SCR events in plants using a proteogenomic strategy. Plant SCR candidates tend to have shorter transcript lengths and fewer exons and splice variants than non-SCR transcripts. Mass spectrometry evidence shows that stop codons involved in SCR events can be recoded as 20 standard amino acids, some of which are also supported by suppressor tRNA analysis. We also observe multiple functional signals in 34 maize extended proteins and characterize the structural and subcellular localization changes in the extended protein of basic transcription factor 3. Furthermore, the SCR events exhibit non-conserved signature, and the extensions likely undergo protein-coding selection. Overall, our study not only characterizes that SCR events are commonly present in plants but also identifies the recoding plasticity of stop codons, which provides important insights into the flexibility of genetic decoding.


Subject(s)
Protein Biosynthesis , Proteins , Codon, Terminator/genetics , Proteins/genetics , Amino Acids/genetics , RNA, Transfer/genetics
SELECTION OF CITATIONS
SEARCH DETAIL