Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 996
Filter
1.
N Biotechnol ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128541

ABSTRACT

Within the circular bioeconomy the production of optically pure LA from 2nd generation feedstocks would be ideal but it is very challenging. In this paper genetically engineered Escherichia coli strains were created to resolve racemic LA solutions synthesised and produced from the fermentation of organic waste or ensiled grass. Refining LA racemic mixtures into either a D- or L-LA was achieved by cells being able to consume one LA isomer as a sole carbon and energy source while not being able to consume the other. A D-LA refining strain JSP0005 was grown on fermented source-sorted organic household waste and different grass silage leachates, which are 2nd generation feedstocks containing up to 33g/L lactic acid racemate. In all growth experiments, L-LA was completely removed leaving D-LA as the only LA stereoisomer, i.e. resulting in optically pure D-LA, which also increased by as much as 248.6% from its starting concentration, corresponding to 38g/L. The strains resulting from this study are a promising first step towards a microbial based LA biorefining process.

2.
J Proteome Res ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140748

ABSTRACT

Immunoglobulin G (IgG) purification is a critical process for evaluating its role in autoimmune diseases, which are defined by the occurrence of autoantibodies. Affinity chromatography with protein G is widely considered to be the optimal technique for laboratory-scale purification. However, this technique has some limitations, including the exposure of IgG to low pH, which can compromise the quality of the purified IgG. Here, we show that alternative methods for IgG purification are possible while maintaining the quality of IgG. Different techniques for IgG purification from serum were evaluated and compared with protein G-based approaches: Melon Gel, caprylic acid-ammonium sulfate (CAAS) precipitation, anion-exchange chromatography with diethylamino ethyl (DEAE) following ammonium sulfate (AS) precipitation, and AS precipitation alone. The results demonstrated that the purification yield of these techniques surpassed that of protein G. However, differences in the purity of IgG were observed using GeLC-MS/MS. The avidity of purified IgG against selected targets (SARS-CoV-2 and topoisomerase-I) was similar between purified IgG obtained using all techniques and unpurified sera. Our work provides valuable insights for future studies of IgG function by recommending alternative purification methods that offer advantages in terms of yield, time efficiency, cost-effectiveness, and milder pH conditions than protein G.

3.
ACS Nano ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140886

ABSTRACT

Semiconducting carbon nanotubes (s-CNTs) have emerged as a promising alternative to traditional silicon for ultrascaled field-effect transistors (FETs), owing to their exceptional properties. Aligned s-CNTs (A-CNTs) are particularly favored for practical applications due to their ability to provide higher driving current and lower contact resistance compared with individual s-CNTs or random networks. Achieving high-semiconducting-purity A-CNTs typically involves conjugated polymer wrapping for selective separation of s-CNTs, followed by self-assembly techniques. However, the presence of the polymer wrapper on A-CNTs can adversely impact electrical contact, gating efficiency, carrier transport, and device-to-device variations, necessitating its complete removal. While various methods have been explored for polymer removal, accurately characterizing the extent of removal remains a challenge. Traditional techniques such as absorption spectroscopy and X-ray photoelectron spectroscopy (XPS) may not accurately depict the remaining polymer content on A-CNTs due to their inherent detection limits. Consequently, the performance of FETs based on pure polymer-wrapper-free A-CNTs is unclear. In this study, we present an approach for preparing high-semiconducting-purity and polymer-wrapper-free A-CNTs using poly[(9,9-dioctylfluorenyl-2,7-dinitrilomethine)-(9,9-dioctylfluorenyl-2,7-dimethine)] (PFO-N-PFO), a degradable polymer, in conjunction with a modified dimension-limited self-alignment process (m-DLSA). Comprehensive transmission electron microscopy (TEM) characterizations, complemented by absorption and XPS characterizations, provide robust evidence of the successful near-complete removal of the polymer wrapper via a cleaning procedure involving acidic degradation, hot solvent rinsing, and vacuum annealing. Furthermore, top-gated FETs based on these high-semiconducting-purity and polymer-wrapper-free A-CNTs exhibit good performance metrics, including an on-current (Ion) of 2.2 mA/µm, peak transconductance (gm) of 1.1 mS/µm, low contact resistance (Rc) of 191 Ω·µm, and negligible hysteresis, representing a significant advancement in the CNT-based FET technology.

4.
Anal Bioanal Chem ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39117955

ABSTRACT

D-Phenylalanine (D-Phe) is a small chiral organic molecule that is both an important pharmaceutical intermediate and used as a calibrator for quantifying amino acids in liquid chromatography-circular dichroism. We have developed a process for a national certified reference material (CRM) for D-Phe following ISO 17034:2016. The identity of D-Phe was confirmed using mass spectrometry (MS) and nuclear magnetic resonance (NMR), infrared, and ultraviolet (UV) spectroscopy. The absolute optical conformation was also determined using circular dichroism (CD) spectroscopy and optical rotation measurements. Impurities were identified via liquid chromatography (LC) with a UV-Vis detector and a charged aerosol detector (CAD) and LC-MS. Both mass balance and quantitative NMR were employed for value assessment, and the associated uncertainty was evaluated. The certified purity was determined to be 0.995 ± 0.003 g/g, a validation that was confirmed by CD using L-Phe CRM as a calibrator. Twenty milligrams of raw material was packed in sealed brown glass tubes for storage, and no inhomogeneity was observed. Stability tests revealed that the D-Phe CRM remained stable at -20 °C for at least 26 months, at 4 °C for at least 14 days, and at 25 °C and 60 °C for at least 7 days. The D-Phe CRM can be used to ensure the accuracy and reliability of D-Phe quantitation in the pharmaceutical field and also as a calibrator to ensure traceability to the International System of Units (SI) for L-Phe quantitation and protein purity analysis using LC-CD methods. The approach outlined in this paper also has potential for use in the development of other chiral CRMs.

5.
Heliyon ; 10(14): e33941, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39108897

ABSTRACT

In the grain industry, identifying seed purity is a crucial task because it is an important factor in evaluating seed quality. For rice seeds, this attribute enables the minimization of unexpected influences of other varieties on rice yield, nutrient composition, and price. However, in practice, they are often mixed with seeds from other varieties. This study proposes a novel method for automatically identifying the purity of a specific rice variety using hybrid machine learning algorithms. The core concept involves leveraging deep learning architectures to extract pertinent features from raw data, followed by the application of machine learning algorithms for classification. Several experiments are conducted to evaluate the performance of the proposed model through practical implementation. The results demonstrate that the novel method substantially outperformed the existing methods, demonstrating the potential for effective rice seed purity identification systems.

6.
Plant Biol (Stuttg) ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958933

ABSTRACT

Flower colour is an important mediator of plant-pollinator interactions. While the reflectance of light from the flower surface and background are governed by physical properties, the perceptual interpretation of such information is generated by complex multilayered visual processing. Should quantitative modelling of flower signals strive for repeatable consistency enabled by parameter simplification, or should modelling reflect the dynamic way in which bees are known to process signals? We discuss why colour is an interpretation of spectral information by the brain of an animal. Different species, or individuals within a species, may respond differently to colour signals depending on sensory apparatus and/or individual experience. Humans and bees have different spectral ranges, but colour theory is strongly rooted in human colour perception and many principles of colour vision appear to be common. We discuss bee colour perception based on physiological, neuroanatomical and behavioural evidence to provide a pathway for modelling flower colours. We examine whether flower petals and floral guides as viewed against spectrally different backgrounds should be considered as a simple colour contrast problem or require a more dynamic consideration of how bees make perceptual decisions. We discuss that plants such as deceptive orchids may present signals to exploit bee perception, whilst many plants do provide honest signalling where perceived saturation indicates the probability of collecting nutritional rewards towards the centre of a flower that then facilitates effective pollination.

7.
Mol Ther Nucleic Acids ; 35(2): 102223, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38948330

ABSTRACT

The development of messenger RNA (mRNA) vaccines and therapeutics necessitates the production of high-quality in vitro-transcribed mRNA drug substance with specific critical quality attributes (CQAs), which are closely tied to the uniformity of linear DNA template. The supercoiled plasmid DNA is the precursor to the linear DNA template, and the supercoiled DNA percentage is commonly regarded as a key in-process control (IPC) during the manufacturing of linear DNA template. In this study, we investigate the influence of supercoiled DNA percentage on key mRNA CQAs, including purity, capping efficiency, double-stranded RNA (dsRNA), and distribution of poly(A) tail. Our findings reveal a significant impact of supercoiled DNA percentage on mRNA purity and in vitro transcription yield. Notably, we observe that the impact on mRNA purity can be mitigated through oligo-dT chromatography, alleviating the tight range of DNA supercoiled percentage to some extent. Overall, this study provides valuable insights into IPC strategies for DNA template chemistry, manufacturing, and controls (CMC) and process development for mRNA drug substance.

8.
Elife ; 132024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980810

ABSTRACT

Background: Diffuse large B-cell lymphoma (DLBCL) is the predominant type of malignant B-cell lymphoma. Although various treatments have been developed, the limited efficacy calls for more and further exploration of its characteristics. Methods: Datasets from the Gene Expression Omnibus (GEO) database were used for identifying the tumor purity of DLBCL. Survival analysis was employed for analyzing the prognosis of DLBCL patients. Immunohistochemistry was conducted to detect the important factors that influenced the prognosis. Drug-sensitive prediction was performed to evaluate the value of the model. Results: VCAN, CD3G, and C1QB were identified as three key genes that impacted the outcome of DLBCL patients both in GEO datasets and samples from our center. Among them, VCAN and CD3G+ T cells were correlated with favorable prognosis, and C1QB was correlated with worse prognosis. The ratio of CD68 + macrophages and CD8 + T cells was associated with better prognosis. In addition, CD3G+T cells ratio was significantly correlated with CD68 + macrophages, CD4 + T cells, and CD8 +T cells ratio, indicating it could play an important role in the anti-tumor immunity in DLBCL. The riskScore model constructed based on the RNASeq data of VCAN, C1QB, and CD3G work well in predicting the prognosis and drug sensitivity. Conclusions: VCAN, CD3G, and C1QB were three key genes that influenced the tumor purity of DLBCL, and could also exert certain impact on drug sensitivity and prognosis of DLBCL patients. Funding: This work is supported by the Shenzhen High-level Hospital Construction Fund and CAMS Innovation Fund for Medical Sciences (CIFMS) (2022-I2M-C&T-B-062).


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/mortality , Lymphoma, Large B-Cell, Diffuse/immunology , Prognosis , Female , Male , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Middle Aged , Survival Analysis
9.
Angew Chem Int Ed Engl ; : e202411502, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39072890

ABSTRACT

Plastic pollution, an increasingly serious global problem, can be addressed through the full lifecycle management of plastics, including plastics recycling as one of the most promising approaches. System design, catalyst development, and product separation are the keys in improving the economics of electrocatalytic plastics recycling. Here, a membrane-free co-production system was devised to produce succinic acid (SA) at both anode and cathode respectively by the co-electrolysis of polybutylene succinate (PBS) waste plastics and biomass-derived maleic acid (MA) for the first time. To this end, Cr3+-Ni(OH)2 electrocatalyst featuring much enhanced 1,4-butanediol (BDO) oxidation reaction (BOR) activity has been synthesized and the role of doped Cr has been revealed as an "electron puller" to accelerate the rate-determining step (RDS) in the Ni2+/Ni3+ cycling. Impressively, an extra-high SA production rate of 3.02 g h-1 and ultra-high apparent Faraday efficiency towards SA (FEapparent=181.5%) have been obtained. A carbon dioxide-assisted sequential precipitation approach has been developed to produce high-purity SA and byproduct NaHCO3 solids. Preliminary techno-economic analysis demonstrates that the reported system is economically profitable and promising for future industrial applications.

10.
Luminescence ; 39(7): e4810, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965929

ABSTRACT

Four eight-coordinated luminescent samarium complexes of type [Sm(hfpd)3L2] and [Sm(hfpd)3L'] [where hfpd = 1,1,1,5,5,5-Hexafluoro-2,4-pentanedione L = tri-octyl-phosphine oxide (TOPO) and L' = 1,10-phenanthroline (phen), neocuproine (neoc) and bathocuproine (bathoc) were synthesized via a stoichiometrically controlled approach. This allows for precise control over the stoichiometry of the complexes, leading to reproducible properties. This investigation focuses on understanding the impact of secondary ligands on the luminescent properties of these complexes. Infrared (IR) spectra provided information about the molecular structures, whereas 1H and 13C nuclear magnetic resonance (NMR) spectra confirmed these structural details along with the coordination of ligands to trivalent Sm ion. The UV-vis spectra revealed the molar absorption coefficient and absorption bands associated with the hfpd ligand and photoluminescence (PL) spectroscopy demonstrated intense orange-red emission (648 nm relative to 4G5/2 → 6H9/2) from the complexes. The Commission Internationale de l'Éclairage (CIE) triangles indicated that the complexes emitted warm orange red light with color coordinates (x, y) ranging from (0.62, 0.36) to (0.40, 0.27). The investigation of the band gap as well as color parameters confirms the utility of these complexes in displays and LEDs.


Subject(s)
Luminescence , Samarium , Ligands , Samarium/chemistry , Molecular Structure , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Pentanones/chemistry , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Luminescent Measurements
11.
J Pharm Biomed Anal ; 249: 116352, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39029354

ABSTRACT

Messenger RNA (mRNA) is rapidly growing as a therapeutic modality for vaccination and the treatment of a wide range of diseases. As a result, there is an increased demand for mRNA-based analytical methods capable of assessing purity and stability, which are considered critical quality attributes (CQAs). In recent decades capillary electrophoresis (CE) has emerged alongside liquid chromatography (LC) as an important tool for the assessment of purity and stability of mRNA therapeutics. CE offers a variety of advantages over conventional LC or gel-based analytical methods, including reduced injection volume, increased resolution, and increased separation efficiency. In this study we compared CE-based analytical methods: the Agilent RNA 6000 Nano Kit, the Revvity RNA Reagent Kit, the Sciex RNA 9000 Purity and Integrity Kit, and the Agilent HS RNA Kit. These methods were evaluated on their vendor-recommended instruments: the Bioanalyzer, LabChip GXII, PA800 Plus, and Fragment Analyzer, respectively. We assessed the ability of these methods to measure mRNA integrity, purity, and stability. Furthermore, several parameters for each method were also assessed: selectivity, precision, resolution, analysis time, and ease of use. Based on our results, all four methods are suitable for use in the characterization of in vitro transcribed (IVT) mRNA, depending on the intended application. The Sciex RNA 9000 Purity and Integrity kit method achieved the highest selectivity and resolving power compared with the other methods, making it the most suitable for high-resolution, in-depth sample characterization. In comparison, the Agilent RNA 6000 Nano Kit, Revvity RNA Reagent Kit, and Agilent HS RNA Kit achieved lower selectivity and resolution, but their faster analysis times make them more suitable for high-throughput and screening applications.

12.
J Dairy Sci ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39033914

ABSTRACT

Increasing studies have highlighted the significance of milk-derived extracellular vesicles (MEVs) in mother-newborn integration, as well as their application as novel drug delivery systems and diagnostic biomarkers. However, conventional ultracentrifugation (UC) often results in the co-precipitation of casein micelles in MEV pellets. In this study, we compared methods with different principles to screen the optimal pretreatment in caseins removal, and found that isoelectric precipitation by hydrochloric acid (HA) could most effectively remove caseins in porcine milk. We further characterized MEV populations isolated by UC and HA/UC from diverse aspects, including particle methodology via nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM), RNA and protein contents, and purity analysis. Importantly, the proliferative and anti-inflammatory effects of MEVs were evaluated in vitro, showing the superiority of MEVs via HA/UC in functionality compared with UC. Our results suggest that HA pretreatment before ultracentrifugation could effectively remove caseins and other protein complexes, leading to MEVs via HA/UC with higher purity and more significant effects in vitro. This study provides valuable insights for the advancement of MEVs isolation techniques across different species and accurate function analysis of MEVs.

13.
Front Chem ; 12: 1441517, 2024.
Article in English | MEDLINE | ID: mdl-38939164
14.
ChemistryOpen ; : e202400141, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884382

ABSTRACT

Isoguanosine (isoG) is a natural structural isomer of guanosine (G) with significant potential for applications in ionophores, genetics, gel formation, and cancer therapy. However, the cost of commercially available isoG on a gram scale is relatively high. To date, a detailed method for the large-scale preparation of high-purity isoG has not been reported. This study presented a simple and convenient approach for the large-scale synthesis of isoG through the diazotization of 2,6-diaminopurine riboside with sodium nitrite and acetic acid at room temperature. Further, this method could synthesize isoG derivatives (2'-fluoro-isoguanosine (1) and 2'-deoxy-isoguanosine (2)) from 2,6-diaminopurine nucleoside derivatives using diazotization. The structural information of natural and modified nucleosides is crucial for the modification and substitution of DNA/RNA. This study obtained the single-crystal structure of isoG for the first time and analyzed it in detail using microcrystal electron diffraction. The three-dimensional supramolecular structure of isoG adopted similarly base-pair motifs from π-π stacking interaction of diverse layers, intramolecular hydrogen bonding, and distinct hydrogen bonding interactions from sugar residues. This study has contributed to further isoG modification and its applications in medicinal chemistry and materials.

15.
ACS Appl Mater Interfaces ; 16(26): 33451-33460, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38900088

ABSTRACT

Pillar-layered metal-organic frameworks (PLMOFs) are promising gas adsorbents due to their high designability. In this work, high CO2 storage capacity as well as controllable C2H2/CO2 separation ability are acquired by rationally manipulating the interlayer stacking in pillar-layered MOF materials. The rational construction of pillar-layered MOFs started from the 2D Ni-BTC-pyridine layer, an isomorphic structure of pioneering MOF-1 reported in 1995. The replacement of terminal pyridine groups by bridging pyrazine linkers under optimized solvothermal conditions led to three 3D PLMOFs with different stacking types between adjacent Ni-BTC layers, named PLMOF 1 (ABAB stacking), PLMOF 2 (AABB stacking), and PLMOF 3 (AAAA stacking). Regulated by the layer arrangements, CO2 and C2H2 adsorption capacities (273 K and 1 bar) of PLMOFs 1-3 vary from 173.0/153.3, 185.0/162.4, to 203.5/159.5 cm3 g-1, respectively, which surpass the values of most MOF adsorbents. Dynamic breakthrough experiments further indicate that PLMOFs 1-3 have controllable C2H2/CO2 separation performance, which can successfully overcome the C2H2/CO2 separation challenge. Specially, PLMOFs 1-3 can remove trace CO2 (3%) from the C2H2/CO2 mixture and produce high-purity ethylene (99.9%) in one step with the C2H2 productivities of 1.68, 2.45, and 3.30 mmol g-1, respectively. GCMC simulations indicate that the superior CO2 adsorption and unique C2H2/CO2 separation performance are mainly ascribed to different degrees of CO2 agglomeration in the ultramicropores of these PLMOFs.

16.
Mar Drugs ; 22(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38921596

ABSTRACT

Omega-3 fatty acids are in high demand due to their efficacy in treating hypertriglyceridemia and preventing cardiovascular diseases. However, the growth of the industry is hampered by low purity and insufficient productivity. This study aims to develop an efficient RP-MPLC purification method for omega-3 fatty acid ethyl esters with high purity and capacity. The results indicate that the AQ-C18 featuring polar end-capped silanol groups outperformed C18 and others in retention time and impurity separation. By injecting pure fish oil esters with a volume equivalent to a 1.25% bed volume on an AQ-C18 MPLC column using a binary isocratic methanol-water (90:10, v:v) mobile phase at 30 mL/min, optimal omega-3 fatty acid ethyl esters were obtained, with the notable purity of 90.34% and a recovery rate of 74.30%. The total content of EPA and DHA produced increased from 67.91% to 85.27%, meeting the acceptance criteria of no less than 84% set by the 2020 edition of the Pharmacopoeia of the People's Republic of China. In contrast, RP-MPLC significantly enhanced the production efficiency per unit output compared to RP-HPLC. This study demonstrates a pioneering approach to producing omega-3 fatty acid ethyl esters with high purity and of greater quantity using AQ-C18 RP-MPLC, showing this method's significant potential for use in industrial-scale manufacturing.


Subject(s)
Chromatography, Reverse-Phase , Esters , Fatty Acids, Omega-3 , Fish Oils , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/isolation & purification , Esters/chemistry , Esters/isolation & purification , Fish Oils/chemistry , Chromatography, Reverse-Phase/methods , Chromatography, High Pressure Liquid/methods , Docosahexaenoic Acids/chemistry , Docosahexaenoic Acids/isolation & purification , Eicosapentaenoic Acid/chemistry , Eicosapentaenoic Acid/isolation & purification
17.
Food Res Int ; 190: 114595, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945610

ABSTRACT

R-phycoerythrin (R-PE) is the most abundant, naturally occurring phycobiliproteins found in red algae. The spectroscopic and structural properties of phycobiliproteins exhibit unique absorption characteristics with two significant absorption maxima at 498 and 565 nm, indicating two different chromophores of R-PE, phycourobilin and phycoerythrobilin respectively. This study aimed to clarify how the stability of R-PE purified from F. lumbricalis was affected by different purification strategies. Crude extracts were compared to R-PE purified by i) microfiltration, ii) ultrafiltration, and iii) multi-step ammonium sulphate precipitation followed by dialysis. The stability of the different R-PE preparations was evaluated with respect to pH (2, 4, 6, 7, 8, 10 and 12) and temperature (20, 40, 60, 80 and 100 °C). The absorbance spectra indicated higher stability of phycourobilin as compared to phycoerythrobilin for heat and pH stability in the samples. All preparations of R-PE showed heat stability till 40 °C from the findings of color, concentration of R-PE and fluorescence emission. The crude extract showed stability from pH 6 to 8, whereas R-PE purified by ultrafiltration and multi-step ammonium sulphate precipitation were both stable from pH 4 to 8 and R-PE purified by microfiltration exhibited stability from pH 4 to 10 from the results of color, SDS-PAGE, and concentration of R-PE. At pH 2, the color changed to violet whereas a yellow color was observed at pH 12 in the samples along with the precipitation of the protein.


Subject(s)
Phycoerythrin , Rhodophyta , Phycoerythrin/chemistry , Phycoerythrin/isolation & purification , Hydrogen-Ion Concentration , Rhodophyta/chemistry , Ultrafiltration/methods , Protein Stability , Chemical Precipitation , Ammonium Sulfate/chemistry , Hot Temperature , Temperature
18.
Heliyon ; 10(11): e31877, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845978

ABSTRACT

Tumor microenvironment (TME) is closely associated with the progression and prognosis of head and neck squamous cell carcinoma (HNSCC). To investigate potential biomarkers for predicting therapeutic outcomes in HNSCC, we analyzed the immune and stromal status of HNSCC based on the genes associated with TME using the ESTIMATE algorithm. Immune and stromal genes were identified with differential gene expression and weighted gene co-expression network analysis (WGCNA). From these genes, 118 were initially selected through Cox univariate regression and then further input into least absolute shrinkage and selection operator (LASSO) regression analysis. As a result, 11 genes were screened out for the TME-related risk (TMErisk) score model which presented promising overall survival predictive potential. The TMErisk score was negatively associated with immune and stromal scores but positively associated with tumor purity. Individuals with high TMErisk scores exhibited decreased expression of most immune checkpoints and all human leukocyte antigen family genes, and reduced abundance of infiltrating immune cells. Divergent genes were mutated in HNSCC. In both high and low TMErisk score groups, the tumor protein P53 exhibited the highest mutation frequency. A higher TMErisk score was found to be associated with reduced overall survival probability and worse outcomes of immunotherapy. Therefore, the TMErisk score could serve as a valuable model for the outcome prediction of HNSCC in clinic.

19.
Chemistry ; 30(37): e202401250, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38705864

ABSTRACT

9,9-Dimethyl-9,10-dihydroacridine (DMAC) is one of the most widely used electron donor for constructing high-performance thermally activated delayed fluorescence (TADF) emitters. However, DMAC-based emitters often suffer from the imperfect color purity, particularly in blue emitters, due to its strong electron-donating capability. To modulate donor strength, 2,7-F-Ph-DMAC and 2,7-CF3-Ph-DMAC were designed by introducing the electron-withdrawing 2-fluorophenyl and 2-(trifluoromethyl)phenyl at the 2,7-positions of DMAC. These donors were used, in combination with 2,4,6-triphenyl-1,3,5-triazine (TRZ) acceptor, to develop novel TADF emitters 2,7-F-Ph-DMAC-TRZ and 2,7-CF3-Ph-DMAC-TRZ. Compared to the F- or CF3-free reference emitter, both two emitters showed hypsochromic effect in fluorescence and comparable photoluminescence quantum yields without sacrificing the reverse intersystem crossing rate constants. In particular, 2,7-CF3-Ph-DMAC-TRZ based OLED exhibited a blue shift by up to 39 nm and significantly improved Commission International de l'Éclairage (CIE) coordinates from (0.36, 0.55) to (0.22, 0.41), while the external quantum efficiency kept stable at about 22.5 %. This donor engineering strategy should be valid for improving the color purity of large amount of acridine based TADF emitters. It can be predicted that pure blue TADF emitters should be feasible if these F- or CF3-modifed acridine donors are combined with other weaker electron acceptors.

20.
Anim Genet ; 55(4): 527-539, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38716584

ABSTRACT

The conservation of animal genetic resources refers to measures taken to prevent the loss of genetic diversity in livestock populations, including the protection of breeds from extinction. Creole cattle populations have suffered a drastic reduction in recent decades owing to absorbent crosses or replacement with commercial breeds of European or Indian origin. Genetic characterization can serve as a source of information for conservation strategies to maintain genetic variation. The objective of this work was to evaluate the levels of inbreeding and kinship through the use of genomic information. A total of 903 DNAs from 13 cattle populations from Argentina, Bolivia and Uruguay were genotyped using an SNP panel of 48 K. Also, a dataset of 76 K SNPs from Peruvian Creole was included. Two inbreeding indices (FROH and Fhat2) and kinship relationships were calculated. In addition, effective population size (Ne), linkage disequilibrium, population composition and phylogenetic relationships were estimated. In Creole cattle, FROH ranged from 0.14 to 0.03, and Fhat2 was close to zero. The inferred Ne trends exhibited a decline toward the present for all populations, whereas Creole cattle presented a lower magnitude of Ne than foreign breeds. Cluster analysis clearly differentiated the taurine and Zebu components (K2) and showed that Bolivian Creole cattle presented Zebu gene introgression. Despite the population reduction, Creole populations did not present extreme values of consanguinity and kinship and maintain high levels of genetic diversity. The information obtained in this work may be useful for planning conservation programmes for these valuable local animal genetic resources.


Subject(s)
Inbreeding , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Uruguay , Bolivia , Breeding , Linkage Disequilibrium , Phylogeny , Genotype , Argentina , Pedigree , Genetic Variation , Genetics, Population , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL