Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Endocrinology ; 165(10)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39254333

ABSTRACT

There has been an alarming trend toward earlier puberty in girls, suggesting the influence of an environmental factor(s). As the reactivation of the reproductive axis during puberty is thought to be mediated by the hypothalamic neuropeptides kisspeptin and gonadotropin-releasing hormone (GnRH), we asked whether an environmental compound might activate the kisspeptin (KISS1R) or GnRH receptor (GnRHR). We used GnRHR or KISS1R-expressing HEK293 cells to screen the Tox21 10K compound library, a compendium of pharmaceuticals and environmental compounds, for GnRHR and KISS1R activation. Agonists were identified using Ca2+ flux and phosphorylated extracellularly regulated kinase (p-ERK) detection assays. Follow-up studies included measurement of genes known to be upregulated upon receptor activation using relevant murine or human cell lines and molecular docking simulation. Musk ambrette was identified as a KISS1R agonist, and treatment with musk ambrette led to increased expression of Gnrh1 in murine and human hypothalamic cells and expansion of GnRH neuronal area in developing zebrafish larvae. Molecular docking demonstrated that musk ambrette interacts with the His309, Gln122, and Gln123 residues of the KISS1R. A group of cholinergic agonists with structures similar to methacholine was identified as GnRHR agonists. When applied to murine gonadotrope cells, these agonists upregulated Fos, Jun, and/or Egr1. Molecular docking revealed a potential interaction between GnRHR and 5 agonists, with Asn305 constituting the most conservative GnRHR binding site. In summary, using a Tox21 10K compound library screen combined with cellular, molecular, and structural biology techniques, we have identified novel environmental agents that may activate the human KISS1R or GnRHR.


Subject(s)
Receptors, Kisspeptin-1 , Receptors, LHRH , Humans , Female , Animals , Receptors, Kisspeptin-1/metabolism , Receptors, Kisspeptin-1/genetics , Receptors, LHRH/metabolism , Receptors, LHRH/genetics , Mice , HEK293 Cells , Zebrafish , Gonadotropin-Releasing Hormone/metabolism , Puberty/drug effects , Hypothalamus/metabolism , Hypothalamus/drug effects , Molecular Docking Simulation , Sexual Maturation/drug effects , Sexual Maturation/physiology , Kisspeptins/metabolism , Kisspeptins/genetics , Environmental Pollutants/toxicity , Environmental Pollutants/pharmacology
2.
J Cheminform ; 15(1): 39, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37004072

ABSTRACT

High throughput screening (HTS) is widely used in drug discovery and chemical biology to identify and characterize agents having pharmacologic properties often by evaluation of large chemical libraries. Standard HTS data can be simply plotted as an x-y graph usually represented as % activity of a compound tested at a single concentration vs compound ID, whereas quantitative HTS (qHTS) data incorporates a third axis represented by concentration. By virtue of the additional data points arising from the compound titration and the incorporation of logistic fit parameters that define the concentration-response curve, such as EC50 and Hill slope, qHTS data has been challenging to display on a single graph. Here we provide a flexible solution to the rapid plotting of complete qHTS data sets to produce a 3-axis plot we call qHTS Waterfall Plots. The software described here can be generally applied to any 3-axis dataset and is available as both an R package and an R shiny application.

3.
Curr Res Toxicol ; 3: 100092, 2022.
Article in English | MEDLINE | ID: mdl-36353521

ABSTRACT

Toxicology in the 21st Century (Tox21) is a federal collaboration employing a high-throughput robotic screening system to test 10,000 environmental chemicals. One of the primary goals of the program is prioritizing toxicity evaluations through in vitro high-throughput screening (HTS) assays for large numbers of chemicals already in commercial use for which little or no toxicity data is available. Within the Tox21 screening program, disruption in nuclear receptor (NR) signaling represents a particular area of interest. Given the role of NR's in modulating a wide range of biological processes, alterations of their activity can have profound biological impacts. Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that has demonstrated importance in bile acid homeostasis, glucose metabolism, lipid homeostasis and hepatic regeneration. In this study, we re-evaluated 24 FXR agonists and antagonists identified through Tox21 using select orthogonal assays. In transient transactivation assays, 7/8 putative agonists and 4/4 putative inactive compounds were confirmed. Likewise, we confirmed 9/12 antagonists tested. Using a mammalian two hybrid approach we demonstrate that both FXR agonists and antagonists facilitate FXRα-coregulator interactions suggesting that differential coregulator recruitment may mediate activation/repression of FXRα mediated transcription. Additionally, we tested the ability of select FXR agonists and antagonists to facilitate hepatic transcription of FXR gene targets Shp and Bsep in a teleost (Medaka) model. Through application of in vitro cell-based assays, in silico modeling and in vivo gene expressions, we demonstrated the molecular complexity of FXR:ligand interactions and confirmed the ability of diverse ligands to modulate FXRα, facilitate differential coregulator recruitment and activate/repress receptor-mediated transcription. Overall, we suggest a multiplicative approach to assessment of nuclear receptor function may facilitate a greater understanding of the biological and mechanistic complexities of nuclear receptor activities and further our ability to interpret broad HTS outcomes.

4.
Environ Sci Technol ; 56(20): 14668-14679, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36178254

ABSTRACT

Chemical pollution has become a prominent environmental problem. In recent years, quantitative high-throughput screening (qHTS) assays have been developed for the fast assessment of chemicals' toxic effects. Toxicology in the 21st Century (Tox21) is a well-known and continuously developing qHTS project. Recent reports utilizing Tox21 data have mainly focused on setting up mathematical models for in vivo toxicity predictions, with less attention to intuitive qHTS data visualization. In this study, we attempted to reveal and summarize the toxic effects of environmental pollutants by analyzing and visualizing Tox21 qHTS data. Via PubMed text mining, toxicity/structure clustering, and manual classification, we detected a total of 158 chemicals of environmental concern (COECs) from the Tox21 library that we classified into 13 COEC groups based on structure and activity similarities. By visualizing these COEC groups' bioactivities, we demonstrated that COECs frequently displayed androgen and progesterone antagonistic effects, xenobiotic receptor agonistic roles, and mitochondrial toxicity. We also revealed many other potential targets of the 13 COEC groups, which were not well illustrated yet, and that current Tox21 assays may not correctly classify known teratogens. In conclusion, we provide a feasible method to intuitively understand qHTS data.


Subject(s)
Environmental Pollutants , Androgens , Environmental Pollutants/toxicity , High-Throughput Screening Assays/methods , Progesterone , Teratogens , Xenobiotics
5.
Front Pharmacol ; 13: 899536, 2022.
Article in English | MEDLINE | ID: mdl-35847040

ABSTRACT

Cytochrome P450 (CYP) 3A7 is one of the major xenobiotic metabolizing enzymes in human embryonic, fetal, and newborn liver. CYP3A7 expression has also been observed in a subset of the adult population, including pregnant women, as well as in various cancer patients. The characterization of CYP3A7 is not as extensive as other CYPs, and health authorities have yet to provide guidance towards DDI assessment. To identify potential CYP3A7-specific molecules, we used a P450-Glo CYP3A7 enzyme assay to screen a library of ∼5,000 compounds, including FDA-approved drugs and drug-like molecules, and compared these screening data with that from a P450-Glo CYP3A4 assay. Additionally, a subset of 1,000 randomly selected compounds were tested in a metabolic stability assay. By combining the data from the qHTS P450-Glo and metabolic stability assays, we identified several chemical features important for CYP3A7 selectivity. Halometasone was chosen for further evaluation as a potential CYP3A7-selective inhibitor using molecular docking. From the metabolic stability assay, we identified twenty-two CYP3A7-selective substrates over CYP3A4 in supersome setting. Our data shows that CYP3A7 has ligand promiscuity, much like CYP3A4. Furthermore, we have established a large, high-quality dataset that can be used in predictive modeling for future drug metabolism and interaction studies.

6.
Methods Mol Biol ; 2474: 29-38, 2022.
Article in English | MEDLINE | ID: mdl-35294753

ABSTRACT

The constitutive androstane receptor (CAR, NR1I3) controls the transcription of numerous hepatic drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both mechanisms require the translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active and spontaneously localized in the nucleus of most immortalized cell lines. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the high basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify human CAR modulators through the employment of a double stable cell line. Using this line, we can identify activators, as well as deactivators, of the challenging nuclear receptor, CAR.


Subject(s)
Cell Nucleus , Receptors, Cytoplasmic and Nuclear , Biological Assay , Cell Nucleus/metabolism , Cytoplasm/metabolism , Genes, Reporter , Humans , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism
7.
Methods Mol Biol ; 2474: 155-167, 2022.
Article in English | MEDLINE | ID: mdl-35294764

ABSTRACT

Compound activity identification is the primary goal in high throughput screening (HTS) assays. However, assay artifacts including both systematic (e.g., compound autofluorescence) and nonsystematic (e.g., noise) complicate activity interpretation. In addition, other than the traditional potency parameter, half-maximal effect concentration [EC50], additional activity parameters (e.g., point-of-departure [POD] and weighted area-under-the-curve [wAUC]) could be derived from HTS data for activity profiling. A data analysis pipeline has been developed to handle the artifacts, and to provide compound activity characterization with either binary or continuous metrics. This chapter outlines the steps in the pipeline using Tox21 estrogen receptor (ER) ß-lactamase assays, including the formats to identify either agonists or antagonists, as well as the counterscreen assays for identifying artifacts as examples. The steps can be applied to other lower throughput assays with concentration-response data.


Subject(s)
Artifacts , High-Throughput Screening Assays , Biological Assay
8.
Assay Drug Dev Technol ; 19(8): 539-549, 2021.
Article in English | MEDLINE | ID: mdl-34662221

ABSTRACT

The estrogen receptor α (ERα) is a target of intense pharmacological intervention and toxicological biomonitoring. Current methods to directly quantify cellular levels of ERα involve antibody-based assays, which are labor-intensive and of limited throughput. In this study, we generated a post-translational reporter cell line, referred to as MCF7-ERα-HiBiT, by fusing a small pro-luminescent nanoluciferase (NLuc) tag (HiBiT) to the C-terminus of endogenous ERα in MCF7 cells. The tag allows the luminescent detection and quantification of endogenous ERα protein by addition of the complementary NLuc enzyme fragment. This MCF7-ERα-HiBiT cell line was optimized for quantitative high-throughput screening (qHTS) to identify compounds that reduce ERα levels. In addition, the same cell line was optimized for a qHTS cellular thermal shift assay to identify compounds that bind and thermally stabilize ERα. Here, we interrogated the MCF7-ERα-HiBiT assay against the NCATS Pharmacological Collection (NPC) of 2,678 approved drugs and identified compounds that potently reduce and thermally stabilize ERα. Our novel post-translational reporter cell line provides a unique opportunity for profiling large pharmacological and toxicological compound libraries for their effect on ERα levels as well as for assessing direct compound binding to the receptor, thus facilitating mechanistic studies by which compounds exert their biological effects on ERα.


Subject(s)
Estrogen Receptor alpha , High-Throughput Screening Assays , Biological Assay , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , High-Throughput Screening Assays/methods , Humans , MCF-7 Cells
9.
Methods Mol Biol ; 2365: 21-41, 2021.
Article in English | MEDLINE | ID: mdl-34432237

ABSTRACT

The confirmation of a small molecule binding to a protein target can be challenging when switching from biochemical assays to physiologically relevant cellular models. The cellular thermal shift assay (CETSA) is an approach to validate ligand-protein binding in a cellular environment by examining a protein's melting profile which can shift to a higher or lower temperature when bound by a small molecule. Traditional CETSA uses SDS-PAGE and Western blotting to quantify protein levels, a process that is both time consuming and low-throughput when screening multiple compounds and concentrations. Herein, we outline the reagents and methods to implement split Nano Luciferase (SplitLuc) CETSA, which is a reporter-based target engagement assay designed for high-throughput screening in 384- or 1536-well plate formats.


Subject(s)
Biological Assay , High-Throughput Screening Assays , Ligands , Luciferases , Protein Binding
10.
SLAS Discov ; 26(10): 1355-1364, 2021 12.
Article in English | MEDLINE | ID: mdl-34269114

ABSTRACT

Butyrylcholinesterase (BChE) is a nonspecific cholinesterase enzyme that hydrolyzes choline-based esters. BChE plays a critical role in maintaining normal cholinergic function like acetylcholinesterase (AChE) through hydrolyzing acetylcholine (ACh). Selective BChE inhibition has been regarded as a viable therapeutic approach in Alzheimer's disease. As of now, a limited number of selective BChE inhibitors are available. To identify BChE inhibitors rapidly and efficiently, we have screened 8998 compounds from several annotated libraries against an enzyme-based BChE inhibition assay in a quantitative high-throughput screening (qHTS) format. From the primary screening, we identified a group of 125 compounds that were further confirmed to inhibit BChE activity, including previously reported BChE inhibitors (e.g., bambuterol and rivastigmine) and potential novel BChE inhibitors (e.g., pancuronium bromide and NNC 756), representing diverse structural classes. These BChE inhibitors were also tested for their selectivity by comparing their IC50 values in BChE and AChE inhibition assays. The binding modes of these compounds were further studied using molecular docking analyses to identify the differences between the interactions of these BChE inhibitors within the active sites of AChE and BChE. Our qHTS approach allowed us to establish a robust and reliable process to screen large compound collections for potential BChE inhibitors.


Subject(s)
Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Catalytic Domain/drug effects , Humans , Molecular Docking Simulation/methods , Structure-Activity Relationship , Terbutaline/analogs & derivatives , Terbutaline/chemistry
11.
SLAS Discov ; 25(3): 253-264, 2020 03.
Article in English | MEDLINE | ID: mdl-31662025

ABSTRACT

Histone deacetylases (HDACs) are epigenetic modulators linked to diseases including cancer and neurodegeneration. Given their therapeutic potential, highly sensitive biochemical and cell-based profiling technologies have been developed to discover small-molecule HDAC inhibitors. Ultimately, the therapeutic action of these inhibitors is dependent on a physical engagement with their intended targets in cellular and tissue environments. Confirming target engagement in the cellular environment is particularly relevant for HDACs since they function as part of cell type-specific multiprotein complexes. Here we implemented two recently developed high-throughput target engagement technologies, NanoBRET and SplitLuc CETSA, to profile 349 compounds in the Epigenetic-Focused collection for HDAC1 binding. We found that the two HDAC1 target engagement assays correlated well with each other and with orthogonal activity-based assays, in particular those carried out in cellular environments rather than with isolated HDAC proteins. The assays detected a majority of the previously described HDAC1 inhibitors in the collection and, importantly, triaged HDAC inhibitors known to target other HDACs.


Subject(s)
High-Throughput Screening Assays , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase Inhibitors/isolation & purification , Epigenesis, Genetic/drug effects , Histone Deacetylase 1/genetics , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/genetics , Humans , Neoplasms/drug therapy , Protein Binding/drug effects
12.
Toxicol In Vitro ; 56: 93-100, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30625376

ABSTRACT

The inhibition of acetylcholinesterase (AChE) has pharmaceutical applications as well as potential neurotoxic effects. The in vivo metabolites of some chemicals including organophosphorus pesticides can become more potent AChE inhibitors compared to their parental compounds. To account for the effects of biotransformation, we have developed and characterized a high-throughput screening method for identifying AChE inhibitors that become active or more potent following xenobiotic metabolism. In this study, an enzyme-based assay was developed in 1536-well plates using recombinant human AChE combined with human or rat liver microsomes. The AChE activity was measured by two methods with different readouts: colorimetric and fluorescent. The assay exhibited exceptional performance characteristics including large assay signal window, low well-to-well variability and high reproducibility. The performance of the assays with microsomes was characterized by testing a group of known AChE inhibitors including parent compounds and their metabolites. Large potency differences between the parent compounds and the metabolites were observed in the assay with microsome addition. Both assay readouts were required for maximal sensitivity. These results demonstrate that this platform is a promising method to profile large numbers of chemicals that require metabolic activation for inhibiting AChE activity.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/toxicity , High-Throughput Screening Assays , Organophosphorus Compounds/toxicity , Pesticides/toxicity , Xenobiotics/toxicity , Animals , Humans , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Rats
13.
J Proteome Res ; 17(1): 579-589, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29261316

ABSTRACT

The new strategy for chemical toxicity testing and modeling is to use in vitro human cell-based assays in conjunction with quantitative high-throughput screening (qHTS) technology, to identify molecular mechanisms and predict in vivo responses. Stem cells are more physiologically relevant than immortalized cell lines because of their unique proliferation and differentiation potentials. We established a robust two stem cells-two lineages assay system, encompassing human mesenchymal stem cells (hMSCs) along osteogenesis and human induced pluripotent stem cells (hiPSCs) along hepatogenesis. We performed qHTS phenotypic screening of LOPAC1280 and identified 38 preliminary hits for hMSCs. This was followed by validation of a selected number of hits and determination of their IC50 values and mechanistic studies of idarubicin and cantharidin treatments using proteomics and bioinformatics. In general, hiPSCs were more sensitive than hMSCs to chemicals, and differentiated progenies were less sensitive than their progenitors. We showed that chemical toxicity depends on both stem cell types and their differentiation stages. Proteomics identified and quantified over 3000 proteins for both stem cells. Bioinformatics identified apoptosis and G2/M as the top pathways conferring idarubicin toxicity. Our Omics-based assays of stem cells provide mechanistic insights into chemical toxicity and may help prioritize chemicals for in-depth toxicological evaluations.


Subject(s)
Induced Pluripotent Stem Cells/drug effects , Mesenchymal Stem Cells/drug effects , Proteomics/methods , Toxicity Tests , Apoptosis , Cantharidin/toxicity , Cells, Cultured , Computational Biology/methods , G2 Phase Cell Cycle Checkpoints , Humans , Idarubicin/toxicity , Proteins/analysis
14.
ACS Sustain Chem Eng ; 6(3): 3233-3241, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-32461840

ABSTRACT

Ratiometric ß-lactamase (BLA) reporters are widely used to study transcriptional responses in a high-throughput screening (HTS) format. Typically, a ratio readout (background/target fluorescence) is used for toxicity assessment and structure-activity modeling efforts from BLA HTS data. This ratio readout may be confounded by channel-specific artifacts. To maximize the utility of BLA HTS data, we analyzed the relationship between individual channels and ratio readouts after fitting 10,000 chemical titration series screened in seven BLA stress-response assays from the Tox21 initiative. Similar to previous observations, we found that activity classifications based on BLA ratio readout alone are confounded by interference patterns for up to 85% (50 % on average) of active chemicals. Most Tox21 analyses adjust for this issue by evaluating target and ratio readout direction. In addition, we found that the potency and efficacy estimates derived from the ratio readouts may not represent the target channel effects and thus complicates chemical activity comparison. From these analyses we recommend a simpler approach using a direct evaluation of the target and background channels as well as the respective noise levels when using BLA data for toxicity assessment. This approach eliminates the channel interference issues and allows for straightforward chemical assessment and comparisons.

15.
Toxicology ; 391: 34-41, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28789971

ABSTRACT

Toxicologists and chemical regulators depend on accurate and effective methods to evaluate and predict the toxicity of thousands of current and future compounds. Robust high-throughput screening (HTS) experiments have the potential to efficiently test large numbers of chemical compounds for effects on biological pathways. HTS assays can be utilized to examine chemical toxicity across multiple mechanisms of action, experimental models, concentrations, and lengths of exposure. Many agricultural, industrial, and pharmaceutical chemicals classified as harmful to human and environmental health exert their effects through the mechanism of mitochondrial toxicity. Mitochondrial toxicants are compounds that cause a decrease in the number of mitochondria within a cell, and/or decrease the ability of mitochondria to perform normal functions including producing adenosine triphosphate (ATP) and maintaining cellular homeostasis. Mitochondrial dysfunction can lead to apoptosis, necrosis, altered metabolism, muscle weakness, neurodegeneration, decreased organ function, and eventually disease or death of the whole organism. The development of HTS techniques to identify mitochondrial toxicants will provide extensive databases with essential connections between mechanistic mitochondrial toxicity and chemical structure. Computational and bioinformatics approaches can be used to evaluate compound databases for specific chemical structures associated with toxicity, with the goal of developing quantitative structure-activity relationship (QSAR) models and mitochondrial toxicophores. Ultimately these predictive models will facilitate the identification of mitochondrial liabilities in consumer products, industrial compounds, pharmaceuticals and environmental hazards.


Subject(s)
Ecotoxicology/methods , Environmental Pollutants/toxicity , High-Throughput Screening Assays , Mitochondria/drug effects , Animals , Biomarkers/metabolism , Cells, Cultured , Computational Biology , Databases, Protein , Dose-Response Relationship, Drug , Environmental Exposure/adverse effects , Humans , Mitochondria/metabolism , Mitochondria/pathology , Risk Assessment , Structure-Activity Relationship , Time Factors
16.
Biotechnol J ; 12(5)2017 May.
Article in English | MEDLINE | ID: mdl-28294544

ABSTRACT

Acetylcholinesterase (AChE) is an enzyme responsible for metabolism of acetylcholine, a neurotransmitter associated with muscle movement, cognition, and other neurobiological processes. Inhibition of AChE activity can serve as a therapeutic mechanism, but also cause adverse health effects and neurotoxicity. In order to efficiently identify AChE inhibitors from large compound libraries, homogenous cell-based assays in high-throughput screening platforms are needed. In this study, a fluorescent method using Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine) and the Ellman absorbance method were both developed in a homogenous format using a human neuroblastoma cell line (SH-SY5Y). An enzyme-based assay using Amplex Red was also optimized and used to confirm the potential inhibitors. These three assays were used to screen 1368 compounds, which included a library of pharmacologically active compounds (LOPAC) and 88 additional compounds from the Tox21 program, at multiple concentrations in a quantitative high-throughput screening (qHTS) format. All three assays exhibited exceptional performance characteristics including assay signal quality, precision, and reproducibility. A group of inhibitors were identified from this study, including known (e.g. physostigmine and neostigmine bromide) and potential novel AChE inhibitors (e.g. chelerythrine chloride and cilostazol). These results demonstrate that this platform is a promising means to profile large numbers of chemicals that inhibit AChE activity.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/analysis , Cytological Techniques/methods , Enzyme Assays/methods , High-Throughput Screening Assays/methods , Cell Line, Tumor , Humans , Reproducibility of Results
17.
Sci Adv ; 2(9): e1601272, 2016 09.
Article in English | MEDLINE | ID: mdl-27617294

ABSTRACT

The ecological impacts of emerging pollutants such as pharmaceuticals are not well understood. The lack of experimental approaches for the identification of pollutant effects in realistic settings (that is, low doses, complex mixtures, and variable environmental conditions) supports the widespread perception that these effects are often unpredictable. To address this, we developed a novel screening method (GSA-QHTS) that couples the computational power of global sensitivity analysis (GSA) with the experimental efficiency of quantitative high-throughput screening (QHTS). We present a case study where GSA-QHTS allowed for the identification of the main pharmaceutical pollutants (and their interactions), driving biological effects of low-dose complex mixtures at the microbial population level. The QHTS experiments involved the integrated analysis of nearly 2700 observations from an array of 180 unique low-dose mixtures, representing the most complex and data-rich experimental mixture effect assessment of main pharmaceutical pollutants to date. An ecological scaling-up experiment confirmed that this subset of pollutants also affects typical freshwater microbial community assemblages. Contrary to our expectations and challenging established scientific opinion, the bioactivity of the mixtures was not predicted by the null mixture models, and the main drivers that were identified by GSA-QHTS were overlooked by the current effect assessment scheme. Our results suggest that current chemical effect assessment methods overlook a substantial number of ecologically dangerous chemical pollutants and introduce a new operational framework for their systematic identification.


Subject(s)
Environmental Pollutants/isolation & purification , High-Throughput Screening Assays , Pharmaceutical Preparations/isolation & purification , Water Pollutants, Chemical/isolation & purification , Bacteria/drug effects , Drug-Related Side Effects and Adverse Reactions , Environmental Monitoring , Environmental Pollutants/toxicity , Humans , Pharmaceutical Preparations/chemistry , Water Pollutants, Chemical/toxicity
18.
Methods Mol Biol ; 1473: 23-31, 2016.
Article in English | MEDLINE | ID: mdl-27518620

ABSTRACT

The hypoxia-inducible factor 1 (HIF-1) is a transcriptional factor involved in the regulation of oxygen within cellular environments. In hypoxic tissues or those with inadequate oxygen concentrations, activation of the HIF-1 transcription factor allows for subsequent activation of target gene expression implicated in cell survival. As a result, cells proliferate through formation of new blood vessels and expansion of vascular systems, providing necessary nourishment needed of cells. HIF-1 is also involved in the complex pathophysiology associated with cancer cells. Solid tumors are able to thrive in hypoxic environments by overactivating these target genes in order to grow and metastasize. Therefore, it is of high importance to identify modulators of the HIF-1 signaling pathway for possible development of anticancer drugs and to better understand how environmental chemicals cause cancer. Using a quantitative high-throughput screening (qHTS) approach, we are able to screen large chemical libraries to profile potential small molecule modulators of the HIF-1 signaling pathway in a 1536-well format. This chapter describes two orthogonal cell based assays; one utilizing a ß-lactamase reporter gene incorporated into human ME-180 cervical cancer cells, and the other using a NanoLuc luciferase reporter system in human HCT116 colon cancer cells. Cell viability assays for each cell line are also conducted respectively. The data from this screening platform can be used as a gateway to study mode of action (MOA) of selected compounds and drug classes.


Subject(s)
High-Throughput Screening Assays , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Luciferases/genetics , Small Molecule Libraries/pharmacology , beta-Lactamases/genetics , Cell Hypoxia , Cell Line, Tumor , Cell Survival/drug effects , Cobalt/pharmacology , Fluorescence Resonance Energy Transfer , Gene Expression Regulation , Genes, Reporter , HCT116 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Luciferases/metabolism , Signal Transduction , Topotecan/pharmacology , beta-Lactamases/metabolism
19.
Methods Mol Biol ; 1473: 33-42, 2016.
Article in English | MEDLINE | ID: mdl-27518621

ABSTRACT

The constitutive androstane receptor (CAR, NR1I3) is responsible for the transcription of multiple drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both of these mechanisms require translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active in immortalized cell lines due to the basal nuclear location of this receptor. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the high basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify hCAR1 modulators through the employment of a double stable cell line. Using this line, we are able to identify activators, as well as deactivators, of the challenging nuclear receptor, CAR.


Subject(s)
Antineoplastic Agents/pharmacology , Founder Effect , Gene Expression Regulation/drug effects , High-Throughput Screening Assays , Isoquinolines/pharmacology , Receptors, Cytoplasmic and Nuclear/genetics , Active Transport, Cell Nucleus/drug effects , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Survival/drug effects , Constitutive Androstane Receptor , Cytochrome P-450 CYP2B6/genetics , Cytochrome P-450 CYP2B6/metabolism , Cytoplasm/drug effects , Cytoplasm/metabolism , Hep G2 Cells , Humans , Luciferases/genetics , Luciferases/metabolism , Oximes/pharmacology , Plasmids/chemistry , Plasmids/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/metabolism , Thiazoles/pharmacology , Transfection
20.
Methods Mol Biol ; 1473: 55-62, 2016.
Article in English | MEDLINE | ID: mdl-27518623

ABSTRACT

The antioxidant response element (ARE) signaling pathway plays an important role in the amelioration of cellular oxidative stress. Thus, assays that detect this pathway can be useful for identifying chemicals that induce or inhibit oxidative stress signaling. The focus of this chapter is to describe a cell-based ARE assay in a quantitative high-throughput screening (qHTS) format to test a large collection of compounds that induce nuclear factor erythroid 2-related factor (Nrf2)/ARE signaling. The assay is described through cell handling, assay preparation, and instrument usage.


Subject(s)
Antioxidant Response Elements , Antioxidants/pharmacology , High-Throughput Screening Assays , NF-E2-Related Factor 2/genetics , Oxidants/pharmacology , Reactive Oxygen Species/metabolism , Gene Expression Regulation , Genes, Reporter , Hep G2 Cells , Humans , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Promoter Regions, Genetic , Reactive Oxygen Species/agonists , Reactive Oxygen Species/antagonists & inhibitors , Signal Transduction , beta-Lactamases/genetics , beta-Lactamases/metabolism , beta-Naphthoflavone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL