Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 486
Filter
1.
J Ultrasound Med ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230251

ABSTRACT

OBJECTIVES: To explore the clinical value of the nomogram based on ultrasound spectral combined with clinical pathological parameter in predicting axillary lymph node metastasis in breast cancer. METHODS: We prospectively gathered clinicopathologic and ultrasonic data from 240 patients confirmed breast cancer. The risk factors of axillary lymph node metastasis were analyzed by univariate and multivariate logistic regression, and the prediction model was established. The model calibration, predictive ability, and diagnostic efficiency in the training set and the testing set were analyzed by receiver operating characteristic curve and calibration curve analysis, respectively. RESULTS: Univariate analysis showed that lymph node metastasis was related with tumor size, Ki-67, axillary ultrasound, ultrasound spectral quantitative parameter, internal echo, and calcification (P < .05). Multivariate logistic regression analysis showed that the Ki-67, axillary ultrasound, quantitative parameter (the mean of the mid-band fit in tumor and posterior tumor) were independent risk factors of axillary lymph node metastasis (P < .05). The models developed using Ki-67, axillary ultrasound, and quantitative parameters for predicting axillary lymph node metastasis demonstrated an area under the receiver operating characteristic curve of 0.83. Additionally, the prediction model exhibited outstanding predictability for axillary lymph node metastasis, as evidenced by a Harrell C-index of 0.83 (95% confidence interval 0.73-0.93). CONCLUSION: Axillary ultrasound combined with Ki-67 and ultrasound spectral parameters has the potential to predict axillary lymph node metastasis in breast cancer, which is superior to axillary ultrasound alone.

2.
Med Phys ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39236300

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder that leads to mobility loss and life-threatening cardiac or respiratory complications. Quantitative ultrasound (QUS) envelope statistics imaging, which characterizes fat infiltration and fibrosis in muscles, has been extensively used for DMD evaluations. PURPOSE: Notably, changes in muscle microstructures also result in acoustic attenuation, potentially serving as another crucial imaging biomarker for DMD. Expanding upon the reference frequency method (RFM), this study contributes to the field by introducing the robust RFM (RRFM) as a novel approach for ultrasound attenuation imaging in DMD. METHODS: The RRFM algorithm was developed using an iterative reweighted least squares technique. We conducted standard phantom measurements with a clinical ultrasound system equipped with a linear array transducer to assess the improvement in attenuation estimation bias by RRFM. Additionally, 161 DMD patients, included in both a validation dataset (n = 130) and a testing dataset (n = 31), underwent ultrasound scanning of the gastrocnemius for RRFM-based attenuation imaging. The diagnostic performances for ambulatory functions and discrimination between early and late ambulatory stages were evaluated and compared with those of QUS envelope statistics imaging (involving Nakagami distribution, homodyned K distribution, and entropy values) using the area under the receiver operating characteristic curve (AUROC). RESULTS: The results indicated that the RRFM method more closely matched the actual attenuation properties of the phantom, reducing measurement bias by 50% compared to conventional RFM. The AUROCs for RRFM-based attenuation imaging, used to discriminate between early and late ambulatory stages, were 0.88 and 0.92 for the validation and testing datasets, respectively. These performances significantly surpassed those of QUS envelope statistics imaging (p < 0.05). CONCLUSIONS: Ultrasound attenuation imaging employing RRFM may serve as a sensitive tool for evaluating the progression of ambulatory function deterioration, offering substantial potential for the health management and follow-up care of DMD patients.

3.
Ultrasound Med Biol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39237426

ABSTRACT

OBJECTIVE: Women with a history of spontaneous preterm birth (sPTB) face an increased risk of recurrence. Yet, the factors contributing to the increased risk are unknown, hampering the development of targeted interventions. Noninvasive quantitative ultrasound (QUS) has been validated in the characterization of cervical tissue and has the potential to provide information about postpartum cervical remodeling. The objective of this study was to determine the postpartum cervical remodeling trajectories of women over 12 mo post-delivery and to determine whether there were differences between women who delivered full-term and spontaneous preterm that were sensitive to QUS biomarkers. METHODS: Data were collected prospectively from 55 women: 41 who delivered full-term and 14 who delivered spontaneously preterm at 6 wk, 3, 6, 9 and 12 mo (±2 wk) postpartum. Data from QUS biomarkers: Attenuation Coefficient; Backscatter Coefficient; Shear Wave Speed; and Lizzi-Feleppa Slope, Intercept and Midband were analyzed from the acquired radiofrequency data using a Siemens S2000 ultrasound system with a transvaginal MC 9-4 MHz probe. The biomarkers were analyzed using descriptive statistics and linear mixed-effects models. RESULTS: QUS biomarkers, Backscatter Coefficient and Lizzi-Feleppa Intercept showed significant differences during the year after delivery between women who had a full-term birth and sPTB (p < 0.05), suggesting that there are differences in the cervical remodeling trajectories between the two groups. All QUS biomarkers demonstrated significant variations between the full-term birth and sPTB groups over time (p < 0.05), indicating ongoing cervical remodeling for both groups during the 12-mo postpartum period. CONCLUSION: QUS biomarkers identified cervical microstructure differences and trajectories in the year after delivery between women who delivered full-term and spontaneous preterm.

4.
Bone ; 189: 117252, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39241853

ABSTRACT

Lifestyle factors have the potential to influence bone health in various ways, whether positively or negatively. As osteoporosis is believed to originate in early years, it is therefore essential to indicate factors that may positively affect bone health during childhood. The aim of our study was to investigate the effects of early and current diet, vitamin D supplementation, and BMI z-score on bone properties in a group of children aged 3-7 years. A cross-sectional sample of 205 preschoolers and their parents participated in the study. Dietary assessment was made using a modified version of the Polish-adapted Mediterranean Diet score (MVP-aMED) on the basis of the data from food frequency questionnaire (FFQ), filled out by the parents. Quantitative ultrasound (QUS) was used in the assessment of bone properties. In the sex-stratified analysis, significant associations were observed between MVP-aMED score (ß = 0.193, 95 % CI: 0.005, 0.237; p = 0.04), BMI z-score (ß = -0.318, 95 % CI: -1.455, -0.039; p = 0.04) and QUS z-score, exclusively among girls. After adjustment, only the relationship with diet remained significant (ß = 0.209, 95 % CI: 0.007, 0.255; p = 0.04), suggesting that a higher adherence to the Mediterranean Diet may be associated with better bone properties in girls aged 3-7 years old. Our results emphasize the importance of fostering healthy dietary habits and maintaining proper weight in children in order to promote optimal bone development.

5.
Ultrasound Med Biol ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39271408

ABSTRACT

OBJECTIVE: Quantitative ultrasound (QUS) analysis of the human cervix is valuable for predicting spontaneous preterm birth risk. However, this approach currently requires an offline processing step wherein a medically trained analyst manually draws a free-hand field of interest (Manual FOI) for QUS computation. This offline step hinders the clinical adoption of QUS. To address this challenge, we developed a method to determine automatically the cervical FOI (Auto FOI). This study's objective is to evaluate the agreement between QUS results obtained from the Auto and Manual FOIs and assess the feasibility of using the Auto FOI to replace the Manual FOI for cervical QUS computation. METHODS: The auto FOI method was developed and evaluated using cervical ultrasound data from 527 pregnant women, using Manual FOIs as the reference. A deep learning model was developed using the cervical B-mode image as the input to determine automatically the FOI. RESULTS: Quantitative comparison between the Auto and Manual FOIs yielded a high pixel accuracy of 97% and a Dice coefficient of 87%. Further, the Auto FOI yielded QUS biomarker values that were highly correlated with those obtained from the Manual FOIs. For example, the Pearson correlation coefficient was 0.87 between attenuation coefficient values obtained using Auto and Manual FOIs. Further, Bland-Altman analyses showed negligible bias between QUS biomarker values computed using the Auto and Manual FOIs. CONCLUSION: The results support the feasibility of using Auto FOIs to replace Manual FOIs in QUS computation, an important step toward the clinical adoption of QUS technology.

6.
Ultrasound Med Biol ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39317626

ABSTRACT

OBJECTIVE: This study aimed to evaluate the performances of quantitative ultrasound (QUS) for the detection and assessment of hepatic steatosis when implemented using an ultraportable ultrasound scanner. METHODS: Seven established QUS parameters were investigated. Ultrasound signals were acquired using a new ultraportable ultrasound device, the Hepatoscope. The feasibility of QUS using the Hepatoscope was first assessed in vitro. Clinical reliability, accuracy and staging capabilities were evaluated in 60 patients referred to a hepatology consultation for known chronic liver disease and enrolled in a prospective clinical investigation using the controlled attenuation parameter (CAP) as ground truth. RESULTS: QUS parameters showed moderate (intra-class correlation coefficient [ICC] >0.50) to excellent (ICC >0.90) reliability. Two parameters, namely Lizzi-Feleppa mid-band fit and attenuation, were both reliable (ICC = 0.89 and 0.86, respectively) and correlated with the CAP (squared Pearson correlation coefficient of R2 = 0.65 and R2 = 0.6, respectively). For steatosis detection (S0 vs. ≥S1), the two parameters yielded an area under the receiving operating characteristic curve of 0.90 and 0.86, respectively (95% confidence interval: [0.81-0.99] and [0.76-0.96], respectively). CONCLUSION: QUS can be reliably and accurately implemented on ultraportable ultrasound scanners. The combination of ultraportability and quantitative assessment of liver fat is promising for large-scale screening and monitoring of hepatic steatosis.

7.
Cureus ; 16(8): e68162, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39347349

ABSTRACT

Introduction Osteoporosis is one of the most prevalent bone diseases in humans and is a significant global public health issue since it is a risk factor for age-related fractures. Fracture risk is significantly influenced by bone mineral density (BMD). Recent research has revealed that there are various genetic and environmental variables that are similar between obesity and osteoporosis. The relationship between anthropometric measurements including weight, body surface area, height, and fat mass and BMD has been the subject of several studies. Decreased bone mass and a high risk of fracture have been linked to low BMI. Materials and methods A total of 370 female patients were included in this study. Anthropometric measures, such as weight and height, were taken in accordance with international standards. We measured the T-score, Speed of Sound (SOS) (in metres/s), Broadband Ultrasound Attenuation (BUA), and Stiffness Index (SI) of the participants using a portable quantitative ultrasonic bone densitometer with a gel-coupled system in a temperature-controlled environment (26 ± 1°C) to estimate the BMD. In this study, we analyzed the relationships between anthropometric measurements such as weight, height, BMI, and waist-hip ratio (WHR) and BMD. Results In our study, we found that the population falling under the categories of Underweight and Obese have shown to have reduced BMD. There is an association between normal BMI and normal BMD. BMI can considerably affect one's risk of developing osteoporosis. Therefore, BMI and weight can be used to screen those who are at risk of having osteoporosis and its associated problems. We also observed an association between menopause and BMD measured by Quantitative Ultrasound (QUS). In the study population, post-menopausal women had a 4 times higher risk of osteoporosis than pre-menopausal women (OR = 4.46). Conclusion Calcaneal QUS is potentially helpful as a pre-screening tool for the evaluation of osteoporosis, although it must be based on device-specific cut-offs that have been tested in the populations for which they are intended to be used in a pre-screen or stratification methodology.

8.
Comput Methods Programs Biomed ; 256: 108374, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39153229

ABSTRACT

BACKGROUND AND OBJECTIVE: Ultrasound information entropy imaging is an emerging quantitative ultrasound technique for characterizing local tissue scatterer concentrations and arrangements. However, the commonly used ultrasound Shannon entropy imaging based on histogram-derived discrete probability estimation suffers from the drawbacks of histogram settings dependence and unknown estimator performance. In this paper, we introduced the information-theoretic cumulative residual entropy (CRE) defined in a continuous distribution of cumulative distribution functions as a new entropy measure of ultrasound backscatter envelope uncertainty or complexity, and proposed ultrasound CRE imaging for tissue characterization. METHODS: We theoretically analyzed the CRE for Rayleigh and Nakagami distributions and proposed a normalized CRE for characterizing scatterer distribution patterns. We proposed a method based on an empirical cumulative distribution function estimator and a trapezoidal numerical integration for estimating the normalized CRE from ultrasound backscatter envelope signals. We presented an ultrasound normalized CRE imaging scheme based on the normalized CRE estimator and the parallel computation technique. We also conducted theoretical analysis of the differential entropy which is an extension of the Shannon entropy to a continuous distribution, and introduced a method for ultrasound differential entropy estimation and imaging. Monte-Carlo simulation experiments were performed to evaluate the estimation accuracy of the normalized CRE and differential entropy estimators. Phantom simulation and clinical experiments were conducted to evaluate the performance of the proposed normalized CRE imaging in characterizing scatterer concentrations and hepatic steatosis (n = 204), respectively. RESULTS: The theoretical normalized CRE for the Rayleigh distribution was π/4, corresponding to the case where there were ≥10 randomly distributed scatterers within the resolution cell of an ultrasound transducer. The theoretical normalized CRE for the Nakagami distribution decreased as the Nakagami parameter m increased, corresponding to that the ultrasound backscattered statistics varied from pre-Rayleigh to Rayleigh and to post-Rayleigh distributions. Monte-Carlo simulation experiments showed that the proposed normalized CRE and differential entropy estimators can produce a satisfying estimation accuracy even when the size of the test samples is small. Phantom simulation experiments showed that the proposed normalized CRE and differential entropy imaging can characterize scatterer concentrations. Clinical experiments showed that the proposed ultrasound normalized CRE imaging is capable to quantitatively characterize hepatic steatosis, outperforming ultrasound differential entropy imaging and being comparable to ultrasound Shannon entropy and Nakagami imaging. CONCLUSION: This study sheds light on the theory and methodology of ultrasound normalized CRE. The proposed ultrasound normalized CRE can serve as a new, flexible quantitative ultrasound envelope statistics parameter. The proposed ultrasound normalized CRE imaging may find applications in quantified characterization of biological tissues. Our code will be made available publicly at https://github.com/zhouzhuhuang.


Subject(s)
Entropy , Monte Carlo Method , Phantoms, Imaging , Ultrasonography , Humans , Ultrasonography/methods , Algorithms , Computer Simulation , Image Processing, Computer-Assisted/methods
9.
Ultrasound Med Biol ; 50(11): 1716-1723, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39174376

ABSTRACT

OBJECTIVE: A deep neural network (DNN) was trained to generate a multiparametric ultrasound (mpUS) volume from four input ultrasound-based modalities (acoustic radiation force impulse [ARFI] imaging, shear wave elasticity imaging [SWEI], quantitative ultrasound-midband fit [QUS-MF], and B-mode) for the detection of prostate cancer. METHODS: A DNN was trained using co-registered ARFI, SWEI, MF, and B-mode data obtained in men with biopsy-confirmed prostate cancer prior to radical prostatectomy (15 subjects, comprising 980,620 voxels). Data were obtained using a commercial scanner that was modified to allow user control of the acoustic beam sequences and provide access to the raw image data. For each subject, the index lesion and a non-cancerous region were manually segmented using visual confirmation based on whole-mount histopathology data. RESULTS: In a prostate phantom, the DNN increased lesion contrast-to-noise ratio (CNR) compared to a previous approach that used a linear support vector machine (SVM). In the in vivo test datasets (n = 15), the DNN-based mpUS volumes clearly portrayed histopathology-confirmed prostate cancer and significantly improved CNR compared to the linear SVM (2.79 ± 0.88 vs. 1.98 ± 0.73, paired-sample t-test p < 0.001). In a sub-analysis in which the input modalities to the DNN were selectively omitted, the CNR decreased with fewer inputs; both stiffness- and echogenicity-based modalities were important contributors to the multiparametric model. CONCLUSION: The findings from this study indicate that a DNN can be optimized to generate mpUS prostate volumes with high CNR from ARFI, SWEI, MF, and B-mode and that this approach outperforms a linear SVM approach.


Subject(s)
Elasticity Imaging Techniques , Neural Networks, Computer , Prostatic Neoplasms , Ultrasonography , Male , Humans , Prostatic Neoplasms/diagnostic imaging , Ultrasonography/methods , Elasticity Imaging Techniques/methods , Prostate/diagnostic imaging , Middle Aged , Phantoms, Imaging , Aged , Deep Learning
10.
IEEE Access ; 12: 106707-106719, 2024.
Article in English | MEDLINE | ID: mdl-39148928

ABSTRACT

Despite advances in neonatal care, metabolic bone disease of prematurity (MBDP) remains a common problem in preterm infants. The development of non-invasive and affordable diagnostic approaches can be highly beneficial in the diagnosis and management of preterm infants at risk of MBDP. In this study, we present an ultrasound method called pulsed vibro-acoustic analysis to investigate the progression of bone mineralization in infants over time versus weight and postmenstrual age. The proposed pulsed vibro-acoustic analysis method is used to evaluate the vibrational characteristics of the bone. This method uses the acoustic radiation force of ultrasound to vibrate the bone. The generated acoustic waves are detected using a hydrophone placed on the skin over the tibia. The frequency of vibration and the speeds of received acoustic waves have information regarding the material property of the bone. We examined the feasibility of this method through an in vivo study consisting of 25 preterm and 10 full term infants. The pulsed vibro-acoustic data were acquired longitudinally in preterm infants with multiple visits and at a single visit in full term infants. Speed of sound and mean peak frequency of slow and fast sound waves recorded by hydrophone were used to analyze bone mineralization progress. Linear mixed model was used for statistical analysis in characterizing the mineralization progress in preterm infants compared to data from full term subjects. Significance changes in wave parameters (speed of sound and mean peak frequency) with respect to the postmenstrual age and weight in preterm infants were observed with p-values less than 0.05. Statistical significances in speed of sound measurement for both fast and slow waves were observed between preterm and full term infants, with p-values of <0.01 and 0.02, respectively. The results of this pilot study indicate the potential use of vibro-acoustic analysis for monitoring the progression of bone mineralization in preterm infants.

11.
Liver Int ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189634

ABSTRACT

BACKGROUND & AIMS: There is an unmet need for a reliable and reproducible non-invasive measure of fatty liver content (FLC) for monitoring steatotic liver disease in clinical practice. Sonographic FLC assessment is qualitative and operator-dependent, and the dynamic quantification range of algorithms based on a single ultrasound (US) parameter is unsatisfactory. This study aims to develop and validate a new multiparametric algorithm based on B-mode images to quantify FLC using Magnetic Resonance (MR) values as standard reference. METHODS: Patients with elevated liver enzymes and/or bright liver at US (N = 195) underwent FLC evaluation by MR and by US. Five US-derived quantitative features [attenuation rate(AR), hepatic renal-ratio(HR), diaphragm visualization(DV), hepatic-portal-vein-ratio(HPV), portal-vein-wall(PVW)] were combined by mixed linear/exponential regression in a multiparametric model (Steatoscore2.0). One hundred and thirty-four subjects were used for training and 61 for independent validations; score-computation underwent an inter-operator reproducibility analysis. RESULTS: The model is based on a mixed linear/exponential combination of 3 US parameters (AR, HR, DV), modelled by 2 equations according to AR values. The computation of FLC by Steatoscore2.0 (mean ± std, 7.91% ± 8.69) and MR (mean ± std, 8.10% ± 10.31) is highly correlated with a low root mean square error in both training/validation cohorts, respectively (R = 0.92/0.86 and RMSE = 5.15/4.62, p < .001). Steatoscore2.0 identified patients with MR-FLC≥5%/≥10% with sensitivity = 93.2%/89.4%, specificity = 86.1%/95.8%, AUROC = 0.958/0.975, respectively and correlated with MR (R = 0.92) significantly (p < .001) better than CAP (R = 0.73). CONCLUSIONS: Multiparametric Steatoscore2.0 measures FLC providing values highly comparable with MR. It is reliable, inexpensive, easy to use with any US equipment and qualifies to be tested in larger, prospective studies as new tool for the non-invasive screening and monitoring of FLC.

12.
Endocrine ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982023

ABSTRACT

BACKGROUND: It was essential to identify individuals at high risk of fragility fracture and prevented them due to the significant morbidity, mortality, and economic burden associated with fragility fracture. The quantitative ultrasound (QUS) showed promise in assessing bone structure characteristics and determining the risk of fragility fracture. AIMS: To evaluate the performance of a multi-channel residual network (MResNet) based on ultrasonic radiofrequency (RF) signal to discriminate fragility fractures retrospectively in postmenopausal women, and compared it with the traditional parameter of QUS, speed of sound (SOS), and bone mineral density (BMD) acquired with dual X-ray absorptiometry (DXA). METHODS: Using QUS, RF signal and SOS were acquired for 246 postmenopausal women. An MResNet was utilized, based on the RF signal, to categorize individuals with an elevated risk of fragility fracture. DXA was employed to obtain BMD at the lumbar, hip, and femoral neck. The fracture history of all adult subjects was gathered. Analyzing the odds ratios (OR) and the area under the receiver operator characteristic curves (AUC) was done to evaluate the effectiveness of various methods in discriminating fragility fracture. RESULTS: Among the 246 postmenopausal women, 170 belonged to the non-fracture group, 50 to the vertebral group, and 26 to the non-vertebral fracture group. MResNet was competent to discriminate any fragility fracture (OR = 2.64; AUC = 0.74), Vertebral fracture (OR = 3.02; AUC = 0.77), and non-vertebral fracture (OR = 2.01; AUC = 0.69). After being modified by clinical covariates, the efficiency of MResNet was further improved to OR = 3.31-4.08, AUC = 0.81-0.83 among all fracture groups, which significantly surpassed QUS-SOS (OR = 1.32-1.36; AUC = 0.60) and DXA-BMD (OR = 1.23-2.94; AUC = 0.63-0.76). CONCLUSIONS: This pilot cross-sectional study demonstrates that the MResNet model based on the ultrasonic RF signal shows promising performance in discriminating fragility fractures in postmenopausal women. When incorporating clinical covariates, the efficiency of the modified MResNet is further enhanced, surpassing the performance of QUS-SOS and DXA-BMD in terms of OR and AUC. These findings highlight the potential of the MResNet as a promising approach for fracture risk assessment. Future research should focus on larger and more diverse populations to validate these results and explore its clinical applications.

13.
World J Gastrointest Oncol ; 16(6): 2804-2815, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994130

ABSTRACT

BACKGROUND: Non-invasive differential diagnosis between hepatocellular carcinoma (HCC) and other liver cancer (i.e. cholangiocarcinoma or metastasis) is highly challenging and definitive diagnosis still relies on histological exam. The patterns of enhancement and wash-out of liver nodules can be used to stratify the risk of malignancy only in cirrhotic patients and HCC frequently shows atypical features. Dynamic contrast-enhanced ultrasound (DCEUS) with standardized software could help to overcome these obstacles, providing functional and quantitative parameters and potentially improving accuracy in the evaluation of tumor perfusion. AIM: To explore clinical evidence regarding the application of DCEUS in the differential diagnosis of liver nodules. METHODS: A comprehensive literature search of clinical studies was performed to identify the parameters of DCEUS that could relate to histological diagnosis. In accordance with the study protocol, a qualitative and quantitative analysis of the evidence was planned. RESULTS: Rise time was significantly higher in HCC patients with a standardized mean difference (SMD) of 0.83 (95%CI: 0.48-1.18). Similarly, other statistically significant parameters were mean transit time local with a SMD of 0.73 (95%CI: 0.20-1.27), peak enhancement with a SMD of 0.37 (95%CI: 0.03-0.70), area wash-in area under the curve with a SMD of 0.47 (95%CI: 0.13-0.81), wash-out area under the curve with a SMD of 0.55 (95%CI: 0.21-0.89) and wash-in and wash-out area under the curve with SMD of 0.51 (95%CI: 0.17-0.85). SMD resulted not significant in fall time and wash-in rate, but the latter presented a trend towards greater values in HCC compared to intrahepatic cholangiocarcinoma. CONCLUSION: DCEUS could improve non-invasive diagnosis of HCC, leading to less liver biopsy and early treatment. This quantitative analysis needs to be applied on larger cohorts to confirm these preliminary results.

14.
Med Biol Eng Comput ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990410

ABSTRACT

Noninvasive, accurate, and simultaneous grading of liver fibrosis, inflammation, and steatosis is valuable for reversing the progression and improving the prognosis quality of chronic liver diseases (CLDs). In this study, we established an artificial intelligence framework for simultaneous grading diagnosis of these three pathological types through fusing multimodal tissue characterization parameters dug by quantitative ultrasound methods derived from ultrasound radiofrequency signals, B-mode images, shear wave elastography images, and clinical ultrasound systems, using the liver biopsy results as the classification criteria. One hundred forty-two patients diagnosed with CLD were enrolled in this study. The results show that for the classification of fibrosis grade ≥ F1, ≥ F2, ≥ F3, and F4, the highest AUCs were respectively 0.69, 0.82, 0.84, and 0.88 with single clinical indicator alone, and were 0.81, 0.83, 0.89, and 0.91 with the proposed method. For the classification of inflammation grade ≥ A2 and A3, the highest AUCs were respectively 0.66 and 0.76 with single clinical indicator alone and were 0.80 and 0.93 with the proposed method. For the classification of steatosis grade ≥ S1 and ≥ S2, the highest AUCs were respectively 0.71 and 0.90 with single clinical indicator alone and were 0.75 and 0.92 with the proposed method. The proposed method can effectively improve the grading diagnosis performance compared with the present clinical indicators and has potential applications for noninvasive, accurate, and simultaneous diagnosis of CLDs.

15.
Radiography (Lond) ; 30(5): 1317-1325, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39059181

ABSTRACT

INTRODUCTION: Paediatric NAFLD is an increasing global health concern, which can be effectively managed with early detection. Screening, using accurate, affordable, and accessible tests is recommended, however, there is currently no consensus on the most appropriate tests. Although ultrasound techniques are widely used, their performance against reference tests have not been fully assessed. METHODS: A literature search of related databases for peer-reviewed original articles published from January 2010-March 2024 was conducted. Appropriate tools were used to systematise and document the search results and selected studies were quality assessed and critically appraised. Extracted data was subjected to thematic analysis and narrative synthesis. RESULTS: Eighteen articles met the inclusion criteria. B-mode and Quantitative ultrasound techniques were compared against MR spectroscopy, MRI-PDFF and Liver biopsy. CONCLUSION: Liver echogenicity and Steato-scores were the B-mode methods used. The former was less effective, with a maximum reported sensitivity of 70%. The latter reached up to 100% sensitivity, and >80% specificity. Ultrasound performed better with moderate-severe steatosis. There was not enough evidence to support steatosis grading, possibly due to small sample sizes and lack of established cut-off values. QUS (Quantitative Ultrasound)) methods including Continuous Attenuation Parameter (CAP), Attenuation Coefficient (AC), Ultrasound derived fat fraction (UDFF), Tissue Scatter Imaging (TSI) Hepato-Renal Index (HRI), Heterogeneity Index (HIA), Computer Assisted Ultrasound (CAUS) and Picture Archiving and Communication System (PACS-based Image analysis performed better than B-mode methods. Although QUS demonstrated excellent performance, with sensitivity and specificity of up to 100%, this will require further verification before implementation in practice. PRACTICE IMPLICATIONS: Ultrasound techniques can effectively be used for paediatric NAFLD screening, especially in higher-risk subjects. The steato-scores method is currently recommendable for this, with excellent potential for the use of QUS, after cut-off values and validation requirements have been addressed.


Subject(s)
Non-alcoholic Fatty Liver Disease , Ultrasonography , Humans , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Ultrasonography/methods , Child , Mass Screening/methods , Liver/diagnostic imaging , Sensitivity and Specificity
16.
Nutrients ; 16(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39064621

ABSTRACT

Low bone mineral density (BMD) is common in adults with coeliac disease (CD), even in individuals adhering to a gluten-free diet (GFD). Women are more likely to have low BMD and have an increased risk of osteoporosis, so women with pre-existing low BMD related to CD are at an even higher risk. BMD assessed by dual X-ray absorptiometry (DXA) and bone quality assessed through quantitative ultrasound (QUS) were investigated in 31 premenopausal women with CD consuming a GFD, and 39 matched healthy controls from the Lower North Island, New Zealand. In addition, bone metabolism and nutrient status were assessed, and four-day diet diaries were used to estimate nutrient intake. No statistically significant differences were found in BMD assessed by DXA between the two groups at the hip, lumbar spine or forearm. However, the parameters measured by the QUS were significantly lower in CD participants. Dietary data indicated significantly lower intakes of energy, dietary fibre, magnesium and phosphorus in women with CD, likely as a result of a reduced intake of wholegrain foods, and suggested that both groups had inadequate intake of calcium. No significant differences were demonstrated in biochemical parameters. BMD and bone biomarkers indicated no differences between coeliac and healthy women in New Zealand. However, these findings suggest that QUS may be more sensitive for the coeliac population, due to the disease's affect on the trabecular bone, and warrant further research.


Subject(s)
Absorptiometry, Photon , Bone Density , Celiac Disease , Diet, Gluten-Free , Premenopause , Humans , Celiac Disease/diet therapy , Celiac Disease/complications , Celiac Disease/physiopathology , Female , Adult , New Zealand , Middle Aged , Osteoporosis/etiology , Case-Control Studies , Nutritional Status , Ultrasonography , Bone and Bones/metabolism , Young Adult , Biomarkers/blood
17.
Healthcare (Basel) ; 12(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998789

ABSTRACT

The measurement of musculoskeletal tissue properties and loading patterns during physical activity is important for understanding the adaptation mechanisms of tissues such as bone, tendon, and muscle tissues, particularly with injury and repair. Although the properties and loading of these connective tissues have been quantified using direct measurement techniques, these methods are highly invasive and often prevent or interfere with normal activity patterns. Indirect biomechanical methods, such as estimates based on electromyography, ultrasound, and inverse dynamics, are used more widely but are known to yield different parameter values than direct measurements. Through a series of literature searches of electronic databases, including Pubmed, Embase, Web of Science, and IEEE Explore, this paper reviews current methods used for the in vivo measurement of human musculoskeletal tissue and describes the operating principals, application, and emerging research findings gained from the use of quantitative transmission-mode ultrasound measurement techniques to non-invasively characterize human bone, tendon, and muscle properties at rest and during activities of daily living. In contrast to standard ultrasound imaging approaches, these techniques assess the interaction between ultrasound compression waves and connective tissues to provide quantifiable parameters associated with the structure, instantaneous elastic modulus, and density of tissues. By taking advantage of the physical relationship between the axial velocity of ultrasound compression waves and the instantaneous modulus of the propagation material, these techniques can also be used to estimate the in vivo loading environment of relatively superficial soft connective tissues during sports and activities of daily living. This paper highlights key findings from clinical studies in which quantitative transmission-mode ultrasound has been used to measure the properties and loading of bone, tendon, and muscle tissue during common physical activities in healthy and pathological populations.

18.
Clin Exp Ophthalmol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38964827

ABSTRACT

BACKGROUND: A high-frequency point-of-care (POC) ultrasound instrument was used to evaluate the microstructural and biomechanical properties of the anterior sclera in vivo using parameters computed from quantitative ultrasound (QUS) methods. METHODS: In this cross-sectional study, both eyes of 85 enrolled patients were scanned with the POC instrument and ultrasound data were processed to obtain QUS parameters. Pearson correlation and multi-linear regression were used to identify relationships between QUS parameters and refractive error (RE) or axial length. After categorising eyes based on RE, binary support vector machine (SVM) classifiers were trained using the QUS or ophthalmic parameters (anterior chamber depth, central corneal thickness, corneal power, and intraocular pressure) to classify each eye. Classifier performance was evaluated by computing the area under the receiver-operating characteristic curve (AUC). RESULTS: Individual QUS parameters correlated with RE and axial length (p < 0.05). Multi-linear regression revealed significant correlation between the set of QUS parameters and both RE (R = 0.49, p < 0.001) and axial length (R = 0.46, p = 0.001). Classifiers trained with QUS parameters achieved higher AUC (𝑝 = 0.06) for identifying myopic eyes (AUC = 0.71) compared to classifiers trained with ophthalmic parameters (AUC = 0.63). QUS-based classifiers attained the highest AUC when identifying highly myopic eyes (AUC = 0.77). CONCLUSIONS: QUS parameters correlate with progressing myopia and may be indicative of myopia-induced microstructural and biomechanical changes in the anterior sclera. These methods may provide critical clinical information complementary to standard ophthalmic measurements for predicting myopia progression and risk assessment for posterior staphyloma formation.

19.
Ultrasonics ; 143: 107394, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053241

ABSTRACT

Ultrasound backscatter coefficient (BSC) measurement is a method for assessing tissue morphology that can inform on pathologies such as cancer. The BSC measurement is, however, limited by the accuracy with which the investigator can normalise their results to account for frequency dependent effects of diffraction and attenuation whilst performing such measurements. We propose a simulation-based approach to investigate the potential sources of error in assessing the BSC. Presented is a tool for the 2D Finite Element (FE) simulation mimicking a BSC measurement using the planar reflector substitution method in reduced dimensionality. The results of this are verified against new derivations of BSC equations also in reduced dimensionality. These new derivations allow computation of BSC estimates based on the scattering from a 2D scattering area, a line reference reflector and a theoretical value for the BSC of a 2D distribution of scatterers. This 2D model was designed to generate lightweight simulations that allow rapid investigation of the factors associated with BSC measurement, allowing the investigator to generate large data sets in relatively short time scales. Under the conditions for an incoherent scattering medium, the simulations produced BSC estimates within 6% of the theoretical value calculated from the simulation domain, a result reproduced across a range of source f-numbers. This value of error compares well to both estimated errors from other simulation based approaches and to physical experiments. The mathematical and simulation models described here provide a theoretical and experimental framework for continued investigation into factors affecting the accuracy of BSC measurements.

20.
Heliyon ; 10(11): e31904, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845969

ABSTRACT

Background and aim: New quantitative ultrasound techniques can be used to quantify hepatic steatosis, including tissue attenuation imaging (TAI), tissue scatter -distribution imaging (TSI), and the hepatorenal index (HRI). However, the measurement norms and the effects of fasting on these measurements remain unclear. The present study performed a methodological exploration and investigated the reliability of these measurements. Methods: In total, 103 participants were prospectively recruited for ultrasonography and magnetic resonance imaging (MRI) scans. For the TAI and TSI data, the upper (2 cm), middle (4 cm) and lower (6 cm) areas determined according to the depth of the region of interest from the liver capsule, were sampled three times. Correlation analyses were performed to compare the measurements of TAI, TSI, and HRI with the controlled attenuation parameter (CAP) or MRI-proton density fat fraction (MRI-PDFF). Intra- and inter-operator repeatability was assessed using intraclass correlation coefficients. The effects of fasting on these measurements were then compared. Results: The TAI and TSI measurements obtained from the upper and middle depths exhibited stronger correlations with the CAP measurements than those obtained from the lower depth. Specifically, the mean TAI had a significant positive correlation with MRI-PDFF (r = 0.753, P < 0.0001). TAI and TSI measurements exhibited excellent intra- (0.933 and 0.925, respectively) and inter- (0.896 and 0.766, respectively) examiner reliability. However, the correlation between HRI and CAP measurements was only 0.281, with no significant correlation with MRI-PDFF, and intra- and inter-examiner reproducibility of 0.458 and 0.343, respectively. Fasting did not affect these measurements. Conclusions: TAI and TSI measurements demonstrated good intra- and interobserver reliability and correlated well with CAP and MRI-PDFF measurements. However, in practice-based clinical applications, the sampling depth should be controlled within 2-4 cm of the hepatic capsule; no fasting is required before the examination.

SELECTION OF CITATIONS
SEARCH DETAIL