Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 334
Filter
1.
Int J Pharm ; 665: 124721, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39293579

ABSTRACT

Combination of nanoagents with radiations has opened up new perspectives in cancer treatment, improving both tumor diagnosis and therapeutic index. This work presents the first investigation of an innovative strategy that combines porous metal-organic frameworks (nanoMOFs) loaded with the anti-cancer drug Gemcitabine monophosphate (GemMP) and particle therapy-a globally emerging technique that offers more precise radiation targeting and enhanced biological efficacy compared to conventional radiotherapy. This radiochemotherapy has been confronted with two major obstacles limiting the efficacy of therapeutics when tested in vivo: (i) the presence of hypoxia, one of the most important causes for radiotherapy failure and (ii) the presence of a microenvironment, main biological barrier to the direct penetration of nanoparticles into cancer cells. On the one hand, this study explore the effects of hypoxia on drug delivery systems in combination with radiation, demonstrating that GemMP-loaded nanoMOFs significantly enhance the anticancer efficacy of particle therapy under both normoxic (pO2 = 20 %) and hypoxic (pO2 = 0.5 %) conditions. Notably, the presence of GemMP-loaded nanoMOFs allows the irradiation dose to be reduced by 1.4-fold in normoxia and at least 1.6-fold in hypoxia, achieving the same cytotoxic effect (SF=10 %) as carbon or helium ions alone. Synergistic effects between GemMP-loaded nanoMOFs and radiations have been observed and quantified. On the other hand, we also highlighted the ability of the nanoMOFs to diffuse through an extracellular matrix and accumulate in cells. An higher effect of the encapsulated GemMP than the free drug was observed, confirming the key role of the nanoMOFs in transporting the active substance to the cancer cells as a Trojan horse. This paves the way to the design of "all-in-one" nanodrugs where each component plays a role in the optimization of cancer therapy to maximize cytotoxic effects on hypoxic tumor cells while minimizing toxicity on healthy tissue.


Subject(s)
Deoxycytidine , Gemcitabine , Metal-Organic Frameworks , Nanoparticles , Humans , Metal-Organic Frameworks/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Deoxycytidine/analogs & derivatives , Deoxycytidine/chemistry , Deoxycytidine/administration & dosage , Deoxycytidine/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Neoplasms/drug therapy , Cell Hypoxia/drug effects
2.
Clin Neurophysiol ; 166: 232-243, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39213880

ABSTRACT

BACKGROUND: In school-age children, the myelination of the auditory radiation thalamocortical pathway is associated with the latency of auditory evoked responses, with the myelination of thalamocortical axons facilitating the rapid propagation of acoustic information. Little is known regarding this auditory system function-structure association in infants and toddlers. METHODS AND PARTICIPANTS: The present study tested the hypothesis that maturation of auditory radiation white-matter microstructure (e.g., fractional anisotropy (FA); measured using diffusion-weighted MRI) is associated with the latency of the infant auditory response (the P2m response, measured using magnetoencephalography, MEG) in a cross-sectional (N = 47, 2 to 24 months, 19 females) as well as longitudinal cohort (N = 18, 2 to 29 months, 8 females) of typically developing infants and toddlers. Of 18 longitudinal infants, 2 infants had data from 3 timepoints and 16 infants had data from 2 timepoints. RESULTS: In the cross-sectional sample, non-linear maturation of P2m latency and auditory radiation diffusion measures were observed. Auditory radiation diffusion accounted for significant variance in P2m latency, even after removing the variance associated with age in both P2m latency and auditory radiation diffusion measures. In the longitudinal sample, latency and FA associations could be observed at the level of a single child. CONCLUSIONS: Findings provide strong support for the hypothesis that an increase in thalamocortical neural conduction velocity, due to increased axon diameter and/or myelin maturation, contributes to a decrease in the infant P2m auditory evoked response latency. SIGNIFICANCE: Infant multimodal brain imaging identifies brain mechanisms contributing to the rapid changes in neural circuit activity during the first two years of life.


Subject(s)
Auditory Cortex , Evoked Potentials, Auditory , Magnetoencephalography , Humans , Female , Male , Infant , Auditory Cortex/growth & development , Auditory Cortex/diagnostic imaging , Auditory Cortex/physiology , Evoked Potentials, Auditory/physiology , Child, Preschool , Magnetoencephalography/methods , Cross-Sectional Studies , White Matter/diagnostic imaging , White Matter/growth & development , Longitudinal Studies , Auditory Pathways/growth & development , Auditory Pathways/diagnostic imaging , Auditory Pathways/physiology , Acoustic Stimulation
3.
Heliyon ; 10(15): e35249, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170121

ABSTRACT

Advances in radiotherapy, particularly the exploration of alternative radiation types such as carbon ions have updated our understanding of its effects and applicability on chondrosarcoma cells. Here we compare the optical effects produced by carbon ions (CI) and X-rays (XR) radiations on chondrosarcoma cells nuclei and set an automated method for evaluating the radiation-induced alterations without the need of chemical marking. Hyperspectral images (HSI) of SW1353 chondrosarcoma line carry detectable optical changes of the cells irradiated either with CI or XR compared to non-irradiated ones (REF). The differences between the spectral profiles of CI, XR and REF nuclei classes led to partitioning the HSIs into spectral sub-images. The changes are detected by support vector machine (SVM) classifiers whose performances are evaluated by the most used point metrics: sensitivity (SEN), accuracy (ACC), and precision (PREC), applied on spatial feature values. Specific interaction mechanisms by radiation type reveal distinct subintervals where HSIs changes are more prominent, and the classifiers perform at best. For CI the best classifiers are obtained for sub-images in the interval (424-436 nm), while for XR the best classifiers are obtained for sub-images in the interval (436-445 nm). The classifiers work better with texture features than roughness features in both cases. The classifier with the best SEN point metric in the testing phase is the most suitable to measure the irradiation efficiency irrespective of the radiation type. The altered nuclei are easier to discriminate when irradiated with CI than with XR. The study proves that SVM with optical data offers a rapid, automated, and label-free method for evaluating radiation-induced alterations in chondrosarcoma nuclei, thereby enabling effective analysis of extensive data.

4.
Heliyon ; 10(15): e35501, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170427

ABSTRACT

The pervasive issue of heavy metal contamination in agricultural lands poses significant concerns and has wide-ranging implications for ecosystems. However, an encouraging solution lies in exploiting the potential of fungal endophytes to alleviate these detrimental effects. This study emphasized on improving the growth-promoting and chromium-alleviating capabilities of fungal endophytes, particularly Aspergillus sojae strain SH20, through ultraviolet (UV) irradiation. Following UV treatment, SH20 exhibited significantly enhanced growth-promoting and chromium-alleviating capabilities in comparison to its non-irradiated counterpart. Distinctly, the UV-treated SH20 strain demonstrated an improved ability to accumulate and reduce toxic chromate in the soil, effectively addressing the growth constraints imposed by elevated chromium levels in Brassica napus L. The UV-irradiated SH20 variant boosted shoot length up to 3 times that of the control. Similarly, this fungal strain displayed a remarkable increase in the total fresh weight of the seedlings, recording nearly 17 times greater than the control. The isolate treated with UV light reduced the absorption of chromium by about 3 times in the roots, helping the young plants to grow well even when exposed to chromate stress. A drop in root colonization by the UV-treated strain further resulted in reduced chromate absorption by the roots. Also, the strain showed great skill in boosting the host's antioxidant defenses by reducing the buildup of harmful reactive oxygen species (ROS), increasing the removal of ROS, and improving the plant's antioxidant levels, including phenols and flavonoids. When the host plants were exposed to 25 ppm of Cr stress, the UV-irradiated variant SH 20 stimulated the production of flavonoids (246 µg/ml) and phenols (952 µg/ml) in comparison to the control (with 220 µg/ml of flavonoids and 919 µg/ml of phenols). In conclusion, this report highlights how exposing the A. sojae strain SH20 to UV light has the potential to enhance its abilities to promote growth and bioremediate. This suggests a promising solution for addressing heavy metal contamination in agricultural lands.

5.
Entropy (Basel) ; 26(8)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39202150

ABSTRACT

In this study, we systematically investigate the multipartite correlations in the process of black hole radiation via the Parikh-Wilczek tunneling model. We examine not only the correlations among Hawking radiations but also the correlations between the emissions and the remainder of the black hole. Our findings indicate that the total correlation among emitted particles continues to increase as the black hole evaporates. Additionally, we observe that the bipartite correlation between the emissions and the remainder of the black hole initially increases and then decreases, while the total correlation of the entire system monotonically increases. Finally, we extend our analysis to include quantum correction and observe similar phenomena. Through this research, we aim to elucidate the mechanism of information conservation in the black hole information paradox.

6.
Entropy (Basel) ; 26(8)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39202172

ABSTRACT

This analysis emphasizes the significance of radiation and chemical reaction effects on the boundary layer flow (BLF) of Casson liquid over a linearly elongating surface, as well as the properties of momentum, entropy production, species, and thermal dispersion. The mass diffusion coefficient and temperature-dependent models of thermal conductivity and species are used to provide thermal transportation. Nonlinear partial differential equations (NPDEs) that go against the conservation laws of mass, momentum, heat, and species transportation are the form arising problems take on. A set of coupled dimensionless partial differential equations (PDEs) are obtained from a set of convective differential equations by applying the proper non-similar transformations. Local non-similarity approaches provide an analytical approximation of the dimensionless non-similar system up to two degrees of truncations. The built-in Matlab (Version: 7.10.0.499 (R2010a)) solver bvp4c is used to perform numerical simulations of the local non-similar (LNS) truncations.

7.
Neurosurg Focus Video ; 11(1): V15, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957415

ABSTRACT

Surgical management of drug-resistant epilepsy (DRE) in patients with multiple periventricular nodular heterotopias (PVNHs) is challenging. Identifying the location of seizure onset within these complex epileptic networks is difficult, and open resection carries risks of injury to surrounding functional white matter tracts such as optic radiations (ORs). The authors demonstrate tractography-assisted laser ablation of a single nodule in a patient with DRE and multiple PVNHs. Following surgery, visual fields were intact, highlighting the benefits of OR tractographic reconstruction. At 12 months postoperatively, the patient remained seizure free, suggesting the potential efficacy of targeting a single heterotopia within complex networks in well-selected cases. The video can be found here: https://stream.cadmore.media/r10.3171/2024.4.FOCVID2417.

8.
J Fluoresc ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888659

ABSTRACT

The current model offers valuable insights for materials science, heat exchangers, renewable energy production, nanotechnology, manufacturing, medicinal treatments, and environmental engineering. The findings of this study have the potential to improve material design, increase heat transfer efficiency across various systems, enhance energy conversion processes, and drive advancements in nanotechnology, medicinal treatments, and engineering design. The goal of the current research is to analyze the effects of thermal radiation and the volume fraction of nanoparticles in MoS2-Ag/engine oil-based hybrid nanofluid flow passing through a cylinder. After performing a substantial similarity transformation, the nonlinear dimensionless framework is recast as ODEs. The Yamada-Ota and Xue models are then applied to the dimensionless equation setup, which is numerically solved using the BVP4C approach. The resulting velocity and temperature fields, corresponding to various parameters, are examined and compared across both models. This investigation demonstrates a significant variation in heat transfer rates between the Yamada-Ota and Xue models, with the former having a larger impact. The velocity and temperature fields decrease as the magnetic field parameter increases in both nanofluids. However, as the magnetic field parameter values grow, the velocity fields in the two nanofluids behave differently. The Yamada-Ota and Xue models are used to determine the behavior of the hybrid nanofluid flow over a nonlinear extended cylinder. In all situations, the velocity and temperature fields exhibit superior decay characteristics.

9.
Heliyon ; 10(9): e29815, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38699046

ABSTRACT

A million ton of cotton fabric is wasted during cutting process in garment industry as well as in textile dyeing industry due to faulty dyeing. Color stripping of cotton fabric has become a significant challenge in the textile industry because the harsh chemicals used in chemical stripping processes affects the quality of fabric very badly. Conventional stripping methods lead with severe effects due to prolonged treatment time and high chemical concentrations. Recently, microwave-assisted stripping techniques have been emerged as effective alternatives to improve stripping efficiency. In this research, the developed microwave assisted stripping system is improved by the application of Urea, which is utilized as a microwave absorber to further reduce stripping time, temperature, and chemical concentration kept focus on quality parameters of recycled cotton fabric. This study inspects the efficiency of microwave absorber-assisted alkali hydrolysis and reduction in terms of dye-fabric bond cleavage, chromophores removal, chemical consumption, and processing time and compared with sequential stripping, microwave assisted stripping without absorber and conventional methods. The results indicated that microwave absorber-assisted alkali hydrolysis and reduction achieved 90 % stripping efficiency by using lowest concentrations of chemicals, while sequential stripping yielded a stripping efficiency of 96 %. Similarly, microwave absorber assisted methods resulted in minor loss in tear strength and weight. These outputs highlight the superior performance of microwave absorber-assisted techniques, demonstrating their efficiency, novelty, time-saving nature, and reduced damage compared to other methods.

10.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731948

ABSTRACT

Based on the need for radiobiological databases, in this work, we mined experimental ionizing radiation data of human cells treated with X-rays, γ-rays, carbon ions, protons and α-particles, by manually searching the relevant literature in PubMed from 1980 until 2024. In order to calculate normal and tumor cell survival α and ß coefficients of the linear quadratic (LQ) established model, as well as the initial values of the double-strand breaks (DSBs) in DNA, we used WebPlotDigitizer and Python programming language. We also produced complex DNA damage results through the fast Monte Carlo code MCDS in order to complete any missing data. The calculated α/ß values are in good agreement with those valued reported in the literature, where α shows a relatively good association with linear energy transfer (LET), but not ß. In general, a positive correlation between DSBs and LET was observed as far as the experimental values are concerned. Furthermore, we developed a biophysical prediction model by using machine learning, which showed a good performance for α, while it underscored LET as the most important feature for its prediction. In this study, we designed and developed the novel radiobiological 'RadPhysBio' database for the prediction of irradiated cell survival (α and ß coefficients of the LQ model). The incorporation of machine learning and repair models increases the applicability of our results and the spectrum of potential users.


Subject(s)
Cell Survival , DNA Breaks, Double-Stranded , Linear Energy Transfer , Radiation, Ionizing , Radiobiology , Humans , Cell Survival/radiation effects , Radiobiology/methods , DNA Breaks, Double-Stranded/radiation effects , Databases, Factual , Monte Carlo Method
11.
Heliyon ; 10(7): e29143, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38623241

ABSTRACT

The human body is affected by ultraviolet radiation because it can penetrate and harm bodily cells. Although skin cancer and early aging are consequences of prolonged exposure to ultraviolet (UV) rays, sun rays signify immediate excessive exposure. In this context, some structural, optical, electrical, and mechanical properties of the beryllium-based cubic fluoro-perovskite RBeF3 (R[bond, double bond]K and Li) compounds are examined through the use of density functional theory (DFT) within generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) approximations (GGA-PBE). The compounds KBeF3 and LiBeF3 have space group 221-pm3m, and their lattice constants and volumes are (3.765, 3.566) Å and (53.380, 45.379) Å3, respectively, based on their structural properties. Computed results indicate that the compounds' bandgaps are 7.35 eV and 7.12 eV, respectively, with an indirect nature for KBeF3 and LiBeF3. The properties of the band structure indicate that both compounds are insulators. The bonding properties of these compounds, RBeF3, are a combination of covalent and ionic. Optical properties of the compounds are examined which reflect the light-matter interaction like reflectivity, conductivity, and absorption. These materials were likely very hard but brittle, based on a higher bulk modulus B from elastic features, the B/G ratio, Pugh's ratio, and Vickers hardness. The compound RBeF3, as determined by the findings, is used as a UV protection and reflection layer for car and room windows.

12.
Methods Mol Biol ; 2794: 271-280, 2024.
Article in English | MEDLINE | ID: mdl-38630236

ABSTRACT

Malformations of cortical development (MCDs) are a diverse group of disorders that result from abnormal neuronal migration, proliferation, and differentiation during brain development. Head computed tomography (CT) has limited use in the diagnosis of MCDs and should be reserved for selected cases with specific indications or when magnetic resonance imaging is not available or contraindicated. CT can detect brain calcifications associated with MCDs, thus helping in the differential diagnosis between acquired and genetic MCDs or in the identification of different genetic patterns. Moreover, CT can provide high-resolution images of the skull and bones, thus identifying associated malformations, such as craniosynostosis, inner and middle ear malformations, and vertebral anomalies. In this chapter, we review the CT scan technique, data analysis, and indications in the investigation of MCDs.


Subject(s)
Malformations of Cortical Development , Osteochondrodysplasias , Humans , Radionuclide Imaging , Data Analysis
13.
Free Radic Res ; 58(3): 194-216, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38563404

ABSTRACT

Microwave (MW) radiations are widely used in communications, radar and medical treatment and thus human exposure to MW radiations have increased tremendously, raising health concerns as MW has been implicated in induction of oxidative stress condition in our body. Few metallic nanoparticles (NPs) have been shown to mimic the activity of antioxidant enzymes and hence can be applied for the modulation of adverse effects caused by MW. Present study aimed to assess the biocompatibility of Bovine serum albumin (BSA) conjugated manganese dioxide nanoparticles (MNP*) and to counteract the impact of MW on the haematological system of male Wistar rats. Experiments were conducted in two sets. Set I involved biodistribution and antioxidant activity evaluation of MNP* at different doses. Results showed a dose-dependent increase in antioxidant potential and significant biodistribution in the liver, spleen, kidney, and testis, with no organ damage, indicating its biocompatibility. Experiment set II constituted the study of separate and combined effects of MW and MNP* on haematological parameters, oxidative status, and genotoxic study in the blood of rats. MW exposure significantly altered red blood cell count, hemoglobin, packed cell volume percentage, monocyte percentage, aspartate aminotransferase, Alanine aminotransferase and uric acid. MW also induced significant DNA damage in the blood. A significant increase in lipid peroxidation and a decrease in antioxidant enzyme superoxide dismutase was also observed in MW exposed group. However, these alterations were reduced significantly when MNP* was administered. Thus, MNP* showed biocompatibility and modulatory effects against MW-induced alterations in the haematological system of rats.


Subject(s)
Manganese Compounds , Microwaves , Nanoparticles , Oxides , Rats, Wistar , Serum Albumin, Bovine , Animals , Male , Manganese Compounds/chemistry , Rats , Serum Albumin, Bovine/chemistry , Oxides/chemistry , Nanoparticles/chemistry , Oxidative Stress/drug effects , Cattle , Antioxidants/pharmacology , Metal Nanoparticles/chemistry
14.
J Radiol Prot ; 44(2)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38507787

ABSTRACT

The manipulation of unsealed radiopharmaceuticals by healthcare workers can cause accidental personal contamination leading to occupational radiation skin dose. The UK Ionising Radiations Regulations 2017 require that potential skin doses arising from reasonably foreseeable accident scenarios are included in risk assessments. Workers must be designated as classified if these dose estimates exceed 150 mSv equivalent dose averaged over 1 cm2. Updates from the UK Health and Safety Executive recently prompted many in the UK to review the classification of workers in Nuclear Medicine. Skin dose from contamination cannot be measured, it must be estimated. Varskin+ is a code that is widely recommended for estimating skin dose. The subjective choices made by users when defining modelled scenarios in Varskin+ lead to significant variation in the calculated skin doses. At the time of writing there is no definitive calculation method and all calculations rely on theoretical models. NHS Health Boards in Scotland have adopted a standardised framework for performing skin dose estimates for risk assessments. The parametric sensitivity of Varskin+ inputs were examined and the available evidence was reviewed. Generic, reasonably forseeable, worst-case accident scenarios were decided upon for: direct skin contamination, glove contamination and needlestick injury. Standardised inputs and assumptions for each scenario were compiled in a protocol that has been adopted by the Scottish Health Boards. The protocol allows for differences in practice between departments, but standardises most inputs. While significant uncertainty remains in the estimated skin doses, this approach reduces variation and enables the comparison of estimated skin doses between departments. The framework facilitates continuous improvement as more evidence is gathered to refine the standardised assumptions. Task by task skin dose estimates were made for workers in Nuclear Medicine in Scotland and many workers were designated classified as a result.


Subject(s)
Nuclear Medicine , Occupational Exposure , Humans , Radiation Dosage , Radioisotopes , Skin , Radiopharmaceuticals
15.
Clin Neurophysiol ; 161: 122-132, 2024 May.
Article in English | MEDLINE | ID: mdl-38461596

ABSTRACT

OBJECTIVE: To explore associations of the main component (P100) of visual evoked potentials (VEP) to pre- and postchiasmatic damage in multiple sclerosis (MS). METHODS: 31 patients (median EDSS: 2.5), 13 with previous optic neuritis (ON), and 31 healthy controls had VEP, optical coherence tomography and magnetic resonance imaging. We tested associations of P100-latency to the peripapillary retinal nerve fiber layer (pRNFL), ganglion cell/inner plexiform layers (GCIPL), lateral geniculate nucleus volume (LGN), white matter lesions of the optic radiations (OR-WML), fractional anisotropy of non-lesional optic radiations (NAOR-FA), and to the mean thickness of primary visual cortex (V1). Effect sizes are given as marginal R2 (mR2). RESULTS: P100-latency, pRNFL, GCIPL and LGN in patients differed from controls. Within patients, P100-latency was significantly associated with GCIPL (mR2 = 0.26), and less strongly with OR-WML (mR2 = 0.17), NAOR-FA (mR2 = 0.13) and pRNFL (mR2 = 0.08). In multivariate analysis, GCIPL and NAOR-FA remained significantly associated with P100-latency (mR2 = 0.41). In ON-patients, P100-latency was significantly associated with LGN volume (mR2 = -0.56). CONCLUSIONS: P100-latency is affected by anterior and posterior visual pathway damage. In ON-patients, damage at the synapse-level (LGN) may additionally contribute to latency delay. SIGNIFICANCE: Our findings corroborate post-chiasmatic contributions to the VEP-signal, which may relate to distinct pathophysiological mechanisms in MS.


Subject(s)
Evoked Potentials, Visual , Geniculate Bodies , Multiple Sclerosis , Visual Pathways , Humans , Male , Female , Geniculate Bodies/physiopathology , Geniculate Bodies/diagnostic imaging , Adult , Evoked Potentials, Visual/physiology , Visual Pathways/physiopathology , Visual Pathways/diagnostic imaging , Middle Aged , Multiple Sclerosis/physiopathology , Multiple Sclerosis/diagnostic imaging , Tomography, Optical Coherence/methods , Magnetic Resonance Imaging , Optic Neuritis/physiopathology , Optic Neuritis/diagnostic imaging
17.
Brain Struct Funct ; 229(4): 937-946, 2024 May.
Article in English | MEDLINE | ID: mdl-38492041

ABSTRACT

KEY MESSAGE: The Riddoch syndrome is thought to be caused by damage to the primary visual cortex (V1), usually following a vascular event. This study shows that damage to the anatomical input to V1, i.e., the optic radiations, can result in selective visual deficits that mimic the Riddoch syndrome. The results also highlight the differential susceptibility of the magnocellular and parvocellular visual systems to injury. Overall, this study offers new insights that will improve our understanding of the impact of brain injury and neurosurgery on the visual pathways. The Riddoch syndrome, characterised by the ability to perceive, consciously, moving visual stimuli but not static ones, has been associated with lesions of primary visual cortex (V1). We present here the case of patient YL who, after a tumour resection surgery that spared his V1, nevertheless showed symptoms of the Riddoch syndrome. Based on our testing, we postulated that the magnocellular (M) and parvocellular (P) inputs to his V1 may be differentially affected. In a first experiment, YL was presented with static and moving checkerboards in his blind field while undergoing multimodal magnetic resonance imaging (MRI), including structural, functional, and diffusion, acquired at 3 T. In a second experiment, we assessed YL's neural responses to M and P visual stimuli using psychophysics and high-resolution fMRI acquired at 7 T. YL's optic radiations were partially damaged but not severed. We found extensive activity in his visual cortex for moving, but not static, visual stimuli, while our psychophysical tests revealed that only low-spatial frequency moving checkerboards were perceived. High-resolution fMRI revealed strong responses in YL's V1 to M stimuli and very weak ones to P stimuli, indicating a functional P lesion affecting V1. In addition, YL frequently reported seeing moving stimuli and discriminating their direction of motion in the absence of visual stimulation, suggesting that he was experiencing visual hallucinations. Overall, this study highlights the possibility of a selective loss of P inputs to V1 resulting in the Riddoch syndrome and in hallucinations of visual motion.


Subject(s)
Motion Perception , Visual Cortex , Humans , Male , Hallucinations , Magnetic Resonance Imaging , Motion Perception/physiology , Photic Stimulation/methods , Vision, Ocular , Visual Cortex/physiology , Visual Pathways/physiology
18.
Sci Rep ; 14(1): 4950, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418531

ABSTRACT

The use of renewable energy sources is leading the charge to solve the world's energy problems, and non-Newtonian nanofluid dynamics play a significant role in applications such as expanding solar sheets, which are examined in this paper, along with the impacts of activation energy and solar radiation. We solve physical flow issues using partial differential equations and models like Casson, Williamson, and Prandtl. To get numerical solutions, we first apply a transformation to make these equations ordinary differential equations, and then we use the MATLAB-integrated bvp4c methodology. Through the examination of dimensionless velocity, concentration, and temperature functions under varied parameters, our work explores the physical properties of nanofluids. In addition to numerical and tabular studies of the skin friction coefficient, Sherwood number, and local Nusselt number, important components of the flow field are graphically shown and analyzed. Consistent with previous research, this work adds important new information to the continuing conversation in this area. Through the examination of dimensionless velocity, concentration, and temperature functions under varied parameters, our work explores the physical properties of nanofluids. Comparing the Casson nanofluid to the Williamson and Prandtl nanofluids, it is found that the former has a lower velocity. Compared to Casson and Williamson nanofluid, Prandtl nanofluid advanced in heat flux more quickly. The transfer of heat rates are 25.87 % , 33.61 % and 40.52 % at R d = 0.5 , R d = 1.0 , and R d = 1.5 , respectively. The heat transfer rate is increased by 6.91 % as the value of Rd rises from 1.0 to 1.5. This study is further strengthened by a comparative analysis with previous research, which is complemented by an extensive table of comparisons for a full evaluation.

19.
Sci Rep ; 14(1): 3562, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347025

ABSTRACT

This article's main objective is to maximize solar radiations (SRs) through the use of the gorilla troop algorithm (GTA) for identifying the optimal tilt angle (OTA) for photovoltaic (PV) panels. This is done in conjunction with an experimental work that consists of three 100 W PV panels tilted at three different tilt angles (TAs). The 28°, 30°, and 50° are the three TAs. The experimental data are collected every day for 181-day and revealed that the TA of 28° is superior to those of 50° and 30°. The GTA calculated the OTA to be 28.445°, which agrees with the experimental results, which show a TA of 28°. The SR of the 28o TA is 59.3% greater than that of the 50° TA and 4.5% higher than that of the 30° TA. Recent methods are used to compare the GTA with the other nine metaheuristics (MHTs)-the genetic algorithm, particle swarm, harmony search, ant colony, cuckoo search, bee colony, fire fly, grey wolf, and coronavirus disease optimizers-in order to figure out the optimal OTA. The OTA is calculated by the majority of the nine MHTs to be 28.445°, which is the same as the GTA and confirms the experimental effort. In only 181-day, the by experimentation it may be documented SR difference between the TAs of 28° and 50° TA is 159.3%. Numerous performance metrics are used to demonstrate the GTA's viability, and it is contrasted with other recent optimizers that are in competition.

20.
Environ Monit Assess ; 196(3): 261, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349609

ABSTRACT

Considering enormous growth in population, technical advancement, and added reliance on electronic devices leading to adverse health effects, in situ simulations were made to evaluate effects of non-ionizing radiations emitted from three cell phone towers (T1, T2, and T3) of frequency bands (800, 1800, 2300 MHz), (900, 1800, 2300 MHz), and (1800 MHz), respectively. Five sites (S1-S5) were selected near cell phone towers exhibiting different power densities. The site with zero power density was considered as control. Effects of radiations were studied on morphology; protein content; antioxidant enzymes like ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione-S-transferase (GST), guaiacol peroxidase (POD), and glutathione reductase (GR); and genotoxicity using Allium cepa. Mean power density (µW/cm2) was recorded as 1.05, 1.18, 1.6, 2.73, and 12.9 for sites 1, 2, 3, 4, and 5, respectively. A significant change in morphology, root length, fresh weight, and dry weight in Allium cepa was observed under the exposure at different sites. Protein content of roots showed significant difference for samples at all sites while bulbs at sites S4 and S5 when compared to control. Antioxidant activity for root in terms of APX, GST, and POD showed significant changes at S4 and S5 and GR at site S5 and SOD at S1, S2, S3, S4, and S5. Similarly, bulbs showed significant changes at sites S4 and S5 for APX while at sites S3, S4, and S5 for POD and S2, S3, S4, and S5 for SOD and S5 for GR and GST. Genotoxicity study has shown induction of abnormalities at different stages of the cell cycle in Allium cepa root tips. The samples under exposure to radiation with maximum power density have shown maximum induction of oxidative stress and genotoxicity.


Subject(s)
Cell Phone , Onions , Environmental Monitoring , Glutathione Reductase , Antioxidants , Glutathione Transferase , Superoxide Dismutase , Radiation, Nonionizing
SELECTION OF CITATIONS
SEARCH DETAIL