Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 236
Filter
1.
Sensors (Basel) ; 24(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39123978

ABSTRACT

Monitoring a deep geological repository for radioactive waste during the operational phases relies on a combination of fit-for-purpose numerical simulations and online sensor measurements, both producing complementary massive data, which can then be compared to predict reliable and integrated information (e.g., in a digital twin) reflecting the actual physical evolution of the installation over the long term (i.e., a century), the ultimate objective being to assess that the repository components/processes are effectively following the expected trajectory towards the closure phase. Data prediction involves using historical data and statistical methods to forecast future outcomes, but it faces challenges such as data quality issues, the complexity of real-world data, and the difficulty in balancing model complexity. Feature selection, overfitting, and the interpretability of complex models further contribute to the complexity. Data reconciliation involves aligning model with in situ data, but a major challenge is to create models capturing all the complexity of the real world, encompassing dynamic variables, as well as the residual and complex near-field effects on measurements (e.g., sensors coupling). This difficulty can result in residual discrepancies between simulated and real data, highlighting the challenge of accurately estimating real-world intricacies within predictive models during the reconciliation process. The paper delves into these challenges for complex and instrumented systems (multi-scale, multi-physics, and multi-media), discussing practical applications of machine and deep learning methods in the case study of thermal loading monitoring of a high-level waste (HLW) cell demonstrator (called ALC1605) implemented at Andra's underground research laboratory.

2.
Article in English | MEDLINE | ID: mdl-39120613

ABSTRACT

The 17 Sustainable Development Goals (SDGs) of the United Nations, established in 2015, aim to achieve global sustainability by 2030 through the improvement of environmental, social, and economic parameters. However, unlike earlier concepts such as the Agenda 21 of 1992, the SDGs overlook radioactive waste management and related challenges of radiation itself. First, we investigate the historic consideration and unexplained disappearance of radioactive waste in earlier sustainability concepts. Then, we propose amending seven SDGs to address this gap. For SDGs 6 (Clean Water and Sanitation), 14 (Life Below Water), and 15 (Life on Land), new or revised indicators should monitor the release of hazardous materials. SDGs 9 (Industry, Innovation and Infrastructure), 16 (Peace, Justice and Strong Institutions), and 17 (Partnerships for the Goals) require additional targets and indicators to integrate international cooperation and social implications of nuclear facilities' operation. Redefining "hazardous waste" in SDG 12 (Responsible Consumption and Production) and "environmentally sound technologies" in SDG 17 is necessary to encompass radioactive waste. Implementing these changes demands statistical efforts, but the existing monitoring infrastructure, particularly in Europe and North America, can facilitate this. As 2030 approaches, it is crucial to reintroduce radioactive waste management into sustainability agendas, whether within the SDGs themselves or in a subsequent framework.

3.
Materials (Basel) ; 17(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39203308

ABSTRACT

This paper presents an optimized design approach using nonlinear dynamic analysis and finite element methods to ensure the structural integrity of square-shaped containers made from ductile cast iron for intermediate- and low-level radioactive waste packaging. Ductile cast iron, with its spherical graphite structure, effectively distributes stress throughout the material, leading to a storage capacity increase of approximately 18%. Considering the critical need for containers that maintain integrity under extreme conditions like earthquakes, the design focuses on mitigating stress concentrations at the corners of square structures. Nonlinear dynamic analyses were conducted in five drop directions: three specified by ASTM-D5276 standards and two additional directions to account for different load patterns. Fractures were observed in four out of the five scenarios. For each direction where fractures occurred, equivalent loads causing similar displacement fields were applied to linear static models, which were then used for multi-load topology optimization. Three optimized models were derived, each increasing the volume by 1.4% to 1.6% compared to the original model, and the design that best met the structural integrity requirements during drop scenarios was selected. To further enhance the optimization process, weights were assigned to different load conditions based on numerical analysis results, balancing the impact of maximum stress, average stress, and plastic deformation energy. The final model, with its increased storage capacity and enhanced structural integrity, offers a practical solution for radioactive waste management, overcoming limitations in previous designs by effectively addressing complex load conditions.

4.
Asian Pac J Cancer Prev ; 25(8): 2685-2693, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39205566

ABSTRACT

OBJECTIVE: This study evaluates the impact of radioactive uranium waste storage facilities on cancer occurrence in nearby areas. METHODS: Current research evaluates the effect of radioactive uranium waste storage facilities on cancer epidemiology in nearby areas. The critical area had Aqsu, Kvartsitka, Zavodskoy and Stepnogorsk cities, which are located at a less than 5 km distance to the south of the Hydrometallurgical Plant tailings dump while the control group had Akkol region in 90 km from the source. The majority of population had lived in this territory more than the 30 years. Data were obtained from the Electronic Register of Cancer Patients of the Republic of Kazakhstan from 2001-2015, and 2,271 incident cases of cancer were registered. RESULTS: The most frequent malignancies were observed in the digestive organs (646 cases, 28%) and respiratory and intrathoracic organs (376 cases, 17%). The proportion of digestive organ cancers was higher in the critical group (560 cases out of 1913, 29%) than in the control group (86 cases out of 358, 24%). Additionally, respiratory organ cancers were more common in men, but the cancer incidence rate ratio was higher in the critical area. Notably, the study found that the cancer incidence rate ratios decreased over time, specifically for digestive, respiratory and female genital organs and breast cancer. CONCLUSION: In conclusion, while our study highlights significant differences in cancer incidence rates and frequencies between the critical and control groups, further analytical research, incorporating age-adjustment, is needed to provide a more conclusive evaluation of the potential impact of residence in proximity to the uranium mining waste storage on cancer occurrence in the study area.


Subject(s)
Mining , Radioactive Waste , Uranium , Humans , Kazakhstan/epidemiology , Uranium/adverse effects , Incidence , Male , Female , Radioactive Waste/adverse effects , Neoplasms, Radiation-Induced/epidemiology , Neoplasms, Radiation-Induced/etiology , Follow-Up Studies , Neoplasms/epidemiology , Neoplasms/etiology , Adult , Middle Aged , Prognosis
5.
Chemosphere ; 364: 143143, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39178969

ABSTRACT

We analysed how citrate (CIT), a chelating agent potentially present in radioactive waste disposals, affects the mobility of four radionuclides (RN): 63Ni, 233U, 152Eu, 238Pu in portlandite, an important hydrated phase of cement, a commonly used material for waste isolation. Portlandite was synthetized in the laboratory and showed high purity and grain size of few µm. This solid, buffers the pH to 12.5 and shows high adsorption capability for the studied RNs: 152Eu and 238Pu exhibited the highest adsorption (Kd ∼1·105 mL g-1) and 233U the lowest (Kd ∼8·102 mL g-1). CIT adsorption was also experimentally evaluated by batch sorption experiments and electrophoretic (ζ-potential) measurements: a non-lineal sorption behaviour was observed, with Kd values decreasing (from ∼1·103 mL g-1) as CIT concentration increased up to 1·10-2 M, according to portlandite sorption sites saturation. In the presence of CIT, a marginal decrease for 233U adsorption in portlandite was observed, one order of magnitude reduction for 63Ni, while 238Pu and 152Eu adsorption decreased significantly. The calculated sorption reduction factors (SRF) for the four RN in the presence of CIT at a concentration of 5·10-3 M were: 2.4, 9.7, 37 and 50.9 for 233U, 63Ni, 238Pu, and 152Eu, respectively. According to the available thermodynamic databases, low complexation between CIT and RN is predicted at pH = 12.5, thus the RN adsorption decrease in the presence of CIT must be attributed to the organic adsorption on portlandite. However, current thermodynamic are still incomplete for this ligand and this pH range and this limits a precise interpretation of the experimental data.

6.
J Biomed Phys Eng ; 14(3): 245-254, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39027715

ABSTRACT

Background: Nuclear medicine is an integral and developing field in diagnosing and treating diseases. Monitoring individuals' protection and radiation contamination in the workplace is vital for preserving working environments. Objective: This study aimed to monitor the nuclear medicine department's personnel, environment, and wastes to determine the level of occupational radiation and environmental pollution in Bushehr's nuclear medicine department. Material and Methods: In this cross-sectional study, the initial activity of each radioisotope, radiopharmaceutical, and radioactive waste was measured using a "well counter" daily for three months. Three irradiators' absorbed doses were measured using a direct reading dosimeter. The contamination was determined using an indirect wipe test method on various surfaces. A Geiger Müller dosimeter was employed to examine personnel's hands, clothing, and footwear. Results: The highest activity was observed in technetium waste (1118.31 mCi). Every irradiator received a lower absorption dose than the International Commission on Radiological Protection (ICRP) standard threshold. The majority of contamination was associated with the exercise test room (0.04 Bq/cm2) and its work surface (0.013 Bq/cm2), which were both below the threshold (0.5 Bq/cm2). Staff monitoring indicated that two nurses (10 and 11 individuals) had the highest contamination rate (23.7%). Conclusion: Daily assessment of the type, activity, and method of radiopharmaceutical administration to the patient is advantageous for waste management. Surface contamination monitoring can significantly contribute to the estimation of the level of radiation pollution in the environment.

7.
J Chromatogr A ; 1730: 465091, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38964159

ABSTRACT

An extraction chromatography resin, prepared by the impregnation of bis-octyloxy-calix[4]arene-mono-crown-6 (BOCMC)onto an acrylic ester based polymeric support material, gave excellent uptake data for the removal of radio-cesium (Cs-137) from nitric acid feed solutions. The weight distribution coefficient (Kd) value of >300 obtained during the present study at 3 M HNO3 was the highest reported so far while using a calix-crown-6 based extraction chromatographic resin material. Analogous resin reported previously has yielded a Kd value <100 at comparable feed conditions. The sorbed metal ions could be efficiently desorbed with de-ionized water. Kinetic modeling of the uptake data indicated that both the film and the intra-particle diffusion mechanism are simultaneously operating in the sorption of Cs+ion onto the BOCMC resin. The metal ion sorption data were fitted to the sorption isotherm models and did not conform to the chemisorptions of physisorption models and indicated a pi-pi interaction between the benzene rings of the calix-crown-6 ligand and the Cs+ ion. The reusability of the resins was quite satisfactory after 5 cycles and the radiation stability of the resin material was very good upto an absorbed dose of 500 kGy. The results of column studies were quite encouraging with 15 mL (9 bed volumes) as the breakthrough volume while the elution was complete in about 12 bed volumes of de-ionized water.


Subject(s)
Calixarenes , Calixarenes/chemistry , Adsorption , Crown Ethers/chemistry , Phenols/chemistry , Phenols/isolation & purification , Kinetics , Resins, Synthetic/chemistry , Ligands , Nitric Acid/chemistry
8.
World J Microbiol Biotechnol ; 40(9): 264, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990244

ABSTRACT

Bentonite is an integral part of the engineered barrier system (EBS) in deep geological repositories (DGR) for nuclear waste, but its indigenous microorganisms may jeopardize long-term EBS integrity. To predict microbial activity in DGRs, it is essential to understand microbial reactions to the early hot phase of DGR evolution. Two bentonites (BCV and MX-80) with varied bentonite/water ratios and saturation levels (compacted to 1600 kg.m- 3 dry density/powder/suspension), were subjected to heat (90-150 °C) and irradiation (0.4 Gy.h- 1) in the long-term experiments (up to 18 months). Molecular-genetic, microscopic, and cultivation-based techniques assessed microbial survivability. Exposure to 90 °C and 150 °C notably diminished microbial viability, irrespective of bentonite form, with negligible impacts from irradiation or sample type compared to temperature. Bentonite powder samples exhibited microbial recovery after 90 °C heating for up to 6 months but not 12 months in most cases; exposure to 150 °C had an even stronger effect. Further long-term experiments at additional temperatures combined with the mathematical prediction of temperature evolution in DGR are recommended to validate the possible evolution and spatial distribution of microbially depleted zones in bentonite buffer around the waste canisters and refine predictions of microbial effects over time in the DGR.


Subject(s)
Bacteria , Bentonite , Gamma Rays , Hot Temperature , Microbial Viability , Bentonite/chemistry , Microbial Viability/radiation effects , Bacteria/classification , Bacteria/radiation effects , Bacteria/genetics , Bacteria/growth & development , Radioactive Waste/analysis , Soil Microbiology
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124432, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38733914

ABSTRACT

Iron-phosphate glasses are a wide group of materials with a wide range of applications. Among others, they are promising materials in toxic waste vitrification because of their high chemical durability and relatively low processing temperature and time. They are a novel group of glasses that are considered in the vitrification of radioactive waste, especially those that cannot be treated using conventional borosilicate ones. Since strontium isotopes are one of the main fission products present in the waste, the influence of Sr on the structural properties of the glasses is an important factor. Strontium-containing iron-phosphate glasses were subjected to structural studies using FT-IR and Raman spectroscopies. The obtained spectra were described, and appropriate band assignments were done. Based on the research conducted, the structural features of the phosphate network and their changes were determined. The results obtained showed that strontium in relatively low content up to 20 mol% acts as the glass network charge compensator and can stabilize the network. Above this threshold, SrO can be treated as a pure modifier, leading to gradual depolymerization. Thus, this point may be treated as the maximum waste loading for effective strontium immobilization.

10.
Appl Radiat Isot ; 209: 111337, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704882

ABSTRACT

The segmented ringed gamma scanning (SRGS) technique represents an advancement in segmented gamma scanning (SGS) technology used for detecting the density of radioactive waste drums, offering enhanced measurement accuracy. However, significant occur errors in the reconstruction of matrix densities due to the non-uniform distribution of density in radioactive waste and the conical beam emitted from the transmission source collimator. This paper proposes a density correction method based on dichotomy to address this issue. The efficacy of this method was verified through both simulations and experiments on a sample containing five different materials, utilizing 137Cs and 60Co for transmission and emission measurements, respectively. The experimental results demonstrate that the errors in the corrected matrix densities are reduced, falling within a margin of 16.8%. Additionally, the corrected reconstruction error of the activity is approximately 25% of the uncorrected results.

11.
J Hazard Mater ; 472: 134412, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38718500

ABSTRACT

Multiple bench-scale filtration campaigns of Hanford tank waste supernatant on a backpulseable dead-end filtration skid have provided greater insight into the solids that cause fouling and reduce filter performance. The solids collected during each campaign were concentrated from the backpulse solutions and examined using automated particle analysis (APA) methods with scanning electron microscopy and X-ray energy dispersive spectroscopy to categorize particle types and their morphological characteristics. We show that with APA, thousands of particles can be analyzed to provide accurate insight into the phases that may be impacting filter performance.

12.
Environ Sci Pollut Res Int ; 31(25): 36778-36795, 2024 May.
Article in English | MEDLINE | ID: mdl-38753239

ABSTRACT

Nuclear reactors will face the problem of decommissioning at the end of their operating life due to the high radioactivity of reactor components and environmental safety considerations. The Heavy Water Research Reactor (HWRR) is the first large-scale research reactor to be decommissioned in China. The second phase of HWRR decommissioning involves the main components in the reactor block, so the radiation source terms and the radioactive waste level need to be evaluated before demolition and disposal. Based on the operating history, three-dimensional geometry, materials, and other information of the HWRR, the activity of radionuclides in the main components of HWRR is calculated and analyzed, and the MCNP/ORIGEN coupling scheme is utilized for theoretical analysis. The theoretical results indicate that 14C, 54Mn, 55Fe, 60Co, 63Ni, and 152Eu are the main radioactive nuclides. The total activity of radioactive nuclides was 2.36E + 15 Bq at the end of 2007, 4.27E + 13 Bq at the end of 2021, and 1.83E + 13 Bq at the end of 2025. Furthermore, local sampling and radiometric analyses based on the HPGe gamma-ray spectrometer are also performed to verify the theoretical results, the ratio of theoretical activity values to the measured activity of the experimental sample is within 2.5 times, so the theoretical results are conservative. According to the classification standards for radioactive waste, the inner shell, outer shell, cooling water tank, sand layer, and heavy concrete shielding layer are all low-level waste. These results and conclusions can serve as a reference for the second phase decommissioning of the HWRR and the subsequent disposal of radioactive waste.


Subject(s)
Radioactive Waste , China , Nuclear Reactors , Radiation Monitoring
13.
Environ Pollut ; 349: 123922, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38580064

ABSTRACT

Water scarcity has become a critical global concern exacerbated by population growth, globalization, and industrial expansion, resulting in the production of wastewater containing a wide array of contaminants. Tackling this challenge necessitates the adoption of innovative materials and technologies for effective wastewater treatment. This review article provides a comprehensive exploration of the preparation, applications, mechanisms, and economic environmental analysis of zeolite-based composites in wastewater treatment. Zeolite, renowned for its versatility and porous nature, is of paramount importance due to its exceptional properties, including high surface area, ion exchange capability, and adsorption capacity. Various synthetic methods for zeolite-based composites are discussed. The utilization of zeolites in wastewater treatment, particularly in adsorption and photocatalysis, is thoroughly investigated. The significance of zeolite in adsorption and its role in the photocatalytic degradation of pollutants are examined, along with its applications in treating volatile organic compounds (VOCs), dye wastewater, oil-field wastewater, and radioactive waste. Mechanisms underlying zeolite-based adsorption and photocatalysis, including physical and chemical adsorption, ion exchange, and surface modification, are elucidated. Additionally, the role of micropores in the adsorption process is explored. Furthermore, the review delves into regeneration and desorption studies of zeolite-based composites, crucial for sustainable wastewater treatment practices. Economic and environmental analyses are conducted to assess the feasibility and sustainability of employing zeolite-based composites in wastewater treatment applications. Future recommendations are provided to guide further research and development in the field of zeolite-based composites, aiming to enhance wastewater treatment efficiency and environmental sustainability. By exploring the latest advancements and insights into zeolite-based nanocomposites, this paper aims to contribute to the development of more efficient and sustainable wastewater treatment strategies. The integration of zeolite-based materials in wastewater treatment processes shows promise for mitigating water pollution and addressing water scarcity challenges, ultimately contributing to environmental preservation and public health protection.


Subject(s)
Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Zeolites , Zeolites/chemistry , Adsorption , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Catalysis , Water Purification/methods , Volatile Organic Compounds/chemistry
14.
Materials (Basel) ; 17(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38591386

ABSTRACT

Sr2+ ions in an aqueous solution were removed using Na-A zeolites synthesized from kaolin, a natural mineral. Na-A zeolites with high crystallinity were synthesized using NaOH/kaolin mass ratios of 0.6 (ZK06) and 0.9 (ZK09). The adsorption reached equilibrium within 120 min. The adsorption data obtained from experiments for Sr2+ using ZK06 and ZK09 were appropriately analyzed with pseudo-second-order kinetic and Langmuir isotherm models. Comparing the maximum adsorption capacities (qm) of ZK06 and ZK09 for Sr2+, the highest values were obtained at 1.90 and 2.42 mmol/g, respectively. Consequently, the Na-A zeolites synthesized from kaolin can be evaluated as adsorbents with high adsorption capacities for the removal of Sr2+, proportional to the degree of their crystallinity.

15.
Materials (Basel) ; 17(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38541417

ABSTRACT

Magnesium Potassium Phosphate Cements (MKPCs) are considered a good alternative for the immobilization of aluminium radioactive waste. MKPC composition and moisture curing conditions are relevant issues to be evaluated. The corrosion of pure aluminium (A1050) and AlMg alloys (AA5754) with 3.5% of Mg is studied in MKPC systems prepared with different MgO/KH2PO4 (M/P) molar ratios (1, 2, and 3M) and moisture curing conditions (100% Relative Humidity (RH) and isolated in plastic containers (endogenous curing)). The Al corrosion potential (Ecorr) and corrosion kinetic (icorr and Vcorr) are evaluated over 90 days. Additionally, the pore ion evolution, the matrix electrical resistance, the pore structure, and compressive strength are analysed. The corrosion process of Al alloy is affected by the pH and ion content in the pore solution. The pore pH increases from near neutral for the 1M M/P ratio to 9 and 10 for the 2 and 3M M/P ratio, increasing in the same way the corrosion of pure Al (AA1050) and AlMg alloys (AA5754). The effect of Mg content in the alloy (AA5754) becomes more relevant with the increase in the M/P ratio. The presence of phosphate ions in the pore solution inhibits the corrosion process in both Al alloys. The MKPC physicochemical stability improved with the increase in the M/P ratio, higher mechanical strength, and more refined pore structure.

16.
Chemosphere ; 358: 141761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38531499

ABSTRACT

Low-level radioactive wastes were disposed at the Little Forest Legacy Site (LFLS) near Sydney, Australia between 1960 and 1968. According to the disposal records, 233U contributes a significant portion of the inventory of actinide activity buried in the LFLS trenches. Although the presence of 233U in environmental samples from LFLS has been previously inferred from alpha-spectrometry measurements, it has been difficult to quantify because the 233U and 234U α-peaks are superimposed. Therefore, the amounts of 233U in groundwaters, soils and vegetation from the vicinity of the LFLS were measured using accelerator mass spectrometry (AMS). The AMS results show the presence of 233U in numerous environmental samples, particularly those obtained within, and in the immediate vicinity of, the trenched area. There is evidence for dispersion of 233U in groundwater (possibly mobilised by co-disposed organic liquids), and the data also suggest other sources of 233U contamination in addition to the trench wastes. These may include leakages and spills from waste drums as well as waste burnings, which also occurred at the site. The AMS results confirm the historic information regarding disposal of 233U in the LFLS trenches. The AMS technique has been valuable to ascertain the distribution and environmental behaviour of 233U at the LFLS and the results demonstrate the applicability of AMS for evaluating contamination of 233U at other radioactive waste sites.


Subject(s)
Groundwater , Mass Spectrometry , Radiation Monitoring , Radioactive Waste , Soil Pollutants, Radioactive , Soil , Uranium , Water Pollutants, Radioactive , Radioactive Waste/analysis , Groundwater/chemistry , Groundwater/analysis , Radiation Monitoring/methods , Uranium/analysis , Water Pollutants, Radioactive/analysis , Soil/chemistry , Soil Pollutants, Radioactive/analysis , Australia , Plants/chemistry
17.
J Environ Radioact ; 274: 107399, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442434

ABSTRACT

The article considers the issues of working out the suitable approaches for identifying zones with the presence of underground near-surface waters with increased concentrations of tritium discharged into a surface reservoir. The following methods were used as possible methods: determination of tritium content in snow cover, determination of tritium content in vegetation in the form of tritium of free water and organically bound tritium, determination of tritium content in river water and coastal vegetation. The studies were carried out at a previously identified site where groundwater with a tritium concentration of up to 6000 Bq/l is present, located in the vicinity of the city of Obninsk (Kaluga region, Russia). As a result of the conducted research, it was concluded that the analysis of the distribution of tritium in vegetation is an excellent methodological technique for identifying areas of location of near-surface underground waters contaminated with tritium. As a control parameter, both the concentration of tritium in the free water of plants and the content of organically bound tritium can be used. To detect underground tritium contamination the most promising use is the following indicator - the content of OBT in the shoots of woody plants. This parameter is very informative, and the sampling procedure for its determination has no seasonal restrictions, unlike such parameters as the content of tritium in grass and leaves, the content of tritium in snow cover, surface waters, which are preferably collected only in summer or winter. It should be noted that the control of surface waters of the groundwater discharge zone may not be a sufficiently informative indicator for identifying areas of polluted water inflow, since it depends on the ratio of the volumes of leaking polluted groundwater and the annual flow of the watercourse.


Subject(s)
Radiation Monitoring , Tritium/analysis , Radiation Monitoring/methods , Ecosystem , Wood/chemistry , Water
18.
J Radiol Prot ; 44(1)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38507784

ABSTRACT

In Korea, decommissioning of nuclear power plants and transportation of the decommissioning waste are expected to expand in the near future. It is necessary to confirm that radiological risks to the public and workers are not significant through radiological safety assessment. The objective of this study is to assess the radiological safety for transportation of RPV waste, which is a major decommissioning waste with relatively high level of radioactivity. It was assumed that the waste would be transported to the Gyeongju disposal facility by land transportation. First, the source term and transportation method of the RPV waste were determined, and the external dose rates from the waste were calculated using MCNP. Then, transportation scenarios were assumed under both normal and accident conditions. Under the scenarios, radiation doses were calculated using the RADTRAN. Under normal operation scenarios without a transportation accident, assuming 40 shipments per year, the average individual doses for the public ranged from 6.56×10-6to 2.18×10-2mSv yr-1. The maximum individual doses for only a single shipment ranged from 2.43×10-6to 3.14×10-1mSv. For cargo handlers and vehicle crew members, the average doses were 2.26×101mSv yr-1and 2.95 mSv yr-1, respectively. Under transportation accident scenarios, average individual radiological risks which are product of the radiation doses and the annual accident rates ranged from 1.14×10-11to 1.61×10-10mSv yr-1by transportation route segment when considering the transportation accident rate. Average individual doses assuming transportation accident occurrence ranged from 2.62×10-4to 1.42×10-3mSv. The maximum individual dose under accident conditions was 7.99×10-2mSv. The calculated doses were below the regulatory limits in Korea. However, relatively high doses were observed for cargo handlers and vehicle crew members because of conservative assumptions. This study results can be used as basic data for the radiological safety assessment for the decommissioning waste transportation in the future.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Humans , Nuclear Power Plants , Radiation Dosage , Radiation Monitoring/methods , Republic of Korea
19.
J Hazard Mater ; 469: 134012, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38492397

ABSTRACT

Radioactive wastes contain organic complexing agents that can form complexes with radionuclides and enhance the solubility of these radionuclides, increasing the mobility of radionuclides over great distances from a radioactive waste repository. In this study, four radionuclides (cobalt, strontium, iodine, and uranium) and three organic complexing agents (ethylenediaminetetraacetic acid, nitrilotriacetic acid, and iso-saccharic acid) were selected, and the solubility of these radionuclides was assessed under realistic environmental conditions such as different pHs (7, 9, 11, and 13), temperatures (10 °C, 20 °C, and 40 °C), and organic complexing agent concentrations (10-5-10-2 M). A total of 720 datasets were generated from solubility batch experiments. Four supervised machine learning models such as the Gaussian process regression (GPR), ensemble-boosted trees, artificial neural networks, and support vector machine were developed for predicting the radionuclide solubility. Each ML model was optimized using Bayesian optimization algorithm. The GPR evolved as a robust model that provided accurate predictions within the underlying solubility patterns by capturing the intricate relationships of the independent parameters of the dataset. At an uncertainty level of 95%, both the experimental results and GPR simulated estimations were closely correlated, confirming the suitability of the GPR model for future explorations.

20.
Radiat Environ Biophys ; 63(1): 1-6, 2024 03.
Article in English | MEDLINE | ID: mdl-38367061

ABSTRACT

This report summarizes the findings of a workshop held at the safeND Research Symposium and hosted by the German Federal Office for the Safety of Radioactive Waste Management (BASE) in Berlin in September 2023. The workshop aimed to channel perspectives from various fields of expertise to discuss key sustainability concepts in terms of radioactive waste management. Therefore, the report highlights that current sustainability concepts, such as the United Nations' Sustainable Development Goals (SDG) as well as the concept of Planetary Boundaries, neglect challenges arising from the production and storage of human-made radioactive materials. The workshop consisted of three group tasks. The first attempted at identifying the interrelations between "sustainability" and radioactive waste management. The second was to map the global nature of the challenges. The third took first steps to determine a human-made radioactive material as a potential planetary sub-boundary for "novel entities". All three groups identified valuable knowledge gaps that should be addressed by future research and concluded that radioactive waste management is underrepresented in these sustainability concepts.


Subject(s)
Radioactive Waste , Waste Management , Humans
SELECTION OF CITATIONS
SEARCH DETAIL