Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biomedicines ; 12(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38398048

ABSTRACT

Liver organoids take advantage of several important features of pluripotent stem cells that self-assemble in a three-dimensional culture matrix and reproduce many aspects of the complex organization found within their native tissue or organ counterparts. Compared to other 2D or 3D in vitro models, organoids are widely believed to be genetically stable or docile structures that can be programmed to virtually recapitulate certain biological, physiological, or pathophysiological features of original tissues or organs in vitro. Therefore, organoids can be exploited as effective substitutes or miniaturized models for the study of the developmental mechanisms of rare liver diseases, drug discovery, the accurate evaluation of personalized drug responses, and regenerative medicine applications. However, the bioengineering of organoids currently faces many groundbreaking challenges, including a need for a reasonable tissue size, structured organization, vascularization, functional maturity, and reproducibility. In this review, we outlined basic methodologies and supplements to establish organoids and summarized recent technological advances for experimental liver biology. Finally, we discussed the therapeutic applications and current limitations.

2.
Dis Model Mech ; 11(2)2018 02 26.
Article in English | MEDLINE | ID: mdl-29590641

ABSTRACT

Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) refer to a group of heterogeneous cancers of neuroendocrine cell phenotype that mainly fall into one of two subtypes: gastroenteropancreatic neuroendocrine tumors (GEP-NETs; well differentiated) or gastroenteropancreatic neuroendocrine carcinomas (GEP-NECs; poorly differentiated). Although originally defined as orphan cancers, their steadily increasing incidence highlights the need to better understand their etiology. Accumulating epidemiological and clinical data have shed light on the pathological characteristics of these diseases. However, the relatively low number of patients has hampered conducting large-scale clinical trials and hence the development of novel treatment strategies. To overcome this limitation, tractable disease models that faithfully reflect clinical features of these diseases are needed. In this Review, we summarize the current understanding of the genetics and biology of these diseases based on conventional disease models, such as genetically engineered mouse models (GEMMs) and cell lines, and discuss the phenotypic differences between the models and affected humans. We also highlight the emerging disease models derived from human clinical samples, including patient-derived xenograft models and organoids, which may provide biological and therapeutic insights into GEP-NENs.


Subject(s)
Intestinal Neoplasms/genetics , Intestinal Neoplasms/therapy , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Animals , Disease Models, Animal , Humans , Intestinal Neoplasms/diagnosis , Neuroendocrine Tumors/diagnosis , Pancreatic Neoplasms/diagnosis , Stomach Neoplasms/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL