Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Clin Exp Vaccine Res ; 13(3): 232-241, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39144123

ABSTRACT

Purpose: Brucellosis, a zoonotic infectious disease, is a worldwide health issue affecting animals and humans. No effective human vaccine and the complications caused by the use of animal vaccines are among the factors that have prevented the eradication of the disease worldwide. However, bio-engineering technologies have paved the way for designing new targeted and highly efficacious vaccines. In this regard, the study aimed to evaluate immunity induced by mannosylated niosome containing Brucella recombinant trigger factor/Bp26/Omp31 (rTBO) chimeric protein in a mouse model. Materials and Methods: rTBO as chimeric antigen (Ag) was expressed in Escherichia coli BL21 (DE3) and, after purification, loaded on niosome and mannosylated niosome. The characteristics of the nanoparticles were assessed. The mice were immunized using rTBO, niosome, and mannosylated niosome-rTBO in intranasal and intraperitoneal routes. Serum antibodies (immunoglobulin [Ig]A, IgG, IgG1, and IgG2a) and splenocyte cytokines (interferon-gamma, interleukin [IL]-4, and IL-12) were evaluated in immunized mice. Finally, immunized mice were challenged by B. melitensis and B. abortus. A high antibody level was produced by niosomal antigen (Nio-Ag) and mannosylated noisomal antigen (Nio-Man-Ag) compared to the control after 10, 24, and 38 days of immunization. The IgG2a/IgG1 titer ratio for Nio-Man-Ag was 1.2 and 1.1 in intraperitoneal and intranasal methods and lower than one in free Ag and Nio-Ag. Cytokine production was significantly higher in the immunized animal with Ag-loaded nanoparticles than in the negative control group (p<0.05). Moreover, cytokine and antibody levels were significantly higher in the injection than in the inhalation method (p<0.05). Results: The combination of mannosylated noisome and rTBO chimeric proteins stimulate the cellular and humoral immune response and produce cytokines, playing a role in developing the protective acquired immune response in the Brucella infectious model. Also, the intraperitoneal route resulted in a successful enhancement of cytokines production more than intranasal administration. Conclusion: Designing an effective vaccine candidate against Brucella that selectively induces cellular and humoral immune response can be done by selecting a suitable nanoniosome formulation as an immunoadjuvant and recombinant protein as an immune response-stimulating Ag.

2.
Protein Pept Lett ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39162285

ABSTRACT

BACKGROUND: The spread of the COVID-19 disease is the result of an infection caused by the SARS-CoV2 virus. Four crucial proteins, spike [S], membrane [M], nucleocapsid [N], and envelope [E] in coronaviruses have been considered to a large extent. OBJECTIVE: This research aimed to express the recombinant protein of a multiepitope immunogen construct and evaluate the immunogenicity of the multiepitope vaccine that was previously designed as a candidate immunogenic against SARS-Cov-2. MATERIALS AND METHODS: Plasmid pET26b was transferred to the expression host E. coli BL21 [DE3] and the recombinant protein was expressed with IPTG induction. The recombinant protein was purified by Ni-NTA column affinity chromatography, and western blotting was used to confirm it. Finally, mice were immunized with recombinant protein in three doses. Then, the interaction of the 3D structure of the vaccine with the human neutralizing antibodies3D structures [7BWJ and 7K8N] antibody was evaluated by docking and molecular dynamics simulation. RESULTS: The optimized gene had a codon compatibility index of 0.96. The expression of the recombinant protein of the SARS-Cov-2 vaccine in an E. coli host led to the production of the recombinant protein with a weight of about 70 kDa with a concentration of 0.7 mg/ml. Immunization of mice with recombinant protein of SARS-Cov-2 vaccine-induced IgG serum antibody response. Statistical analysis showed that the antibody titer in comparison with the control sample has a significant difference, and the antibody titer was acceptable up to 1/256000 dilution. The simulation of vaccine binding with human antibodies by molecular dynamics showed that Root Mean Square Deviation [RMSD], Root Mean Square Fluctuation [RMSF], Radius of Gyration, and H-bond as well as van der Waals energies and electrostatic of Molecular mechanics Poisson- Boltzmann surface area [MM/PBSA] analysis have stable interaction. CONCLUSION: This recombinant protein can probably be used as an immunogen candidate for the development of vaccines against SARS-CoV2 in future research.

3.
Avicenna J Med Biotechnol ; 16(3): 137-145, 2024.
Article in English | MEDLINE | ID: mdl-39132628

ABSTRACT

Rheumatoid Arthritis (RA) is an autoimmune disease and chronic inflammatory disorder that affects joints and causes inflammation, pain, stiffness, and eventually progressive joint destruction. Approximately 1% of the world's population is estimated to suffer from RA, and if this disease is left untreated, it can lead to severe disability. Despite all the efforts and advances made by professionals in the field, there is currently no definitive treatment for RA, and most treatment strategies are aimed at relieving symptoms and improving patients' quality of life. One of the most promising current approaches is the use of recombinant proteins that target specific signaling pathways involved in the development of RA to alleviate symptoms and slow the progression of the disease. This article discusses the genetic and immunological factors that influence the development of RA, recombinant proteins, methods of using these proteins, approved drugs, and side effects associated with treating RA.

4.
AMB Express ; 14(1): 88, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095661

ABSTRACT

Recombinant protein production in Komagataella phaffi (K. phaffi), a widely utilized host organism, can be optimized by enhancing the metabolic flux in the central carbon metabolism pathways. The methanol utilization pathway (MUT) during methanol-based growth plays a crucial role in providing precursors and energy for cell growth and development. This study investigated the impact of boosting the methanol dissimilation pathway, a branch of MUT that plays a vital role in detoxifying formaldehyde and providing energy in the form of NADH, in K. phaffi. This was achieved by integrating two orthologous genes from Hansenula polymorpha into the K. phaffi genome: formaldehyde dehydrogenase (HpFLD) and formate dehydrogenase (HpFMDH). The HpFLD and HpFMDH genes were isolated from the Hansenula polymorpha genome and inserted under the regulation of the pAOX1 promoter in the genome of recombinant K. phaffi that already contained a single copy of model protein genes (eGFP or EGII). The expression levels of these model proteins were assessed through protein activity assays and gene expression analysis. The findings revealed that while both orthologous genes positively influenced model protein production, HpFMDH exhibited a more pronounced upregulation in expression compared to HpFLD. Co-expression of both orthologous genes demonstrated synergistic effects, resulting in approximately a twofold increase in the levels of the model proteins detected. This study provides valuable insights into enhancing the production capacity of recombinant proteins in K. phaffi.

5.
Protoplasma ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970700

ABSTRACT

Monoclonal antibodies (mAbs) have become indispensable tools in various fields, from research to therapeutics, diagnostics, and industries. However, their production, primarily in mammalian cell culture systems, is cost-intensive and resource-demanding. Microalgae, diverse photosynthetic microorganisms, are gaining attention as a favorable option for manufacturing mAbs and various other recombinant proteins. This review explores the potential of microalgae as a robust expression system for biomanufacturing high-value proteins. It also highlights the diversity of microalgae species suitable for recombinant protein. Nuclear and chloroplast genomes of some microalgae have been engineered to express mAbs and other valuable proteins. Codon optimization, vector construction, and other genetic engineering techniques have significantly improved recombinant protein expression in microalgae. These accomplishments demonstrate the potential of microalgae for biopharmaceutical manufacturing. Microalgal biotechnology holds promise for revolutionizing the production of mAbs and other therapeutic proteins, offering a sustainable and cost-effective solution to address critical healthcare needs.

6.
Front Plant Sci ; 15: 1434778, 2024.
Article in English | MEDLINE | ID: mdl-38962242

ABSTRACT

Bulk commodity row crop production in the United States is frequently subject to narrow profit margins, often complicated by weather, supply chains, trade, and other factors. Farmers seeking to increase profits and hedge against market volatility often seek to diversify their operations, including producing more lucrative or productive crop varieties. Recombinant plants producing animal or other non-native proteins (commonly referred to as plant molecular farming) present a value-added opportunity for row crop farmers. However, these crops must be produced under robust identity preserved systems to prevent comingling with bulk commodities to maintain the value for farmers, mitigate against market disruptions, and minimize any potential food, feed, or environmental risks.

7.
J Biotechnol ; 392: 96-102, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38960098

ABSTRACT

In eukaryotes, the localization of small ribosomal subunits to mRNA transcripts requires the translation of Kozak elements at the starting site. The sequence of Kozak elements affects the translation efficiency of protein synthesis. However, whether the upstream nucleotide of Kozak sequence affects the expression of recombinant proteins in Chinese hamster ovary (CHO) cells remains unclear. In order to find the optimal sequence to enhance recombinant proteins expression in CHO cells, -10 to +4 sequences around ATG in 100 CHO genes were compared, and the extended Kozak elements with different translation intensities were constructed. Using the classic Kozak element as control, the effects of optimized extended Kozak elements on the secreted alkaline phosphatase (SEAP) and human serum albumin (HSA) gene were studied. The results showed that the optimized extended Kozak sequence can enhance the stable expression level of recombinant proteins in CHO cells. Furthermore, it was found that the increased expression level of the recombinant protein was not related with higher transcription level. In summary, optimizing extended Kozak elements can enhance the expression of recombinant proteins in CHO cells, which contributes to the construction of an efficient expression system for CHO cells.


Subject(s)
Alkaline Phosphatase , Cricetulus , Recombinant Proteins , CHO Cells , Animals , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Cricetinae , Humans
8.
Eur J Pharm Biopharm ; 202: 114410, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004320

ABSTRACT

Surface-exposed calreticulin (CRT) serves as a crucial cell damage-associated molecular pattern for immunogenic apoptosis, by generating an "eat me" signal to macrophages. Aiming at precision immunotherapies we intended to artificially label tumoral cells in vivo with a recombinant CRT, in a targeted way. For that, we have constructed a CRT fusion protein intended to surface attach CXCR4+ cancer cells, to stimulate their immunological destruction. As a targeting ligand of the CRT construct and to drive its specific cell adhesion, we used the peptide V1, a derivative of the vMIP-II cytokine and an antagonist of CXCR4. The modular protein tends to self-assemble as regular 16 nm nanoparticles, assisted by ionic Zn. Through both in vivo and in vitro experiments, we have determined that CRT itself confers cell targeting capabilities to the construct overcoming those of V1, that are only moderate. In particular, CRT binds HeLa cells in absence of further internalization, by a route fully independent of CXCR4. Furthermore, by cytometry in THP-1 cells, we observed that the binding of the protein is preferential for dead cells over live cells, a fact that cannot be associated to a mere artefactual adsorption. These data are discussed in the context of the oligomerizing properties of CRT and the potential clinical applicability of proteins and protein materials functionalized with this novel cell surface ligand.


Subject(s)
Calreticulin , Nanoparticles , Receptors, CXCR4 , Humans , Calreticulin/metabolism , Nanoparticles/chemistry , HeLa Cells , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , THP-1 Cells , Animals , Apoptosis/drug effects , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/chemistry , Cell Line, Tumor , Cell Adhesion/drug effects , Mice
9.
J Virol Methods ; 329: 114998, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39059503

ABSTRACT

Lumpy skin disease (LSD), caused by the lumpy skin disease virus of the genus Capripoxvirus, is rapidly emerging across most countries in Asia. Recently, LSD has been linked to very high morbidity and mortality rates. Until 2019, India remained free of LSD, resulting in a lack of locally developed diagnostic kits, biologicals, and other tools necessary for managing the disease in a country with such a large livestock population. Therefore, this study aimed to design and validate an indigenous and cost-effective in-house ELISA for large-scale screening of cattle samples for antibodies to LSDV. The viral major open reading frames ORF 095 and ORF 103 encoding virion core proteins were expressed in a prokaryotic system and the recombinant antigen cocktail was used for optimization and validation of an indirect ELISA (iELISA). The calculated relative diagnostic sensitivity and diagnostic specificity of the iELISA were 96.6 % and 95.1 %, respectively at the cut-off percent positivity (PP≥50 %). The in-house designed double-antigen iELISA was found effective to investigate the seroprevalence of LSDV in various geographical regions of India.

10.
Oral Dis ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39073178

ABSTRACT

OBJECTIVE: To evaluate the efficacy of recombinant psoriasin as a novel treatment for oral candidiasis by eliminating Candida albicans growth on polymethyl methacrylate denture base. MATERIALS AND METHODS: Recombinant psoriasin protein was expressed and purified from E. coli, and Candida growth was monitored in vitro with varying concentrations of psoriasin. Subsequently, denture-base polymethyl methacrylate was immersed in psoriasin's solution or voriconazole, and fungal growth on the acrylic base and in the medium was examined by scanning electron microscopy and optical density, respectively. Cellular viability of HeLa and human gingival fibroblast cells treated with psoriasin was measured by methylene blue assay. RESULTS: The findings reveal an effective antifungal activity of psoriasin, completely inhibiting Candida albicans growth in RPMI at a protein concentration above 400 nM. Immersing the polymethyl methacrylate with 50 µM psoriasin completely eradicates fungal growth. Psoriasin has low cytotoxicity in HeLa cells at a concentration higher than 12 µM and no toxic effect on human gingival fibroblasts. CONCLUSIONS: This study marks psoriasin as an effective alternative to conventional antifungal treatments for denture stomatitis and a safe alternative to chemical antifungals in dental medicine and beyond.

11.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891791

ABSTRACT

Misfolding of superoxide dismutase-1 (SOD1) is a pathological hallmark of amyotrophic lateral sclerosis (ALS) with SOD1 mutations. The development of antibodies specific for misfolded SOD1 deepens our understanding of how the protein participates in ALS pathogenesis. Since the term "misfolding" refers to various disordered conformers other than the natively folded one, which misfolded species are recognized by specific antibodies should be determined. Here, we molecularly characterized the recognition by MS785-MS27, an antibody cocktail experimentally confirmed to recognize over 100 ALS-linked SOD1 mutants. Indirect ELISA revealed that the antibody cocktail recognized Zn-deficient wild-type and mutated SOD1 species. It also recognized conformation-disordered wild-type and mutated SOD1 species, such as unfolded and oligomeric forms, but had less affinity for the aggregated form. Antibody-reactive SOD1 exhibited cytotoxicity to a motor neuron cell model, which was blocked by Zn treatment with Zn-deficient SOD1. Immunohistochemistry revealed antibody-reactive SOD1 mainly in spinal motor neurons of SOD1G93A mice throughout the disease course, and the distribution after symptomatic stages differed from that of other misfolded SOD1 species. This suggests that misfolded/non-native SOD1 species exist as heterogeneous populations. In conclusion, MS785-MS27 recognizes various conformation-disordered SOD1 species lacking the Zn ion.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Neurons , Protein Folding , Superoxide Dismutase-1 , Zinc , Animals , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/chemistry , Motor Neurons/metabolism , Motor Neurons/pathology , Mice , Zinc/metabolism , Zinc/deficiency , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Humans , Mutation , Mice, Transgenic , Heterozygote , Protein Conformation
12.
Microb Cell Fact ; 23(1): 171, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867280

ABSTRACT

BACKGROUND: Fibroblast growth factor 21 (FGF21) is a promising candidate for treating metabolic disorder diseases and has been used in phase II clinical trials. Currently, metabolic diseases are prevalent worldwide, underscoring the significant market potential of FGF21. Therefore, the production of FGF21 must be effectively improved to meet market demand. RESULTS: Herein, to investigate the impact of vectors and host cells on FGF21 expression, we successfully engineered strains that exhibit a high yield of FGF21. Surprisingly, the data revealed that vectors with various copy numbers significantly impact the expression of FGF21, and the results showed a 4.35-fold increase in expression levels. Furthermore, the performance of the double promoter and tandem gene expression construction design surpassed that of the conventional construction method, with a maximum difference of 2.67 times. CONCLUSION: By exploring engineered vectors and host cells, we successfully achieved high-yield production of the FGF21 strain. This breakthrough lays a solid foundation for the future industrialization of FGF21. Additionally, FGF21 can be easily, quickly and efficiently expressed, providing a better tool and platform for the research and application of more recombinant proteins.


Subject(s)
Fibroblast Growth Factors , Genetic Vectors , Promoter Regions, Genetic , Recombinant Proteins , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Genetic Vectors/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Gene Expression
13.
Methods Mol Biol ; 2832: 163-170, 2024.
Article in English | MEDLINE | ID: mdl-38869794

ABSTRACT

Protein phosphorylation is one of the most important posttranslational modifications in cell signaling pathways. Kinases and phosphatases play essential roles in transferring information between sensors and effectors under stress conditions. Several methods have been developed to analyze the phosphorylation mechanisms. Each method has advantages and disadvantages. In vitro kinase assay using recombinant proteins is a method to analyze kinase activities under simplified conditions. It is a good strategy to understand each mechanism one by one, although it is not always suitable to estimate the feature of complex machinery in vivo. In this chapter, the purification of recombinant proteins produced in Escherichia coli followed by assaying a kinase activity using radioactivity is described.


Subject(s)
Enzyme Assays , Escherichia coli , Protein Serine-Threonine Kinases , Recombinant Proteins , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Enzyme Assays/methods , Phosphorylation , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Stress, Physiological , Arabidopsis/genetics
14.
J Funct Biomater ; 15(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38921515

ABSTRACT

The recombinant structural protein described in this study was designed based on sequences derived from elastin and silk. Silk-elastin hybrid copolymers are characterized by high solubility while maintaining high product flexibility. The phase transition temperature from aqueous solution to hydrogel, as well as other physicochemical and mechanical properties of such particles, can differ significantly depending on the number of sequence repeats. We present a preliminary characterization of the EJ17zipR protein obtained in high yield in a prokaryotic expression system and efficiently purified via a multistep process. Its addition significantly improves biomaterial's rheological and mechanical properties, especially elasticity. As a result, EJ17zipR appears to be a promising component for bioinks designed to print spatially complex structures that positively influence both shape retention and the internal transport of body fluids. The results of biological studies indicate that the addition of the studied protein creates a favorable microenvironment for cell adhesion, growth, and migration.

15.
Prep Biochem Biotechnol ; : 1-12, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701182

ABSTRACT

The effect of gradients of elevated glucose and low dissolved oxygen in the addition zone of fed-batch E. coli thermoinduced recombinant high cell density cultures can be evaluated through two-compartment scale-down models. Here, glucose was fed in the inlet of a plug flow bioreactor (PFB) connected to a stirred tank bioreactor (STB). E. coli cells diminished growth from 48.2 ± 2.2 g/L in the stage of RP production if compared to control (STB) with STB-PFB experiments, when residence time inside the PFB was 25 s (34.1 ± 3.5 g/L) and 40 s (25.6 ± 5.1 g/L), respectively. The recombinant granulocyte-macrophage colony-stimulating factor (rHuGM-CSF) production decreased from 34 ± 7% of RP in inclusion bodies (IB) in control cultures to 21 ± 8%, and 7 ± 4% during the thermoinduction production phase when increasing residence time inside the PFB to 25 s and 40 s, respectively. This, along with the accumulation of acetic and formic acid (up to 4 g/L), indicates metabolic redirection of central carbon routes through metabolic flow and mixed acid fermentation. Special care must be taken when producing a recombinant protein in heat-induced E. coli, because the yield and productivity of the protein decreases as the size of the bioreactors increases, especially if they are carried at high cell density.


Thermoinduced recombinant E. coli grew less in a two-compartment scale-down model.Heat-inducible E. coli cultures at a large scale significantly decrease recombinant protein production.The accumulation of acetic and formic acid increases when E. coli is exposed to glucose and oxygen gradients.The axial flow pattern inside the PFB mimics glucose and dissolved oxygen gradients at the industrial scale.

16.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38727343

ABSTRACT

In this study we propose to use for bioprinting a bioink enriched with a recombinant RE15mR protein with a molecular weight of 26 kDa, containing functional sequences derived from resilin and elastin. The resulting protein also contains RGD sequences in its structure, as well as a metalloproteinase cleavage site, allowing positive interaction with the cells seeded on the construct and remodeling the structure of this protein in situ. The described protein is produced in a prokaryotic expression system using an E. coli bacterial strain and purified by a process using a unique combination of known methods not previously used for recombinant elastin-like proteins. The positive effect of RE15mR on the mechanical, physico-chemical, and biological properties of the print is shown in the attached results. The addition of RE15mR to the bioink resulted in improved mechanical and physicochemical properties and promoted the habitation of the prints by cells of the L-929 line.

17.
Biotechnol J ; 19(5): e2400081, 2024 May.
Article in English | MEDLINE | ID: mdl-38719586

ABSTRACT

Translation initiation is the primary determinant of the rate of protein production. The variation in the rate with which this step occurs can cause up to three orders of magnitude differences in cellular protein levels. Several mRNA features, including mRNA stability in proximity to the start codon, coding sequence length, and presence of specific motifs in the mRNA molecule, have been shown to influence the translation initiation rate. These molecular factors acting at different strengths allow precise control of in vivo translation initiation rate and thus the rate of protein synthesis. However, despite the paramount importance of translation initiation rate in protein synthesis, accurate prediction of the absolute values of initiation rate remains a challenge. In fact, as of now, there is no available model for predicting the initiation rate in Saccharomyces cerevisiae. To address this, we train a machine learning model for predicting the in vivo initiation rate in S. cerevisiae transcripts. The model is trained using a diverse set of mRNA transcripts, enabling the comparison of initiation rates across different transcripts. Our model exhibited excellent accuracy in predicting the translation initiation rate and demonstrated its effectiveness with both endogenous and exogenous transcripts. Then, by combining the machine learning model with the Monte-Carlo search algorithm, we have also devised a method to optimize the nucleotide sequence of any gene to achieve a specific target initiation rate. The machine learning model we've developed for predicting translation initiation rates, along with the gene optimization method, are deployed as a web server. Both web servers are accessible for free at the following link: ajeetsharmalab.com/TIRPredictor. Thus, this research advances our fundamental understanding of translation initiation processes, with direct applications in biotechnology.


Subject(s)
Peptide Chain Initiation, Translational , RNA, Messenger , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Peptide Chain Initiation, Translational/genetics , RNA, Messenger/genetics , Machine Learning , Algorithms , Internet , Codon, Initiator/genetics , Software , Protein Biosynthesis/genetics
18.
Protein Expr Purif ; 221: 106505, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38768672

ABSTRACT

Protein reagents are essential resources for several stages of drug discovery projects from structural biology and assay development through lead optimization. Depending on the aim of the project different amounts of pure protein are required. Small-scale expressions are initially used to determine the reachable levels of production and quality before scaling up protein reagent supply. Commonly, amounts of several hundreds of milligrams to grams are needed for different experiments, including structural investigations and activity evaluations, which require rather large cultivation volumes. This implies that cultivation of large volumes of either transiently transfected cells or stable pools/stable cell lines is needed. Hence, a production process that is scalable, speeds up the development projects, and increases the robustness of protein reagent quality throughout scales. Here we present a protein production pipeline with high scalability. We show that our protocols for protein production in Chinese hamster ovary cells allow for a seamless and efficient scale-up with robust product quality and high performance. The flexible scale of the production process, as shown here, allows for shorter lead times in drug discovery projects where there is a reagent demand for a specific protein or a set of target proteins.


Subject(s)
Bioreactors , Cricetulus , Plasmids , Recombinant Proteins , CHO Cells , Animals , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Plasmids/genetics , Plasmids/metabolism , Cricetinae
19.
J Leukoc Biol ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630870

ABSTRACT

The treatment of non-healing wounds, such as diabetic ulcers, remains a critical clinical challenge. Recent breakthroughs in cell therapy have shown great promise, with one primary focus on preparing cells with comprehensive reparative functions and foreseeable safety. In our previous study, we recapitulated the pro-regenerative and immunosuppressive functions of tumor-associated macrophages (TAMs) in non-tumor-derived macrophages, endowing the latter with characteristics for promoting diabetic wound healing - termed TAMs-educated macrophages (TAMEMs). To eliminate the use of tumor-derived sources and devise a more controllable method to prepare TAMEM-like cells, in this study, we identify a cocktail comprising five recombinant proteins as an essential condition to induce non-polarized macrophages (termed TAMEMs5) into therapeutic cells with pro-healing functions. The screened five factors are osteopontin (OPN), macrophage inflammatory protein (MIP)-2, chemokine (C-C motif) ligand 8 (CCL8), vascular endothelial growth factor (VEGF)-B, and macrophage colony-stimulating factor (M-CSF). We demonstrate the rationale for screening these factors and the phenotype of TAMEMs5 prepared from murine bone marrow-derived macrophages, which exhibit angiogenic and immunomodulatory effects in vitro. Then, we induce primary human monocytes from periphery blood into TAMEMs5, which show pro-healing effects in a human primary cell-based ex vivo model (T-SkinTM). Our study demonstrates a simple, effective, and controllable approach to induce primary macrophages to possess repairing activities, which may provide insights for developing cell-based therapeutics for non-healing wounds clinically.

20.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667189

ABSTRACT

L-Lactate is an important bioanalyte in the food industry, biotechnology, and human healthcare. In this work, we report the development of a new L-lactate electrochemical biosensor based on the use of multiwalled carbon nanotubes non-covalently functionalized with avidin (MWCNT-Av) deposited at glassy carbon electrodes (GCEs) as anchoring sites for the bioaffinity-based immobilization of a new recombinant biotinylated lactate oxidase (bLOx) produced in Escherichia coli through in vivo biotinylation. The specific binding of MWCNT-Av to bLOx was characterized by amperometry, surface plasmon resonance (SPR), and electrochemical impedance spectroscopy (EIS). The amperometric detection of L-lactate was performed at -0.100 V, with a linear range between 100 and 700 µM, a detection limit of 33 µM, and a quantification limit of 100 µM. The proposed biosensor (GCE/MWCNT-Av/bLOx) showed a reproducibility of 6.0% and it was successfully used for determining L-lactate in food and enriched serum samples.


Subject(s)
Avidin , Biosensing Techniques , Lactic Acid , Mixed Function Oxygenases , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Mixed Function Oxygenases/chemistry , Avidin/chemistry , Electrochemical Techniques , Surface Plasmon Resonance , Enzymes, Immobilized/chemistry , Escherichia coli , Biotinylation , Electrodes , Dielectric Spectroscopy , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL