Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 560
Filter
1.
Chemistry ; : e202402423, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137164

ABSTRACT

We report on dual, light-responsive and redox-active foldamers that demonstrate reversible and robust stimuli-induced behaviour. Herein, UV/Vis, 1H NMR and circular dichroism (CD) spectroscopy and cyclic voltammetry have been used to establish the reversibility and highly robust nature of the light- and redox-driven behaviour of these new foldamers with minimal levels of fatigue observed even upon multiple cyclic treatments with irradiative/non-irradiative and oxidative/reductive conditions. This proof-of-concept work paves the way towards the creation of novel stimuli-responsive foldamers of increasing sophistication capable of demonstrating reversible and robust responses to multiple distinct stimuli.

2.
Angew Chem Int Ed Engl ; : e202412057, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39132838

ABSTRACT

Activating anionic redox reaction (ARR) has attracted a great interest in Li/Na-ion batteries owing to the fascinating extra-capacity at high operating voltages. However, ARR has rarely been reported in aqueous zinc-ion batteries (AZIBs) and its possibility in the popular MnO2-based cathodes has not been explored. Herein, the novel manganese deficient MnO2 micro-nano spheres with interlayer "Ca2+-pillars" (CaMnO-140) are prepared via a low-temperature (140 °C) hydrothermal method, where the Mn vacancies can trigger ARR by creating non-bonding O 2p states, the pre-intercalated Ca2+ can reinforce the layered structure and suppress the lattice oxygen release by forming Ca-O configurations. The tailored CaMnO-140 cathode demonstrates an unprecedentedly high rate capability (485.4 mAh g-1 at 0.1 A g-1 with 154.5 mAh g-1 at 10 A g-1) and a marvelous long-term cycling durability (90.6% capacity retention over 5000 cycles) in AZIBs. The reversible oxygen redox chemistry accompanied by CF3SO3- (from the electrolyte) uptake/release, and the manganese redox accompanied by H+/Zn2+ co-insertion/extraction, are elucidated by advanced synchrotron characterizations and theoretical computations. Finally, pouch-type CaMnO-140//Zn batteries manifest bright application prospects with high energy, long life, wide-temperature adaptability, and high operating safety. This study provides new perspectives for developing high-energy cathodes for AZIBs by initiating anionic redox chemistry.

3.
Chemistry ; : e202400718, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003595

ABSTRACT

Being a low-toxic and hydrophilic representative of TAM, OX063 has shown its suitability for in-vivo and in-cell EPR experiments and design of spin labels. Using 13C labeling, we investigated the course of oxidative degradation of OX063 into quinone-methide (QM) under the influence of superoxide as well as further thiol-promoted reduction of QM into TAM radical, which formally corresponds to substitution of a carboxyl function by a hydroxyl group. We found these transformations being quantitative in model reactions mimicking specific features of biological media and confirmed the presence of these reactions in the blood and liver homogenate of mice in vitro. The emergence of the trityl with the hydroxyl group can be masked by an initial TAM in EPR spectra and may introduce distortions into EPR-derived oximetry data if they have been obtained for objects under hypoxia. 13C labeling allows one to detect its presence, considering its different hyperfine splitting constant on 13C1 (2.04 mT) as compared to OX063 (2.30 mT). The potential involvement of these reactions should be considered when using TAM in spin-labeling of biopolymers intended for subsequent EPR experiments, as well as in the successful application of TAM in experiments in vivo and in cell.

4.
Chemistry ; : e202402704, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023308

ABSTRACT

We report the reversible transformation between a singly stapled dynamic α-helical peptide and a doubly stapled quasi-static one through redox-triggered dithiol/disulfide conversions of a stapling moiety. This process allows the rate of interconversion between the right-handed (P) and left-handed (M) α-helices to be altered by a factor of approximately 103 before and after the transformation. An as-obtained doubly stapled α-helical peptide, which is composed of an achiral peptide having an L-valine carboxylic acid residue at the C-terminus, a disulfide-based reversible staple, and a biphenyl-based fixed staple, adopts an (M)-rich form as a kinetically trapped state. The (M)-rich helix was subsequently transformed into the thermodynamically stable (P)-rich form in 1,1,2,2-tetrachloroethane with the half-life time (t1/2) of approximately 44 days at 25 ºC. Reduction of the doubly stapled peptide with tri-n-butylphosphine in tetrahydrofuran/water (10/1, v/v) produced the corresponding singly stapled dynamic α-helical peptide bearing two thiol groups at the side chains, which underwent solvent-induced reversible helicity inversion. The resulting dithiol of the singly stapled peptide could be reoxidized to form the original doubly stapled form using 4,4'-dithiodipyridine. Furthermore, the P/M interconversion of a doubly stapled peptide with two flexible hydrocarbon-based staples is considerably more rapid than that with more rigid staples.

5.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063068

ABSTRACT

Oxidative stress has been known about in biological sciences for several decades; however, the understanding of this concept has evolved greatly since its foundation. Over the past years, reactive oxygen species, once viewed as solely deleterious, have become recognized as intrinsic components of life. In contrast, antioxidants, initially believed to be cure-all remedies, have failed to prove their efficacy in clinical trials. Fortunately, research on the health-promoting properties of antioxidants has been ongoing. Subsequent years showed that the former assumption that all antioxidants acted similarly was greatly oversimplified. Redox-active compounds differ in their chemical structures, electrochemical properties, mechanisms of action, and bioavailability; therefore, their efficacy in protecting against oxidative stress also varies. In this review, we discuss the changing perception of oxidative stress and its sources, emphasizing everyday-life exposures, particularly those of dietary origin. Finally, we posit that a better understanding of the physicochemical properties and biological outcomes of antioxidants is crucial to fully utilize their beneficial impact on health.


Subject(s)
Antioxidants , Homeostasis , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Antioxidants/metabolism , Antioxidants/chemistry , Humans , Reactive Oxygen Species/metabolism , Animals , Oxidants/metabolism , Oxidants/chemistry
6.
ACS Appl Mater Interfaces ; 16(30): 39349-39355, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39020499

ABSTRACT

Redox-active organic molecules have potential as electrode materials, but their cycling stability is often limited by the irreversible formation of σ-bonds from the radical intermediates. Herein, we present an effective approach to achieve high reversibility by using lone pair electrons to mediate intramolecular radical-radical coupling. Azatriangulenetrione (1) was examined as the anode in sodium-ion batteries, which displayed a reversible four-step, one-electron redox chemistry. In situ electron spin resonance, ex situ Fourier transform infrared/X-ray photoelectron spectroscopy, and density functional theory calculation revealed that the unstable radical anions can couple with each other through the lone pair electrons of the central nitrogen atom, leading to stabilized radical species. Furthermore, scan-rate-dependent cyclic voltammetry measurements and galvanostatic intermittent titration techniques demonstrated that the redox reaction kinetics for radical formation were much faster than the radical paring process. This study offers deep insights into the design of highly reversible organic electrodes.

7.
Nanotechnology ; 35(36)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888294

ABSTRACT

In this perspective we discuss the progress made in the mechanistic studies of the surface chemistry associated with the atomic layer deposition (ALD) of metal films and the usefulness of that knowledge for the optimization of existing film growth processes and for the design of new ones. Our focus is on the deposition of late transition metals. We start by introducing some of the main surface-sensitive techniques and approaches used in this research. We comment on the general nature of the metallorganic complexes used as precursors for these depositions, and the uniqueness that solid surfaces and the absence of liquid solvents bring to the ALD chemistry and differentiate it from what is known from metalorganic chemistry in solution. We then delve into the adsorption and thermal chemistry of those precursors, highlighting the complex and stepwise nature of the decomposition of the organic ligands that usually ensued upon their thermal activation. We discuss the criteria relevant for the selection of co-reactants to be used on the second half of the ALD cycle, with emphasis on the redox chemistry often associated with the growth of metallic films starting from complexes with metal cations. Additional considerations include the nature of the substrate and the final structural and chemical properties of the growing films, which we indicate rarely retain the homogeneous 2D structure often aimed for. We end with some general conclusions and personal thoughts about the future of this field.

8.
Angew Chem Int Ed Engl ; : e202405618, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869230

ABSTRACT

Azobenzenes (ABs) are versatile compounds featured in numerous applications for energy storage systems, such as solar thermal storages or phase change materials. Additionally, the reversible one-electron reduction of these diazenes to the nitrogen-based radical anion has been used in battery applications. Although the oxidation of ABs is normally irreversible, 4,4'-diamino substitution allows a reversible 2e- oxidation, which is attributed to the formation of a stable bis-quinoidal structure. Herein, we present a system that shows a bipolar redox behaviour. In this way, ABs can serve not only as anolytes, but also as catholytes. The resulting redox potentials can be tailored by suitable amine- and ring-substitution. For the first time, the solid-state structure of the oxidized form could be characterized by X-ray diffraction.

9.
Angew Chem Int Ed Engl ; : e202409152, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923635

ABSTRACT

Na+/vacancy ordering in sodium-ion layered oxide cathodes is widely believed to deteriorate the structural stability and retard the Na+ diffusion kinetics, but its unexplored potential advantages remain elusive. Herein, we prepared a P2-Na0.8Cu0.22Li0.08Mn0.67O2 (NCLMO-12 h) material featuring moderate Na+/vacancy and transition-metal (TM) honeycomb orderings. The appropriate Na+/vacancy ordering significantly enhances the operating voltage and the TM honeycomb ordering effectively strengthens the layered framework. Compared with the disordered material, the well-balanced dual-ordering NCLMO-12 h cathode affords a boosted working voltage from 2.85 to 3.51 V, a remarkable ~20 % enhancement in energy density, and a superior cycling stability (capacity retention of 86.5 % after 500 cycles). The solid-solution reaction with a nearly "zero-strain" character, the charge compensation mechanisms, and the reversible inter-layer Li migration upon sodiation/desodiation are unraveled by systematic in situ/ex situ characterizations. This study breaks the stereotype surrounding Na+/vacancy ordering and provides a new avenue for developing high-energy and long-durability sodium layered oxide cathodes.

10.
Environ Sci Technol ; 58(24): 10817-10827, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38832598

ABSTRACT

Direct photoreduction of FeIII is a widely recognized route for accelerating FeIII/FeII cycle in photo-Fenton chemistry. However, most of the wavelengths covering the full spectral range are insufficient to supply enough photon energy for the direct reduction process. Herein, the hitherto neglected mechanism of FeIII reduction that the FeIII indirect reduction pathway initiated by light energy-dependent reactivity variation and reactive excited state (ES) was explored. Evolution of excited-state FeIII species (*FeIII) resulting from metal-centered charge excitation (MCCE) of FeIII is experimentally verified using pulsed laser femtosecond transient absorption spectroscopy with UV-vis detection and theoretically verified by quantum chemical calculation. Intense photoinduced intravalence charge transition was observed at λ = 380 and 466 nm, revealing quartet 4MCCE and doublet 2MCCE and their exponential processes. Light energy-dependent variation of *FeIII reactivity was kinetically certified by fitting the apparent rate constant of the radical-chain sequence of photo-Fenton reactions. Covalency is found to compensate for the intravalence charge separation following photoexcitation of the metal center in the MCCE state of Fenton photosensitizer. The *FeIII is established as a model, demonstrating the intravalence hole delocalization in the ES can be leveraged for photo-Fenton reaction or other photocatalytic schemes based on electron transfer chemistry.


Subject(s)
Iron , Iron/chemistry , Oxidation-Reduction , Hydrogen Peroxide/chemistry , Kinetics
11.
Angew Chem Int Ed Engl ; 63(29): e202405570, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38716767

ABSTRACT

We report a synthetic approach to π-expanded [6]helicenes incorporating tropone and azocine units in combination with a 5-membered ring, which exhibit intriguing structural, electronic, and chiroptical properties. The regioselective Beckmann rearrangement allows the isolation of helical scaffolds containing 8-membered lactam, azocine, and amine units. As shown by X-ray crystallographic analysis, the incorporation of tropone or azocine units leads to highly distorted [6]helicene moieties, with distinct packing motifs in the solid state. The compounds exhibit promising optoelectronic properties with considerable photoluminescence quantum yields and tunable emission wavelengths depending on the relative position of the nitrogen center within the polycyclic framework. Separation of the enantiomers by chiral high-performance liquid chromatography (HPLC) allowed characterization of their chiroptical properties by circular dichroism (CD) and circularly polarized luminescence (CPL) spectroscopy. The azocine compounds feature manifold redox chemistry, allowing for the characterization of the corresponding radical anions and cations as well as the dications and dianions, with near-infrared (NIR) absorption bands extending beyond 3000 nm. Detailed theoretical studies provided insights into the aromaticity evolution upon reduction and oxidation, suggesting that the steric strain prevents the azocine unit from undergoing aromatization, while the indene moiety dominates the observed redox chemistry.

12.
Angew Chem Int Ed Engl ; 63(29): e202406218, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38752878

ABSTRACT

Transition metal-catalyzed carbene transfer reactions have a century-old history in organic chemistry and are a primary method for the synthesis of cyclopropanes. Much of the work in this field has focused on the use of diazo compounds and related precursors, which can transfer a carbene fragment to a catalyst with concomitant loss of a stable byproduct. Despite the utility of this approach, there are persistent limitations in the scope of viable carbenes, most notably those lacking stabilizing substituents. By coupling carbene transfer chemistry with two-electron redox cycles, it is possible to expand the available starting materials that can be used as carbene precursors. In this Minireview, we discuss emerging catalytic reductive cyclopropanation reactions using either gem-dihaloalkanes or carbonyl compounds. This strategy is inspired by classic stoichiometric transformations, such as the Simmons-Smith cyclopropanation and the Clemmensen reduction, but instead entails the formation of a catalytically generated transition metal carbene or carbenoid. We also present recent efforts to generate carbenes directly from methylene (CR2H2) groups via a formal 1,1-dehydrogenation. These reactions are currently restricted to substrates containing electron-withdrawing substituents, which serve to facilitate deprotonation and subsequent oxidation of the anion.

13.
Chemistry ; 30(41): e202401280, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38739534

ABSTRACT

4- and 5-coordinate zinc thiolate complexes supported either by bis(carboxamide)pyridine frameworks or by substituted tris(pyrazolyl)borate ligands react with elemental sulfur (S8) following two distinct pathways. Some zinc thiolate moieties insert sulfur atoms to form zinc polysulfanide complexes, while others reduce sulfur and oxidize the thiolate. Here, we compare the effects of ligand electronics, strain, and sterics for selecting the respective reaction pathway. These results show that chelating and electron-deficient thiolate ligands better stabilize persistent zinc-bound polysulfanide species.

14.
Chemistry ; 30(34): e202400696, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38563636

ABSTRACT

We disclose an indenoannulated tridecacyclene comprising a central cyclooctatetraene moiety with multiple adjacent pentagonal rings which is accessible in a concise synthetic sequence. The saddle-shaped geometry of the non-benzenoid polycyclic scaffold and its unique packing behavior in the solid state were characterized by X-ray crystallography. In electrochemical studies, the compound undergoes seven reversible redox events comprising five reductions and two oxidations. The dicationic and dianionic species obtained by chemical oxidation and reduction, respectively, were characterized spectroscopically in solution. Density functional theory calculations were applied to provide insights into aromaticity evolution in the respective charged species, highlighting the beneficial effect of the non-benzenoid moieties on charge stabilization.

15.
Chemistry ; 30(34): e202400924, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38625050

ABSTRACT

The chemistry of molecular gold compounds is dominated by the oxidation states +I and +III. For the intermediate oxidation state +II with 5d9 electron configuration, dimerization or disproportionation of the gold(II) radicals is favored, so that only a few mononuclear gold(II) complexes have been isolated to date. The present study addresses the one-electron reduction of the macrocyclic gold(III) complex [AuIIIL]+ of the innocent ß-diiminato ligand L2- with a 14-membered macrocycle (L2-=5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradeca-5,7,12,14-tetraenato). Electrochemistry, spectroelectrochemistry and chemical reduction of [AuIIIL]+ monitored by UV/Vis, NMR and EPR spectroscopy together with density functional theory calculations reveal disproportionation of the initially generated but elusive gold(II) complex AuIIL and provide guidelines for prospective stable mononuclear tetraazamacrocyclic gold(II) complexes.

16.
Molecules ; 29(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38675520

ABSTRACT

Trinuclear metallacyclic oxidovanadium(V) complexes, [{VO(L3+2R)}3] (1-3) with asymmetric multidentate linking ligands (H3L3+2R: R = H, Me, Br), were synthesized. The molecular structure of 1 is characterized as a tripod structure, with each V(V) ion coordinated by ONO-atoms from a tridentate Schiff base site and ON-atoms from a bidentate benzoxazole site of two respective H3L3+2H ligands. The intramolecular V⋯V distances range from 8.0683 to 8.1791 Å. Complex 4 is a mononuclear dioxidovanadium(V) complex, (Et3NH)[VO2(HL3+2H)]. Cyclic voltammograms of 1-3 in DMF revealed redox couples attributed to three single-electron transfer processes.

17.
Small ; 20(28): e2309321, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38528424

ABSTRACT

A paucity of redox centers, poor charge transport properties, and low structural stability of organic materials obstruct their use in practical applications. Herein, these issues have been addressed through the use of a redox-active salen-based framework polymer (RSFP) containing multiple redox-active centers in π-conjugated configuration for applications in lithium-ion batteries (LIBs). Based on its unique architecture, RSFP exhibits a superior reversible capacity of 671.8 mAh g-1 at 0.05 A g-1 after 168 charge-discharge cycles. Importantly, the lithiation/de-lithiation performance is enhanced during operation, leading to an unprecedented reversible capacity of 946.2 mAh g-1 after 3500 cycles at 2 A g-1. The structural evolution of RSFP is studied ex situ using X-ray photoelectron spectroscopy, revealing multiple active C═N, C─O, and C═O sites and aromatic sites such as benzene rings. Remarkably, the emergence of C═O originated from C─O is triggered by an electrochemical process, which is beneficial for improving reversible lithiation/delithiation behavior. Furthermore, the respective strong and weak binding interactions between redox centers and lithium ions, corresponding to theoretical capacities of 670.1 and 938.2 mAh g-1, have been identified by density functional theory calculations manifesting 14-electron redox reactions. This work sheds new light on routes for the development of redox-active organic materials for energy storage applications.

18.
Chempluschem ; 89(7): e202300712, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38526934

ABSTRACT

Copper (Cu), with its ability to exist in various oxidation states, notably Cu(I) and Cu(II), plays a crucial role in diverse biological redox reactions. This includes its involvement in pathways associated with oxidative stress in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Transmissible Spongiform Encephalopathies. This paper offers an overview of X-ray Absorption Spectroscopy (XAS) studies designed to elucidate the interactions between Cu ions and proteins or peptides associated with these neurodegenerative diseases. The emphasis lies on XAS specificity, revealing the local coordination environment, and on its sensitivity to Cu oxidation states. Furthermore, the paper focuses on XAS applications targeting the characterization of intermediate reaction states and explores the opportunities arising from recent advancements in time-resolved XAS at ultrabright synchrotron and Free Electron Laser radiation sources.


Subject(s)
Copper , Neurodegenerative Diseases , Oxidation-Reduction , X-Ray Absorption Spectroscopy , Copper/chemistry , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/metabolism , Humans
19.
Adv Sci (Weinh) ; 11(22): e2400072, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520714

ABSTRACT

A carbon-rich molecule is synthesized, which mainly contains conjugated sp2 and sp hybridized carbon centers. Alkenyl and alkynyl binding sites are arranged such that this compound serves as ligand to a binuclear metal unit with a RhI─RhI bond. Furthermore, CH units are placed in proximity to the metal centers. The dicationic complex [Rh2(bipy)2{Ph2Ptrop(C≡CCy)2}]2+(OTf-)2 allows to study possible responses of the carbon-framework to redox reactions as well as deprotonation reactions. All products are, whenever possible, characterized by X-ray diffraction (XRD) methods, NMR and EPR spectroscopy as well as electrochemical methods. It is shown that the carbon skeleton of the ligand framework undergoes C─C bond rearrangement reactions of remarkable diversity. In combination with DFT (density functional theory) studies, these results allow to gain insight into the electronic structure changes caused by metal sites in a carbon-rich environment, which may be of relevance for the properties of metal particles on carbon support materials when they are exposed to hydrogen, electrons, or protons.

20.
Angew Chem Int Ed Engl ; 63(19): e202319796, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38451050

ABSTRACT

The low specific capacity determined by the limited electron transfer of p-type cathode materials is the main obstruction to their application towards high-performance aqueous zinc-ion batteries (ZIBs). To overcome this challenge, boosting multi-electron transfer is essential for improving the charge storage capacity. Here, as a typical heteroaromatic p-type material, we unveil the unique reversible two-electron redox properties of phenoxazine in the aqueous electrolytes for the first time. The second oxidation process is stabilized in the aqueous electrolytes, a notable contrast to its less reversibility in the non-aqueous electrolytes. A comprehensive investigation of the redox chemistry mechanism demonstrates remarkably stable redox intermediates, including a stable cation radical PNO⋅+ characterized by effective electron delocalization and a closed-shell state dication PNO2+. Meanwhile, the heightened aromaticity contributes to superior structural stability during the redox process, distinguishing it from phenazine, which features a non-equivalent hybridized sp2-N motif. Leveraging these synergistic advantages, the PNO electrodes deliver a high capacity of 215 mAh g-1 compared to other p-type materials, and impressive long cycling stability with 100 % capacity retention over 3500 cycles. This work marks a crucial step forward in advanced organic electrodes based on multi-electron transfer phenoxazine moieties for high-performance aqueous ZIBs.

SELECTION OF CITATIONS
SEARCH DETAIL