Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
ChemSusChem ; : e202401070, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984837

ABSTRACT

Renewable chemicals, which are made from renewable resources such as biomass, have attracted significant interest as substitutes for natural gas- or petroleum-derived chemicals to enhance the sustainability of the chemical and petrochemical industries. Polybutylene adipate terephthalate (PBAT), which is a copolyester of 1,4-butanediol (1,4-BDO), adipic acid (AA), and dimethyl terephthalate (DMT) or terephthalic acid (TPA), has garnered significant interest as a biodegradable polymer. This study assesses the non-biological production of PBAT monomers from biomass feedstocks via heterogeneous catalytic reactions. The biomass-based catalytic routes to each monomer are analyzed and compared to conventional routes. Although no fully commercialized catalytic processes for direct conversion of biomass into 1,4-BDO, AA, DMT, and TPA are available, emerging and promising catalytic routes have been proposed. The proposed biomass-based catalytic pathways toward 1,4-BDO, AA, DMT, and TPA are not yet fully competitive with conventional fossil fuel-based pathways mainly due to high feedstock prices and the existence of other alternatives. However, given continuous technological advances in the renewable production of PBAT monomers, bio-based PBAT should be economically viable in the near future.

2.
Environ Sci Pollut Res Int ; 29(5): 7001-7013, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34467483

ABSTRACT

In an effort to control dust pollution in open-air environments such as pit coal mines and coal transportation systems, a new dust suppressant with a cross-linked network structure was prepared. Graft copolymerization of soy protein isolate (SPI) and methacrylic acid (MAA), using potassium persulfate (KPS) as the initiator and hexametaphosphoric acid (SHMP) as the cross-linking agent, formed the network structure. The optimal MAA/SPI mass ratio for the dust suppressant was determined through a single-factor experiment to be 3:4, with 0.8 and 0.2 g of SHMP and KPS, respectively. The grafting reaction required 30 min at 60 °C. Scanning electron microscopy, energy-dispersive x-ray spectroscopy, Fourier-transform infrared spectroscopy, and differential scanning calorimetry were used to characterize the structure and application performance of the dust suppressant. The experimental results showed that the graft copolymerization reaction successfully formed the desired cross-linked network, and that when the cross-linked network material was sprayed on coal dust, it formed a dense, solidified shell, which effectively resisted wind erosion and served as a dust suppressant. The average reduction of the total suspended particulate matter of an open-air coal pile reached 79.95%, demonstrating effective dust suppression.


Subject(s)
Coal Mining , Dust , Coal/analysis , Dust/analysis , Particulate Matter , Wind
3.
Pharmaceutics ; 12(8)2020 Aug 02.
Article in English | MEDLINE | ID: mdl-32748816

ABSTRACT

Biodegradable polymers from renewable resources have attracted much attention in recent years within the biomedical field. Lately, poly(δ-decalactone) based copolymer micelles have emerged as a potential drug delivery carrier material as a sustainable alternative to fossil-based polymers. However, their intracellular drug delivery potential is not yet investigated and therefore, in this work, we report on the synthesis and cellular uptake efficiency of poly(δ-decalactone) based micelles with or without a targeting ligand. Folic acid was chosen as a model targeting ligand and Rhodamine B as a fluorescent tracer to demonstrate the straightforward functionalisation aspect of copolymers. The synthesis of block copolymers was accomplished by a combination of facile ring-opening polymerisation and click chemistry to retain the structure uniformity. The presence of folic acid on the surface of micelles with diameter ~150 nm upsurge the uptake efficiency by 1.6 fold on folate receptor overexpressing MDA-MB-231 cells indicating the attainment of targeting using ligand functionality. The drug delivery capability of these carriers was ascertained by using docetaxel as a model drug, whereby the in vitro cytotoxicity of the drug was significantly increased after incorporation in micelles 48 h post incubation. We have also investigated the possible endocytosis route of non-targeted micelles and found that caveolae-mediated endocytosis was the preferred route of uptake. This work strengthens the prospect of using novel bio-based poly(δ-decalactone) micelles as efficient multifunctional drug delivery nanocarriers towards medical applications.

4.
Materials (Basel) ; 13(12)2020 Jun 14.
Article in English | MEDLINE | ID: mdl-32545881

ABSTRACT

Renewable vinyl compounds itaconic acid (IA) and its derivative 10-hydroxyhexylitaconic acid (10-HHIA) are naturally produced by fungi from biomass. This provides the opportunity to develop new biobased polyvinyls from IA and 10-HHIA monomers. In this study, we copolymerized these monomers at different ratios through free radical aqueous polymerization with potassium peroxodisulfate as an initiator, resulting in poly(IA-co-10-HHIA)s with different monomer compositions. We characterized the thermal properties of the polymers by thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR). The nuclear magnetic resonance analysis and the gel permeation chromatography showed that the polymerization conversion, yield, and the molecular weights (weight-averaged Mw and number-averaged Mn) of the synthesized poly(IA-co-10-HHIA)s decreased with increasing 10-HHIA content. It is suggested that the hydroxyhexyl group of 10-HHIA inhibited the polymerization. The TGA results indicated that the poly(IA-co-10-HHIA)s continuously decomposed as temperature increased. The FT-IR analysis suggested that the formation of the hydrogen bonds between the carboxyl groups of IA and 10-HHIA in the polymer chains was promoted by heating and consequently the polymer dehydration occurred. To the best of our knowledge, this is the first time that biobased polyvinyls were synthesized using naturally occurring IA derivatives.

SELECTION OF CITATIONS
SEARCH DETAIL