Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
J Cell Sci ; 136(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37248991

ABSTRACT

Genomic replication is a critical, regulated process that ensures accurate genetic information duplication. In eukaryotic cells, strategies have evolved to prevent conflicts between replication and transcription. Giardia lamblia, a binucleated protozoan, alternates between tetraploid and octaploid genomes during its cell cycle. Using single-molecule techniques like DNA combing and nanopore-based sequencing, we investigated the spatio-temporal organization of DNA replication, replication fork progression and potential head-on replication-transcription collisions in Giardia trophozoites. Our findings indicate that Giardia chromosomes are replicated from only a few active origins, which are widely spaced and exhibit faster replication rates compared to those in other protozoan parasites. Immunofluorescence assays revealed that ∼20% of trophozoites show asynchronous replication between nuclei. Forksense and gene ontology analyses disclosed that genes in regions with potential head-on collisions are linked to chromatin dynamics, cell cycle regulation and DNA replication/repair pathways, possibly explaining the observed asynchronous replication in part of the population. This study offers the first comprehensive view of replication dynamics in Giardia, which is the pathogen that causes giardiasis, a diarrheal disease impacting millions worldwide.


Subject(s)
Giardia lamblia , Giardiasis , Humans , Giardia lamblia/genetics , Giardiasis/parasitology , Cell Cycle/genetics , Cell Nucleus , DNA Replication/genetics
2.
J of Cell Sci, v. 136, n. 10, jcs260828, abr. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4910

ABSTRACT

Genomic replication is a critical, regulated process that ensures accurate genetic information duplication. In eukaryotic cells, strategies have evolved to prevent conflicts between replication and transcription. Giardia lamblia, a binucleated protozoan, alternates between tetraploid and octoploid genomes during its cell cycle. Using single-molecule techniques like DNA combing and nanopore-based sequencing, we investigated the spatio-temporal organization of DNA replication, replication fork progression, and potential head-on replication-transcription collisions in Giardia trophozoites. Our findings indicate that Giardia chromosomes are replicated from few active origins, which are widely spaced and exhibit faster replication rates compared to other protozoan parasites. Immunofluorescence assays revealed that around 20% of trophozoites show asynchronous replication between nuclei. Forksense and gene ontology analyses disclosed that genes in regions with potential head-on collisions are linked to chromatin dynamics, cell cycle regulation, and DNA replication/repair pathways, possibly explaining the observed asynchronous replication in part of the population. This study offers the first comprehensive view of replication dynamics in Giardia, the cause of giardiasis, a diarrheal disease impacting millions worldwide.

3.
Elife ; 102021 07 19.
Article in English | MEDLINE | ID: mdl-34279225

ABSTRACT

The PcrA/UvrD helicase binds directly to RNA polymerase (RNAP) but the structural basis for this interaction and its functional significance have remained unclear. In this work, we used biochemical assays and hydrogen-deuterium exchange coupled to mass spectrometry to study the PcrA-RNAP complex. We find that PcrA binds tightly to a transcription elongation complex in a manner dependent on protein:protein interaction with the conserved PcrA C-terminal Tudor domain. The helicase binds predominantly to two positions on the surface of RNAP. The PcrA C-terminal domain engages a conserved region in a lineage-specific insert within the ß subunit which we identify as a helicase interaction motif present in many other PcrA partner proteins, including the nucleotide excision repair factor UvrB. The catalytic core of the helicase binds near the RNA and DNA exit channels and blocking PcrA activity in vivo leads to the accumulation of R-loops. We propose a role for PcrA as an R-loop suppression factor that helps to minimize conflicts between transcription and other processes on DNA including replication.


Subject(s)
Bacterial Proteins/metabolism , DNA Helicases/metabolism , DNA-Directed RNA Polymerases/metabolism , R-Loop Structures/physiology , Bacillus subtilis , Chromosomes , DNA/metabolism , DNA Repair , DNA Replication , Escherichia coli/genetics , Escherichia coli Proteins , Gene Expression Regulation, Bacterial , Protein Binding , Protein Interaction Domains and Motifs
4.
Cells ; 10(4)2021 04 17.
Article in English | MEDLINE | ID: mdl-33920686

ABSTRACT

Bacillus subtilis PcrA interacts with the RNA polymerase and might contribute to mitigate replication-transcription conflicts (RTCs). We show that PcrA depletion lethality is partially suppressed by rnhB inactivation, but cell viability is significantly reduced by rnhC or dinG inactivation. Following PcrA depletion, cells lacking RnhC or DinG are extremely sensitive to DNA damage. Chromosome segregation is not further impaired by rnhB or dinG inactivation but is blocked by rnhC or recA inactivation upon PcrA depletion. Despite our efforts, we could not construct a ΔrnhC ΔrecA strain. These observations support the idea that PcrA dismantles RTCs. Purified PcrA, which binds single-stranded (ss) DNA over RNA, is a ssDNA-dependent ATPase and preferentially unwinds DNA in a 3'→5'direction. PcrA unwinds a 3'-tailed RNA of an RNA-DNA hybrid significantly faster than that of a DNA substrate. Our results suggest that a replicative stress, caused by mis-incorporated rNMPs, indirectly increases cell viability upon PcrA depletion. We propose that PcrA, in concert with RnhC or DinG, contributes to removing spontaneous or enzyme-driven R-loops, to counteract deleterious trafficking conflicts and preserve to genomic integrity.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , DNA Helicases/metabolism , Adenosine Triphosphatases/metabolism , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Chromosome Segregation , DNA Helicases/genetics , DNA Replication , DNA, Bacterial/metabolism , DNA-Directed RNA Polymerases/metabolism , Models, Biological , Mutation/genetics , Protein Binding , Protein Transport , RNA, Bacterial/metabolism , Stress, Physiological , Synthetic Lethal Mutations
5.
Cell Rep ; 32(12): 108166, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32966794

ABSTRACT

Effective spatio-temporal control of transcription and replication during S-phase is paramount to maintaining genomic integrity and cell survival. Dysregulation of these systems can lead to conflicts between the transcription and replication machinery, causing DNA damage and cell death. BRD4 allows efficient transcriptional elongation by stimulating phosphorylation of RNA polymerase II (RNAPII). We report that bromodomain and extra-terminal domain (BET) protein loss of function (LOF) causes RNAPII pausing on the chromatin and DNA damage affecting cells in S-phase. This persistent RNAPII-dependent pausing leads to an accumulation of RNA:DNA hybrids (R-loops) at sites of BRD4 occupancy, leading to transcription-replication conflicts (TRCs), DNA damage, and cell death. Finally, our data show that the BRD4 C-terminal domain, which interacts with P-TEFb, is required to prevent R-loop formation and DNA damage caused by BET protein LOF.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Replication/genetics , R-Loop Structures , Transcription Elongation, Genetic , Transcription Factors/metabolism , Animals , Cell Cycle Proteins/chemistry , DNA Damage , HEK293 Cells , HeLa Cells , Humans , Loss of Function Mutation/genetics , Mice , Protein Domains , Proteolysis , RNA Polymerase II/metabolism , S Phase , Structure-Activity Relationship , Transcription Factors/chemistry
6.
Genes (Basel) ; 11(9)2020 09 21.
Article in English | MEDLINE | ID: mdl-32967144

ABSTRACT

Genome instability is a crucial and early event associated with an increased predisposition to tumor formation. In the absence of any exogenous agent, a single human cell is subjected to about 70,000 DNA lesions each day. It has now been shown that physiological cellular processes including DNA transactions during DNA replication and transcription contribute to DNA damage and induce DNA damage responses in the cell. These processes are also influenced by the three dimensional-chromatin architecture and epigenetic regulation which are altered during the malignant transformation of cells. In this review, we have discussed recent insights about how replication stress, oncogene activation, chromatin dynamics, and the illegitimate recombination of cell-free chromatin particles deregulate cellular processes in cancer cells and contribute to their evolution. The characterization of such endogenous sources of genome instability in cancer cells can be exploited for the development of new biomarkers and more effective therapies for cancer treatment.


Subject(s)
Genomic Instability/genetics , Mutation/genetics , Neoplasms/genetics , Animals , Biomarkers, Tumor/genetics , Chromatin/genetics , DNA Replication/genetics , Humans
7.
Front Mol Biosci ; 7: 140, 2020.
Article in English | MEDLINE | ID: mdl-32793628

ABSTRACT

Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions.

8.
Genes (Basel) ; 8(1)2016 Dec 28.
Article in English | MEDLINE | ID: mdl-28036033

ABSTRACT

Eukaryotic cells are equipped with surveillance mechanisms called checkpoints to ensure proper execution of cell cycle events. Among these are the checkpoints that detect DNA damage or replication perturbations and coordinate cellular activities to maintain genome stability. At the forefront of damage sensing is an evolutionarily conserved molecule, known respectively in budding yeast and humans as Mec1 (Mitosis entry checkpoint 1) and ATR (Ataxia telangiectasia and Rad3-related protein). Through phosphorylation, Mec1/ATR activates downstream components of a signaling cascade to maintain nucleotide pool balance, protect replication fork integrity, regulate activation of origins of replication, coordinate DNA repair, and implement cell cycle delay. This list of functions continues to expand as studies have revealed that Mec1/ATR modularly interacts with various protein molecules in response to different cellular cues. Among these newly assigned functions is the regulation of RNA metabolism during checkpoint activation and the coordination of replication-transcription conflicts. In this review, I will highlight some of these new functions of Mec1/ATR with a focus on the yeast model organism.

SELECTION OF CITATIONS
SEARCH DETAIL
...