Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.007
Filter
1.
J Environ Sci (China) ; 148: 567-578, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095189

ABSTRACT

Erythromycin fermentation residue (EFR) represents a typical hazardous waste produced by the microbial pharmaceutical industry. Although electrolysis is promising for EFR disposal, its microbial threats remain unclear. Herein, metagenomics was coupled with the random forest technique to decipher the antibiotic resistance patterns of electrochemically treated EFR. Results showed that 95.75% of erythromycin could be removed in 2 hr. Electrolysis temporarily influenced EFR microbiota, where the relative abundances of Proteobacteria and Actinobacteria increased, while those of Fusobacteria, Firmicutes, and Bacteroidetes decreased. A total of 505 antibiotic resistance gene (ARG) subtypes encoding resistance to 21 antibiotic types and 150 mobile genetic elements (MGEs), mainly including plasmid (72) and transposase (52) were assembled in EFR. Significant linear regression models were identified among microbial richness, ARG subtypes, and MGE numbers (r2=0.50-0.81, p< 0.001). Physicochemical factors of EFR (Total nitrogen, total organic carbon, protein, and humus) regulated ARG and MGE assembly (%IncMSE value = 5.14-14.85). The core ARG, MGE, and microbe sets (93.08%-99.85%) successfully explained 89.71%-92.92% of total ARG and MGE abundances. Specifically, gene aph(3')-I, transposase tnpA, and Mycolicibacterium were the primary drivers of the resistance dissemination system. This study also proposes efficient resistance mitigation measures, and provides recommendations for future management of antibiotic fermentation residue.


Subject(s)
Erythromycin , Fermentation , Metagenomics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Drug Resistance, Bacterial/genetics
2.
J Environ Sci (China) ; 148: 174-187, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095155

ABSTRACT

Cost-effective CO2 adsorbents are gaining increasing attention as viable solutions for mitigating climate change. In this study, composites were synthesized by electrochemically combining the post-gasification residue of Macadamia nut shell with copper benzene-1,3,5-tricarboxylate (CuBTC). Among the different composites synthesized, the ratio of 1:1 between biochar and CuBTC (B 1:1) demonstrated the highest CO2 adsorption capacity. Under controlled laboratory conditions (0°C, 1 bar, without the influence of ambient moisture or CO2 diffusion limitations), B 1:1 achieved a CO2 adsorption capacity of 9.8 mmol/g, while under industrial-like conditions (25°C, 1 bar, taking into account the impact of ambient moisture and CO2 diffusion limitations within a bed of adsorbent), it reached 6.2 mmol/g. These values surpassed those reported for various advanced CO2 adsorbents investigated in previous studies. The superior performance of the B 1:1 composite can be attributed to the optimization of the number of active sites, porosity, and the preservation of the full physical and chemical surface properties of both parent materials. Furthermore, the composite exhibited a notable CO2/N2 selectivity and improved stability under moisture conditions. These favorable characteristics make B 1:1 a promising candidate for industrial applications.


Subject(s)
Carbon Dioxide , Metal-Organic Frameworks , Carbon Dioxide/chemistry , Adsorption , Metal-Organic Frameworks/chemistry , Air Pollutants/chemistry , Charcoal/chemistry
3.
Front Plant Sci ; 15: 1446277, 2024.
Article in English | MEDLINE | ID: mdl-39354947

ABSTRACT

Introduction: Agricultural organic waste recycling can supply nutrients for crop production and partially replace chemical nitrogen fertilizers, which is beneficial for waste management and environmental protection. Nevertheless, comprehensive evaluation of the effects of different organic materials applications on crop yield and the environment is limited. Methods: Therefore, in this study, a comprehensive investigation of the synergistic effects of straw, pig manure, and biogas residue recycling on the wheat (Triticum aestivum L.) and maize (Zea mays L.) systems was carried out in the North China Plain. Field experiments were conducted from 2019 to 2021, comprising five treatments: straw (ST), pig manure (PM), and biogas residue (BR) partially replacing chemical nitrogen fertilizer, sole application of chemical nitrogen fertilizer (CF), and a control with no nitrogen application (WN). Results and discussion: The results showed that organic materials significantly increased soil total nitrogen (3.04%-9.10%) and N recovery efficiency (REN; 42.21%-44.99%), but pig manure was more beneficial in increasing crop yields (3.50%), especially wheat yields (8.72%), and REN was significantly higher than that of the other treatments. Organic materials performed differently in wheat and maize seasons, and wheat yield could be improved by organic materials return. Organic materials stimulated N2O emission in wheat season (4.28%-32.20%), while biogas residue inhibited the N2O emission in maize season (47.47%). The negative effect of straw and biogas residue on yield decreased with increasing years of return, and pig manure continued to contribute to yield. In conclusion, pig manure is the optimal alternative that can increase crop yield, soil N content, and REN without stimulating N2O emissions.

4.
J Colloid Interface Sci ; 679(Pt A): 64-74, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39357227

ABSTRACT

The stability and high-dose addition of carbon dots in corrosion and scale inhibition are obstacles to their commercial application. Herein, we report a new type of functional CDs (PEI-CDA) based on Angelica residue and polyethyleneimine (PEI), which can remarkably boost the performance of corrosion and scale inhibition, while expending the application of traditional Chinese medicine waste residue. At 303.15 K, the corrosion inhibition efficiency of PEI-CDA for carbon steel in 1.0 M HCl medium was tested by weight loss method and electrochemical method and reached over 93 %, which is significantly better than that of CDA (83 %) under the same conditions. And its corrosion inhibition efficiency can still remain stable after 15 h. The ultra-low dose (5 mg·L-1) PEI-CDA has excellent anti-corrosion protection effect on carbon steel due to its ability to form a dense and well-organized adsorption film covering on the carbon steel surface, whose adsorption includes two types of chemical and physical adsorption, and follows the Langmuir adsorption model. Furthermore, static methods display that the CaSO4 scale inhibition efficiency of PEI-CDA is up to 100 % when its dosage is 100 mg·L-1. Analysis of the generated CaSO4 scale shows that the addition of PEI-CDA causes lattice distortion, chelation, and dispersion of scale. In addition, the fluorescence spectra imply that PEI-CDA can be expected to on-line detection of its residual content in the water system. The results demonstrate that PEI-CDA possesses significant potential in green inhibitors and the comprehensive utilization of waste resources.

5.
Sci Rep ; 14(1): 22856, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354063

ABSTRACT

Vacuum residue (VR) was copyrolysed with polyethylene (PE) or polystyrene (PS) in a batch reactor to investigate the corresponding synergistic pyrolytic interactions. The synergistic interactions between VR and plastic pyrolysates enhanced liquid and gas production while reducing coke formation, as compared with VR-only and plastic-only pyrolysis. The pyrolysis of 9:1 w/w VR: PE3M (PE with Mw = 3 MDa) and 9:1 w/w VR/PS350K (PS with Mw ≈ 350 kDa) mixtures produced oil in yields of 28.6 and 38.4 wt%, respectively, which exceeded those expected in the absence of synergistic interactions 1.12- and 1.29-fold, respectively. The corresponding coke yields were ~ 0.9 times lower than those expected in the absence of synergistic interactions. Moreover, copyrolysis synergistically increased the yields of oil-phase paraffins and olefins while decreasing that of aromatic compounds and was therefore concluded to enable effective VR utilisation and plastic recycling by enhancing liquid and gas production.

6.
Neotrop Entomol ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354266

ABSTRACT

The sugarcane weevil (Sphenophorus levis Vaurie, 1978) is currently considered the most important sugarcane pest in Brazil, causing significant yield losses. Application methods of insecticides for S. levis control have not been effective, mostly due to the insect's cryptic behavior below the soil surface which suppresses the correct placement of insecticide active ingredients on target. Two experiments were conducted using an innovative bioassay methodology that simulates sugarcane field conditions to effectively evaluate S. levis adult mortality and insecticide residues in the soil under different treatments. The first experiment aimed to assess the efficacy of two liquid- and solid-applied insecticides, while the second aimed to examine the effect of increasing the dose of lambda-cyhalothrin + thiamethoxam on S. levis adult control. The novel bioassays simulated liquid and solid insecticide applications on sugarcane by exposing S. levis adults to chemical residuals on rhizomes and in soil after insecticide application. In the first experiment, low S. levis adult control was detected (< 53% mortality) across all treatments, where both solid and liquid applications of lambda-cyhalothrin + thiamethoxam provided greater efficacy levels than imidacloprid and control treatments, respectively. Solid applications maintained higher insecticide concentrations in the soil for longer periods than liquid insecticide applications, providing maximum insect control levels 7 days after application. The second experiment revealed that solid applications at higher insecticide doses significantly improved control of S. levis adult (76.7% mortality) and resulted in greater insecticide concentrations in the soil compared to the recommended label rate (58.8% mortality).

7.
Article in English | MEDLINE | ID: mdl-39352640

ABSTRACT

This study investigates the adsorption mechanisms of pine bark biochar (BC) and modified pine bark biochar (MBC) in the removal of polyvinyl chloride (PVC) microplastics from aqueous solutions, with a significant focus on resource recovery from pine residues which is one of the key Himalayan Forest byproducts. The research findings highlighted the optimal adsorption capacity of biochar at 131.5 mg/g achieved after 6 h of contact time, with a pH of 10 and a PVC microplastic concentration of 200 mg/L. The primary mechanisms of PVC microplastic adsorption involved ion exchange and physical adsorption, driven by forces such as Vander-Waals, London forces, and electrostatic forces. Thermodynamic analysis showed the exothermic nature of the PVC and BC/MBC interaction, with spontaneous adsorption occurring within the temperature range of 10 to 40 °C. Isotherm and kinetic models fit well with Temkin model and PSO kinetics, as indicated by R2 values exceeding 0.9. Particularly, MBC exhibited superior removal efficiency and adsorption capacity compared to its precursor, reaching an optimum adsorption capacity of 156.08 mg/g with a removal efficiency of 78%, surpassing the performance of BC. This research contributes valuable insights into potential applications of BC for PVC removal and underscores the effectiveness of MBC in achieving enhanced adsorption outcomes.

8.
Food Chem ; 463(Pt 1): 141151, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39255711

ABSTRACT

Dufulin is a novel chiral plant antiviral agent. In this study, we investigated the uptake, translocation and accumulation of 14C-dufulin stereoisomers in different tissues of garlic via leaf introduction and root uptake. The behavior of dufulin enantiomers in plants is not stereoselective, and dufulin is more likely to be absorbed by leaves than by roots. The metabolites of 14C-dufulin with high specific activity in garlic were qualitatively and quantitatively analyzed by HPLC-QTOF-MS, and the metabolic pathway involved was elucidated. In the leaf and bulb, dufulin underwent phase I and phase II metabolism and produced four metabolites. The ratios and concentrations of these four metabolites in the bulb, but not in the leaf, met the residue criterion. Overall, our results provide relatively accurate predictions for the risk assessment of dufulin, which will help guide its rational use and ensure its ecological safety and human health.

9.
Food Chem ; 463(Pt 2): 141172, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39260019

ABSTRACT

The threat posed by organophosphorus pesticides (OPS) to food safety, human health, and the ecological environment is significant, which underscoring the need for the development of new detection tools. We designed and synthesized a NIR fluorescent probe PT-CES which targets carboxylesterase (CES), for the detection of OPS based on the principle of enzyme inhibition. The PT-CES is capable of instantaneous response to CES, exhibiting excellent stability, anti-interference capability. PT-CES realizes the quantitative detection of CES and OPS. It is noteworthy that PT-CES shows excellent stable and accurate detection ability in vegetable pesticide testing. It also enables the monitoring of CES activity in cells and liver tissue. This provides a novel tool for tracking the effect of OPS on CES activity in biological systems. Furthermore, it provides a useful method for ensuring food safety and enhancing pesticide residue analysis.

10.
Sci Rep ; 14(1): 20928, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251718

ABSTRACT

Conservation Agriculture (CA) is an innovative approach that promotes sustainable farming while enhancing soil health. However, residue management challenges often hinder its adoption, causing farmers to burn crop leftovers in fields. This study aimed to evaluate the effectiveness of various furrow openers under simulated soil bin conditions. Three types of furrow openers were examined: single disk (SD), Inverted T-type furrow opener with a plain rolling coulter (ITRC), and double disc (DD) furrow opener. Tests were conducted at different forward speeds (1.5, 2, and 2.5 km h-1) and with three straw densities (1, 2, and 3 t ha-1) at a consistent working depth of 5 cm. Draft measurements were obtained using load cells connected to an Arduino-based data-logging system. Results indicated that draft requirements increased with forward speed and straw density, while straw-cutting efficiency decreased with these factors. Average draft values for SD, ITRC, and DD were 290.3 N, 420 N, and 368.5 N, respectively, and straw-cutting efficiencies were 53.62%, 59.47%, and 74.89%, respectively. The DD furrow opener showed the highest straw-cutting efficiency (81.36%) at a working speed of 1.5 km h-1 and a straw density of 1 t ha-1, demonstrating optimal performance compared to other furrow openers.

11.
Waste Manag ; 190: 45-53, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39265431

ABSTRACT

Manure biogas residue has attracted increasing attention in waste recycling but faces substantial challenges because of its low carbon content, high ash content, and high heavy metal content. A novel sequential carbonization approach was proposed for recycling biogas residue; this approach consisted of pre-pyrolysis, activation with Ca(OH)2, and then activation with KOH. Pig manure-derived biogas residue was upcycled into engineered biochar (EB) with a high yield (26 %) and showed excellent performance in removing a typical plasticizer, diethyl phthalate (DEP). The proportion of carbon content greatly increased from 18 % (biogas residue) to 67 % (EB); however, the ash content decreased from 50 % (biogas residue) to 24 % (EB). The concentration of heavy metals decreased, and Zn had the largest decrease from 713 mg kg-1 to 61 mg kg-1 (p < 0.001). The sorption of DEP onto EB was rapid and reached equilibrium within 20 h. The developed specific surface area of EB was 1247 m2/g and provided abundant sorption sites for DEP; additionally, the sorption quantity reached 309 mg/g. The sorption capacity was dominated by surface adsorption. The oxygen-containing functional groups, graphene structure, porous structure, and hydrophobicity of EB contributed to the pore filling, hydrogen bonding, π-π stacking, and partitioning processes. Furthermore, the EB showed excellent practical application potential and great cycling stability. A sequential carbonization strategy was proposed to upcycle manure biogas residue into the EB for DEP removal; moreover, this strategy can aid in the attainment of environmental sustainability, including sustainable waste management and environmental pollution mitigation.

12.
Anal Chim Acta ; 1328: 343181, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39266197

ABSTRACT

BACKGROUND: Antibiotic residues in food chain have raised concerns regarding their toxicity and involvement in antimicrobial resistance. However, most existing antibiotic biosensors are primarily applicable to liquid food samples. Given the complex matrix characteristics of foods, there is an urgent need for the development of effective antibiotic detection platforms that exhibit high universality and flexibility. Porous microneedles (PMN) are microdevice structures with needle-like shapes and microscale pores throughout their composition, which facilitate rapid sampling. Consequently, the integration of PMN with biosensors holds significant promise for the detection of antibiotic residues in complex food samples. RESULTS: In this study, hydrogel-forming PMN are fabricated by leveraging the oxygen-production capacity of thylakoid to generate bubbles and form porous structures. These PMN are then integrated with a fluorescence aptasensor for the quantification of the antibiotic netilmicin. The aptasensor consists of a netilmicin (NET) aptamer with stem loop and hairpin structure, which facilitated the binding of SYBR Green I to produce a fluorescent signal. In the presence of NET, the complete binding between NET and the aptamer results in a reduction of fluorescence intensity, thereby generating a detectable signal change for the detection of NET. Utilizing capillary action accelerate fluid extraction (2.9 times faster than nonporous microneedles) and a large specific surface area (5.1072 m2/g) conducive to aptasensor adsorb, the PMN achieve efficient capture and quantification of antibiotic with limits of detection and quantitation of 5.99 nM and 19.8 nM, respectively. SIGNIFICANCE: Porous microneedles with tunable porosity and desirable mechanical properties are successfully fabricated. The integration of PMN with aptasensor enable the efficient detection of netilmicin in fish, milk and river water samples, demonstrating high recovery rates. The PMN represent potential tools for the convenient and rapid detection of antibiotic residues within complex food matrices, thereby enhancing food safety monitoring.


Subject(s)
Anti-Bacterial Agents , Needles , Anti-Bacterial Agents/analysis , Porosity , Thylakoids/chemistry , Biosensing Techniques , Aptamers, Nucleotide/chemistry , Animals , Food Contamination/analysis , Drug Residues/analysis , Limit of Detection , Green Chemistry Technology , Food Analysis/methods , Food Analysis/instrumentation
13.
Nanomaterials (Basel) ; 14(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39269039

ABSTRACT

The disposal and treatment of antibiotic residues is a recognized challenge due to the huge production, high moisture content, high processing costs, and residual antibiotics, which caused environmental pollution. Antibiotic residues contained valuable components and could be recycled. Using a one-step controllable pyrolysis technique in a tubular furnace, biochar (OSOBs) was produced without the preliminary carbonization step, which was innovative and time- and cost-saving compared to traditional methods. The main aim of this study was to explore the adsorption and removal efficiency of tetracycline (TC) in water using porous biochar prepared from oxytetracycline fermentation residues in one step. A series of characterizations were conducted on the prepared biochar materials, and the effects of biochar dosage, initial tetracycline concentration, reaction time, and reaction temperature on the adsorption capacity were studied. The experimental results showed that at 298 K, the maximum adsorption capacity of OSOB-3-700 calculated by the Langmuir model reached 1096.871 mg/g. The adsorption kinetics fitting results indicated that the adsorption of tetracycline on biochar was more consistent with the pseudo-second-order kinetic model, which was a chemical adsorption. The adsorption isotherm fitting results showed that the Langmuir model better described the adsorption process of tetracycline on biochar, indicating that tetracycline was adsorbed in a monolayer on specific homogeneous active sites through chemical adsorption, consistent with the kinetic conclusions. The adsorption process occurred on the surface of the biochar containing rich active sites, and the chemical actions such as electron exchange promoted the adsorption process.

14.
J Clin Tuberc Other Mycobact Dis ; 37: 100476, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39310742

ABSTRACT

Background/Purpose: Tuberculosis remains a leading cause of infectious death worldwide, The potential for nucleic acid residue on bronchoscopes to cause false positive results in molecular diagnostic methods and subsequently lead to tuberculosis misdiagnosis has long perplexed clinical. Methods: We utilized Xpert MTB/RIF to analyze the liquid collected after bronchoscope washing, employed by patients either with or without active pulmonary tuberculosis, and subjected to standard reprocessing (SR) or intensive reprocessing (IR) procedures. The IR procedure included specialized training and the provision of patient information to cleaning staff before the SR procedure, and repeated washing and suction of the bronchoscope with sterilized water post SR procedure. Results: 55 participants enrolled in the study were divided into three groups: SR group (n = 28), IR group(n = 14), and the control group(n = 13). Among the 55 enrolled patients, neither Mycobacterium tuberculosis nor contamination was detected by MIGT 960 liquid culture in the washing liquid. The positive rate of MTB/RIF in the SR group (12/28) was significantly higher than that in the IR group (1/14), with a statistically significant difference observed between them (42.86 % vs. 7.14 %, P=0.018). Conclusions: Nucleic acid residue on reusable bronchoscopes cleaned via the SR procedure was found to potentially cause false positives in MTB/RIF tests. Reprocessing bronchoscopes via the IR procedure was effective in significantly reducing nucleic acid residue, although complete elimination was not achieved.

15.
J Hazard Mater ; 480: 135772, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39305591

ABSTRACT

This study focuses on the in-situ catalytic pyrolysis of the Penicillin fermentation residue (PFR), a typical antibiotic fermentation residues (AFR), using a red mud-Ca(OH)2 composite (RM-xCa) to enhance syngas production, tar conversion, and desulfurization. The invesitigation explored the effects of different preparation methods, amount of CaO addition, and final pyrolysis temperature on the performance of RM-xCa composites. The RM-xCa composite prepared by the hydrothermal method with pressure exhibited higher catalytic activity due to the formation of soluble Na through cation exchange. The amount of CaO added determined the sulfur adsorption capacity of RM-xCa, as well as the amount of H2O and CO2 involved in tar reforming and char gasification reactions. Final pyrolysis temperature significantly influenced the reduction state of Fe2O3 and decomposition of Ca(OH)2, affecting the catalytic activity and sulfur adsorption behavior of RM-xCa composites. The optimized RM-xCa composite, RM-4Ca-HT, decreased tar and H2S formationby 34 % and 38 %, respectively, at 700 °C. Additionally, RM-xCa composites can lower the oxygen and sulfur content of tar. Solid residues from PFR catalytic pyrolysis were found suitable for reused as catalysts in further tar removal process.

16.
Food Chem ; 463(Pt 3): 141301, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39305643

ABSTRACT

Based on the previously developed Al3+/CuNCs probe, the matrix effect (ME) derived from protein was investigated in the fluorescence determination of fluoroquinolones (FQs) residues in eggs, and a sample pretreatment method was established to rapidly reduce the ME. Molecular docking results indicated that the three main egg proteins and FQs were bound by hydrogen bond, van der Waals force, and alkyl groups, leading to the loss of FQs response signal, and then produced ME. After trichloroacetic acid treatment, the mean particle size of egg matrix decreased, the protein secondary structure changed, and the crystal structure was destroyed. The corresponding ME of the supernatant obtained by centrifugation was only 0.7 %. The standard addition experiment confirmed that the proposed pretreatment method improved the accuracy and reliability of the fluorescence probe. This work is helpful to promote the practical application of fluorescence analysis in the rapid monitoring of food safety hazard factors.

17.
Int J Mol Sci ; 25(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39337452

ABSTRACT

The enantioselective mechanism of the esterase QeH against the two enantiomers of quizalofop-ethyl (QE) has been primitively studied using computational and experimental approaches. However, it is still unclear how the esterase QeH adjusts its conformation to adapt to substrate binding and promote enzyme-substrate interactions in the catalytic kinetics. The equilibrium processes of enzyme-substrate interactions and catalytic dynamics were reproduced by performing independent molecular dynamics (MD) runs on the QeH-(R)/(S)-QE complexes with a newly developed residue-specific force field (RSFF2C). Our results indicated that the benzene ring of the (R)-QE structure can simultaneously form anion-π and cation-π interactions with the side-chain group of Glu328 and Arg384 in the binding cavity of the QeH-(R)-QE complex, resulting in (R)-QE being closer to its catalytic triplet system (Ser78-Lys81-Tyr189) with the distances measured for the hydroxyl oxygen atom of the catalytic Ser78 of QeH and the carbonyl carbon atom of (R)-QE of 7.39 Å, compared to the 8.87 Å for (S)-QE, whereas the (S)-QE structure can only form an anion-π interaction with the side chain of Glu328 in the QeH-(S)-QE complex, being less close to its catalytic site. The computational alanine scanning mutation (CAS) calculations further demonstrated that the π-π stacking interaction between the indole ring of Trp351 and the benzene ring of (R)/(S)-QE contributed a lot to the binding stability of the enzyme-substrate (QeH-(R)/(S)-QE). These results facilitate the understanding of their catalytic processes and provide new theoretical guidance for the directional design of other key enzymes for the initial degradation of aryloxyphenoxypropionate (AOPP) herbicides with higher catalytic efficiencies.


Subject(s)
Esterases , Molecular Dynamics Simulation , Esterases/chemistry , Esterases/metabolism , Stereoisomerism , Substrate Specificity , Catalytic Domain , Kinetics
18.
Sensors (Basel) ; 24(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39338613

ABSTRACT

Standoff laser absorption spectroscopy (LAS) has attracted considerable interest across many applications for environmental safety. Herein, we propose an anodic aluminum oxide (AAO) microcantilever LAS combined with machine learning (ML) for sensitive and selective standoff discrimination of explosive residues. A nanoporous AAO microcantilever with a thickness of <1 µm was fabricated using a micromachining process; its spring constant (18.95 mN/m) was approximately one-third of that of a typical Si microcantilever (53.41 mN/m) with the same dimensions. The standoff infrared (IR) spectra of pentaerythritol tetranitrate, cyclotrimethylene trinitramine, and trinitrotoluene were measured using our AAO microcantilever LAS over a wide range of wavelengths, and they closely matched the spectra obtained using standard Fourier transform infrared spectroscopy. The standoff IR spectra were fed into ML models, such as kernel extreme learning machines (KELMs), support vector machines (SVMs), random forest (RF), and backpropagation neural networks (BPNNs). Among these four ML models, the kernel-based ML models (KELM and SVM) were found to be efficient learning models able to satisfy both a high prediction accuracy (KELM: 94.4%, SVM: 95.8%) and short hyperparameter optimization time (KELM: 5.9 s, SVM: 7.6 s). Thus, the AAO microcantilever LAS with kernel-based learners could emerge as an efficient sensing method for safety monitoring.

19.
Sci Rep ; 14(1): 22752, 2024 10 01.
Article in English | MEDLINE | ID: mdl-39349944

ABSTRACT

The aim of the experiment was to investigate the pharmacokinetics of oxytetracycline dihydrate after a single oral administration of 80 mg kg-1 day-1 in rainbow trout and assess its biosafety at concentration of 80, 240, 400, and 800 mg kg-1 day-1 over 30 days, focusing on various aspects such as effective feed consumption, physiological responses, drug tolerance, and detection of low drug concentrations in rainbow trout. The pharmacokinetics study spanned a duration of 5 days, while the assessment of biosafety extended for a 30-day safety margin, followed by a subsequent 10-day residual analysis. Pharmacokinetic analysis revealed slow absorption with low-rate constant in tissues. Absorption rates vary among tissues, with the gill showing the highest rate (0.011 h-1) and plasma exhibiting the slowest (0.0002 h-1). According to pharmacokinetic analysis, the highest concentration, Cmax (µg kg-1) was observed in the kidney (9380 µg kg-1) and gill (8710 µg kg-1), and lowest in muscle (2460 µg kg-1). The time (Tmax) to reach peak concentration (Cmax) varied among tissues, ranging from 3 h in the gill to 32 h in the muscle, with 24 h in plasma, 32 h in the kidney, and 16 h in both the liver and skin. The liver and kidney had the highest area under the concentration-time curve (AUC(0-128)), indicating widespread drug distribution. Prolonged elimination occurred at varying rates across tissues, with the gill showing the highest rate. The study found that OTC concentrations exceeded the LOD and LOQ values. Biosafety evaluation showed effective feed consumption, physiological responses, and low drug concentrations in muscle at the recommended dosage of 80 mg kg-1 fish day-1.


Subject(s)
Oncorhynchus mykiss , Oxytetracycline , Animals , Oncorhynchus mykiss/metabolism , Oxytetracycline/pharmacokinetics , Oxytetracycline/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Administration, Oral , Tissue Distribution , Gills/metabolism
20.
Sensors (Basel) ; 24(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39275486

ABSTRACT

Antimicrobial resistance (AMR) poses a significant threat to global health, powered by pathogens that become increasingly proficient at withstanding antibiotic treatments. This review introduces the factors contributing to antimicrobial resistance (AMR), highlighting the presence of antibiotics in different environmental and biological matrices as a significant contributor to the resistance. It emphasizes the urgent need for robust and effective detection methods to identify these substances and mitigate their impact on AMR. Traditional techniques, such as liquid chromatography-mass spectrometry (LC-MS) and immunoassays, are discussed alongside their limitations. The review underscores the emerging role of biosensors as promising alternatives for antibiotic detection, with a particular focus on electrochemical biosensors. Therefore, the manuscript extensively explores the principles and various types of electrochemical biosensors, elucidating their advantages, including high sensitivity, rapid response, and potential for point-of-care applications. Moreover, the manuscript investigates recent advances in materials used to fabricate electrochemical platforms for antibiotic detection, such as aptamers and molecularly imprinted polymers, highlighting their role in enhancing sensor performance and selectivity. This review culminates with an evaluation and summary of commercially available and spin-off sensors for antibiotic detection, emphasizing their versatility and portability. By explaining the landscape, role, and future outlook of electrochemical biosensors in antibiotic detection, this review provides insights into the ongoing efforts to combat the escalating threat of AMR effectively.


Subject(s)
Anti-Bacterial Agents , Biosensing Techniques , Electrochemical Techniques , Biosensing Techniques/methods , Anti-Bacterial Agents/analysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL