Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.239
Filter
1.
Brain Behav Immun Health ; 41: 100864, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39350952

ABSTRACT

Neuroinflammation has been implicated in the pathophysiology of schizophrenia and obsessive-compulsive disorder (OCD) and deviations in brain structure and connectivity are seen in these disorders. Here, we explore the effects of a potent immunomodulatory treatment on neuroimaging. In a pilot study of rituximab treatment in schizophrenia and OCD, a subgroup (n = 13) underwent structural and functional magnetic resonance imaging before and 5 months after treatment, to study longitudinal changes in resting-state functional connectivity (rsFC) and voxel-based morphometry (VBM). A hypothesis-free exploratory whole-brain analysis was performed twice to assess changes in rsFC, using anterior cingulate cortex, anterior insula, posterior insula and nucleus accumbens as seed regions. There were significant interactions (diagnosis x time) in connectivity between right posterior insula and two clusters encompassing basal ganglia and anterior frontal pole, and between left anterior insula and a cluster in basal ganglia, where connectivity decreased in OCD and increased in schizophrenia. The increase of connectivity after rituximab, between left anterior insula and parts of cerebellum and lingual gyrus and between left posterior insula and parts of cerebellum, correlated with improved global psychosocial functioning according to the Personal and Social Performance Scale, especially in schizophrenia. VBM analysis identified two clusters with increased grey matter volumes (GMV) after rituximab, one in right insula overlapping one of the seed regions with significant rsFC changes. This pilot study implies that rituximab may influence both brain structure and connectivity and that GMV changes and rsFC changes are regionally associated.

2.
Front Psychiatry ; 15: 1360623, 2024.
Article in English | MEDLINE | ID: mdl-39376966

ABSTRACT

Objective: Type 2 diabetes mellitus (T2DM) over time predisposes to inflammatory responses and abnormalities in functional brain networks that damage learning, memory, or executive function. The hippocampus is a key region often reporting connectivity abnormalities in memory disorders. Here, we investigated peripheral inflammatory responses and resting-state functional connectivity (RSFC) changes characterized of hippocampal subregions in type 2 diabetes-associated cognitive decline (T2DACD). Methods: The study included 16 patients with T2DM, 16 patients with T2DACD and 25 healthy controls (HCs). Subjects were assessed for cognitive performance, tested for the expression of inflammatory factors IL-6, IL-10 and TNF-α in peripheral serum, underwent resting-state functional magnetic resonance imaging scans, and analyzed for RSFC using the hippocampal subregions as seeds. We also calculated the correlation between cognitive performance and RSFC of hippocampal subregion, and analyzed the significantly altered RSFC values of T2DACD for Receiver Operating Characteristic (ROC) analysis. Results: T2DACD patients showed a decline in their ability to complete cognitive assessment scales and experimental paradigms, and T2DM did not show abnormal cognitive performance. IL-6 expression was increased in peripheral serum in both T2DACD and T2DM. Compared with HCs, T2DACD showed abnormalities RSFC of the left anterior hippocampus with left precentral gyrus and left angular gyrus. T2DM showed abnormalities RSFC of the left middle hippocampus with right medial frontal gyrus, right anterior and middle hippocampus with left precuneus, left anterior hippocampus with right precuneus and right posterior middle temporal gyrus. Compared with T2DM, T2DACD showed abnormalities RSFC of the left posterior hippocampus and right middle hippocampus with left precuneus. In addition, RSFC in the left posterior hippocampus with left precuneus of T2DACD was positively correlated with Flanker conflict response time (r=0.766, P=0.001). In the ROC analysis, the significantly altered RSFC values of T2DACD achieved significant performance. Conclusions: T2DACD showed a significant decrease in attentional inhibition and working memory, peripheral pro-inflammatory response increased, and abnormalities RSFC of the hippocampal subregions with default mode network and sensory-motor network. T2DM did not show a significant cognitive decline, but peripheral pro-inflammatory response increased and abnormalities RSFC of the hippocampus subregions occurred in the brain. In addition, the left precuneus may be a key brain region in the conversion of T2DM to T2DACD. The results of this study may provide a basis for the preliminary diagnosis of T2DACD.

3.
Neurophotonics ; 11(4): 045001, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39372120

ABSTRACT

Significance: Motion artifacts are a notorious challenge in the functional near-infrared spectroscopy (fNIRS) field. However, little is known about how to deal with them in resting-state data. Aim: We assessed the impact of motion artifact correction approaches on assessing functional connectivity, using semi-simulated datasets with different percentages and types of motion artifact contamination. Approach: Thirty-five healthy adults underwent a 15-min resting-state acquisition. Semi-simulated datasets were generated by adding spike-like and/or baseline-shift motion artifacts to the real dataset. Fifteen pipelines, employing various correction approaches, were applied to each dataset, and the group correlation matrix was computed. Three metrics were used to test the performance of each approach. Results: When motion artifact contamination was low, various correction approaches were effective. However, with increased contamination, only a few pipelines were reliable. For datasets mostly free of baseline-shift artifacts, discarding contaminated frames after pre-processing was optimal. Conversely, when both spike and baseline-shift artifacts were present, discarding contaminated frames before pre-processing yielded the best results. Conclusions: This study emphasizes the need for customized motion correction approaches as the effectiveness varies with the specific type and amount of motion artifacts present.

4.
Netw Neurosci ; 8(3): 860-882, 2024.
Article in English | MEDLINE | ID: mdl-39355434

ABSTRACT

Resting-state functional magnetic resonance imaging (fMRI) investigations have provided a view of the default network (DN) as composed of a specific set of frontal, parietal, and temporal cortical regions. This spatial topography is typically defined with reference to an influential network parcellation scheme that designated the DN as one of seven large-scale networks (Yeo et al., 2011). However, the precise functional organization of the DN is still under debate, with studies arguing for varying subnetwork configurations and the inclusion of subcortical regions. In this vein, the so-called limbic network-defined as a distinct large-scale network comprising the bilateral temporal poles, ventral anterior temporal lobes, and orbitofrontal cortex-is of particular interest. A large multi-modal and multi-species literature on the anatomical, functional, and cognitive properties of these regions suggests a close relationship to the DN. Notably, these regions have poor signal quality with conventional fMRI acquisition, likely obscuring their network affiliation in most studies. Here, we leverage a multi-echo fMRI dataset with high temporal signal-to-noise and whole-brain coverage, including orbitofrontal and anterior temporal regions, to examine the large-scale network resting-state functional connectivity of these regions and assess their associations with the DN. Consistent with our hypotheses, our results support the inclusion of the majority of the orbitofrontal and anterior temporal cortex as part of the DN and reveal significant heterogeneity in their functional connectivity. We observed that left-lateralized regions within the temporal poles and ventral anterior temporal lobes, as well as medial orbitofrontal regions, exhibited the greatest resting-state functional connectivity with the DN, with heterogeneity across DN subnetworks. Overall, our findings suggest that, rather than being a functionally distinct network, the orbitofrontal and anterior temporal regions comprise part of a larger, extended default network.


The precise functional organization of the default network is still under debate. Limitations in temporal signal-to-noise of functional MRI BOLD signal data may have restricted estimations of the topography of the default network. The "limbic network," defined as a distinct large-scale network comprising bilateral anterior temporal and orbitofrontal cortex, has been affiliated with the default network in nonhuman animal tractography and task-based fMRI studies in humans. We leverage a multi-echo fMRI dataset with high temporal signal-to-noise and whole-brain coverage to examine the large-scale network resting-state functional connectivity of these regions and assess their associations with the default network. Our results support the inclusion of anterior temporal and orbitofrontal cortex as part of the default network. Overall, our findings suggest that, rather than being a functionally distinct limbic network, the anterior temporal and orbitofrontal regions comprise part of an extended default network.

5.
Front Aging Neurosci ; 16: 1338179, 2024.
Article in English | MEDLINE | ID: mdl-39355540

ABSTRACT

Background: Although depression symptoms are commonly reported in patients with subcortical vascular mild cognitive impairment (svMCI), their impact on brain functions remains largely unknown, with diagnoses mainly dependent on behavioral assessments. Methods: In this study, we analyzed resting-state fMRI data from a cohort of 34 svMCI patients, comprising 18 patients with depression symptoms (svMCI+D) and 16 patients without (svMCI-D), along with 34 normal controls (NC). The study used the fraction of the amplitude of low-frequency fluctuations (fALFF), resting-state functional connectivity, correlation analyses, and support vector machine (SVM) techniques. Results: The fALFF of the right cerebellum (CERE.R) differed among the svMCI+D, svMCI-D, and NC groups. Specifically, the regional mean fALFF of CERE. R was lower in svMCI-D patients compared to NC but higher in svMCI+D patients compared to svMCI-D patients. Moreover, the adjusted fALFF of CERE. R showed a significant correlation with Montreal Cognitive Assessment (MOCA) scores in svMCI-D patients. The fALFF of the right orbital part of the superior frontal gyrus was significantly correlated with Hamilton Depression Scale scores in svMCI+D patients, whereas the fALFF of the right postcingulate cortex (PCC.R) showed a significant correlation with MOCA scores in svMCI-D patients. Furthermore, RSFC between PCC. R and right precuneus, as well as between CERE. R and the right lingual gyrus (LING.R), was significantly reduced in svMCI-D patients compared to NC. In regional analyses, the adjusted RSFC between PCC. R and PreCUN. R, as well as between CERE. R and LING. R, was decreased in svMCI-D patients compared to NC but increased in svMCI+D patients compared to svMCI-D. Further SVM analyses achieved good performances, with an area under the curve (AUC) of 0.82 for classifying svMCI+D, svMCI-D, and NC; 0.96 for classifying svMCI+D and svMCI-D; 0.82 for classifying svMCI+D and NC; and 0.92 for classifying svMCI-D and NC. Conclusion: The study revealed disruptive effects of cognitive impairment, along with both disruptive and complementary effects of depression symptoms on spontaneous brain activity in svMCI. Moreover, these findings suggest that the identified features might serve as potential biomarkers for distinguishing between svMCI+D, svMCI-D, and NC, thereby guiding clinical treatments such as transcranial magnetic stimulation for svMCI.

6.
Front Hum Neurosci ; 18: 1455776, 2024.
Article in English | MEDLINE | ID: mdl-39318702

ABSTRACT

Introduction: Degeneracy in the brain-behavior code refers to the brain's ability to utilize different neural configurations to support similar functions, reflecting its adaptability and robustness. This study aims to explore degeneracy by investigating the non-linear associations between psychometric profiles and resting-state functional connectivity (RSFC). Methods: The study analyzed RSFC data from 500 subjects to uncover the underlying neural configurations associated with various psychometric outcomes. Self-organized maps (SOM), a type of unsupervised machine learning algorithm, were employed to cluster the RSFC data. And identify distinct archetypal connectivity profiles characterized by unique within- and between-network connectivity patterns. Results: The clustering analysis using SOM revealed several distinct archetypal connectivity profiles within the RSFC data. Each archetype exhibited unique connectivity patterns that correlated with various cognitive, physical, and socioemotional outcomes. Notably, the interaction between different SOM dimensions was significantly associated with specific psychometric profiles. Discussion: This study underscores the complexity of brain-behavior interactions and the brain's capacity for degeneracy, where different neural configurations can lead to similar behavioral outcomes. These findings highlight the existence of multiple brain architectures capable of producing similar behavioral outcomes, illustrating the concept of neural degeneracy, and advance our understanding of neural degeneracy and its implications for cognitive and emotional health.

7.
Brain Imaging Behav ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39349780

ABSTRACT

This study explored potential associations of bacterial overgrowth in the small intestine, as detected based on levels of hydrogen and methane in breath after lactulose consumption, with cortical thickness and resting-state functional connectivity in different brain regions. Prospective comparison of 35 patients with Parkinson's disease (PD) involving mild cognitive impairment, 35 patients with PD with normal cognitive function and 17 healthy controls showed the largest level of hydrogen alone and the largest combined level of hydrogen and methane in patients with mild cognitive impairment. The comparison also revealed a significant negative correlation between those levels and thickness of the right insular cortex. Mild cognitive patients showed different functional connectivity between the right insula and cognition-related brain networks from normal cognitive patients. Our results suggest that bacterial overgrowth in the small intestine may contribute to cortical thinning and alterations in resting-state functional connectivity in PD involving mild cognitive impairment. These insights support and deepen previous observations implicating the gut-brain axis in the neurological disorder.

8.
J Affect Disord ; 368: 448-460, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39278469

ABSTRACT

BACKGROUND: Bipolar disorder (BD) is a chronic psychiatric mood disorder that is solely diagnosed based on clinical symptoms. These symptoms often overlap with other psychiatric disorders. Efforts to use machine learning (ML) to create predictive models for BD based on data from brain imaging are expanding but have often been limited using only a single modality and the exclusion of the cerebellum, which may be relevant in BD. METHODS: In this study, we sought to improve ML classification of BD by combining information from structural, functional, and diffusion-weighted imaging. Participants (108 BD I, 78 control) with BD type I and matched controls were recruited into an imaging study. This dataset was randomly divided into training and testing sets. For each of the three modalities, a separate ML model was selected, trained, and then used to generate a prediction of the class of each test subject. Majority voting was used to combine results from the three models to make a final prediction of whether a subject had BD. An independent replication sample was used to evaluate the ability of the ML classification to generalize to data collected at other sites. RESULTS: Combining the three machine learning models through majority voting resulted in an accuracy of 89.5 % for classification of the test subjects as being in the BD or control group. Bootstrapping resulted in a 95 % confidence interval of 78.9 %-97.4 % for test accuracy. Performance was reduced when only using 2 of the 3 modalities. Analysis of feature importance revealed that the cerebellum and nodes of the emotional control network were among the most important regions for classification. The machine learning model performed at chance on the independent replication sample. CONCLUSION: BD I could be identified with high accuracy in our relatively small sample by combining structural, functional, and diffusion-weighted imaging data within a single site but not generalize well to an independent replication sample. Future studies using harmonized imaging protocols may facilitate generalization of ML models.

9.
J Psychiatr Res ; 179: 220-228, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39321520

ABSTRACT

AIM: Psychological instruments that are employed to adequately explain treatment compliance and recidivism of intimate partner violence (IPV) perpetrators present a limited ability and certain biases. Therefore, it becomes necessary to incorporate new techniques, such as magnetic resonance imaging (MRI), to be able to surpass those limitations and measure central nervous system characteristics to explain dropout (premature abandonment of intervention) and recidivism. METHOD: The main objectives of this study were: 1) to assess whether IPV perpetrators (n = 60) showed differences in terms of their brain's regional gray matter volume (GMV) when compared to a control group of non-violent men (n = 57); 2) to analyze whether the regional GMV of IPV perpetrators before starting a tailored intervention program explain treatment compliance (dropout) and recidivism rate. RESULTS: IPV perpetrators presented increased GMV in the cerebellum and the occipital, temporal, and subcortical brain regions compared to controls. There were also bilateral differences in the occipital pole and subcortical structures (thalamus, and putamen), with IPV perpetrators presenting reduced GMV in the above-mentioned brain regions compared to controls. Moreover, while a reduced GMV of the left pallidum explained dropout, a considerable number of frontal, temporal, parietal, occipital, subcortical and limbic regions added to dropout to explain recidivism. CONCLUSIONS: Our study found that certain brain structures not only distinguished IPV perpetrators from controls but also played a role in explaining dropout and recidivism. Given the multifactorial nature of IPV perpetration, it is crucial to combine neuroimaging techniques with other psychological instruments to effectively create risk profiles of IPV perpetrators.

10.
Brain Connect ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302050

ABSTRACT

BACKGROUND: Functional magnetic resonance imaging (fMRI) has not previously been used to localize the swallowing functional area in repetitive transcranial magnetic stimulation (rTMS) treatment for post-stroke dysphagia; Traditionally, the target area for rTMS is the hotspot, which is defined as the specific region of the brain identified as the optimal location for transcranial magnetic stimulation (TMS). This study aims to compare the network differences between the TMS hotspot and the saliva swallowing fMRI activation to determine the better rTMS treatment site and investigate changes in functional connectivity related to post-stroke dysphagia using resting-state fMRI. METHODS: Using an information-based approach, we conducted a single case study to explore neural functional connectivity in a patient with post-stroke dysphagia before, immediately after rTMS, and four weeks after rTMS intervention. 20 healthy participants underwent fMRI and TMS hotspot localization as a control group. Neural network alterations were assessed , and functional connections related to post-stroke dysphagia were examined using resting-state fMRI. RESULTS: Compared to the TMS-induced hotspots, the fMRI activation peaks were located significantly more posteriorly and exhibited stronger functional connectivity with bilateral postcentral gyri. Following rTMS treatment, this patient developed functional connection between the brainstem and the bilateral insula, caudate, anterior cingulate cortex, and cerebellum. CONCLUSION: The saliva swallowing fMRI activation peaks show more intense functional connectivity with bilateral postcentral gyri compared to the TMS hotspots. Activation peak-guided rTMS treatment improves swallowing function in post-stroke dysphagia. This study proposes a novel and potentially more efficacious therapeutic target for rTMS, expanding its therapeutic options for treating post-stroke dysphagia.

11.
Brain Cogn ; 181: 106222, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39305795

ABSTRACT

Previous research has shown that, in both laboratory and real-world contexts, punishment sensitivity is associated with lower risk-taking propensity. The neural underpinnings of the association between punishment sensitivity and risk-taking, however, remain largely unknown. To address this issue, we implemented resting-state functional connectivity (RSFC) and voxel-based morphometry (VBM) methodologies to investigate the neural basis of their relationship in the current study (N=594). The behavioral results confirmed a negative association between punishment sensitivity and risk-taking propensity, which supports the hypothesis. The VBM results demonstrated a positive correlation between punishment sensitivity and gray matter volume in the right orbitofrontal cortex (ROFC). Furthermore, the results of the RSFC analysis revealed that the functional connectivity between ROFC and the right medial temporal gyrus (RMTG) was positively associated with punishment sensitivity. Notably, mediation analysis demonstrated that punishment sensitivity acted as a complete mediator in the influence of ROFC-RMTG functional connectivity on risk-taking. These findings suggest that ROFC-RMTG functional connectivity may be the neural basis underlying the effect of punishment sensitivity on risk-taking propensity, which provides a new perspective for understanding the relationship between punishment sensitivity and risk-taking propensity.

12.
Neuroimage ; 299: 120833, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39233125

ABSTRACT

While the significance of obtaining restful sleep at night and maintaining daytime alertness is well recognized for human performance and overall well-being, substantial variations exist in the development of sleepiness during diurnal waking periods. Despite the established roles of the hypothalamus and striatum in sleep-wake regulation, the specific contributions of this neural circuit in regulating individual sleep homeostasis remain elusive. This study utilized resting-state functional magnetic resonance imaging (fMRI) and mathematical modeling to investigate the role of hypothalamus-striatum connectivity in subjective sleepiness variation in a cohort of 71 healthy adults under strictly controlled in-laboratory conditions. Mathematical modeling results revealed remarkable individual differences in subjective sleepiness accumulation patterns measured by the Karolinska Sleepiness Scale (KSS). Brain imaging data demonstrated that morning hypothalamic connectivity to the dorsal striatum significantly predicts the individual accumulation of subjective sleepiness from morning to evening, while no such correlation was observed for the hypothalamus-ventral striatum connectivity. These findings underscore the distinct roles of hypothalamic connectivity to the dorsal and ventral striatum in individual sleep homeostasis, suggesting that hypothalamus-dorsal striatum circuit may be a promising target for interventions mitigating excessive sleepiness and promoting alertness.


Subject(s)
Hypothalamus , Individuality , Magnetic Resonance Imaging , Humans , Male , Female , Hypothalamus/diagnostic imaging , Hypothalamus/physiology , Adult , Young Adult , Circadian Rhythm/physiology , Sleepiness , Neural Pathways/physiology , Neural Pathways/diagnostic imaging , Corpus Striatum/diagnostic imaging , Corpus Striatum/physiology , Wakefulness/physiology , Sleep/physiology
13.
Neuroimage ; 299: 120827, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39245397

ABSTRACT

The current study demonstrates that an individual's resting-state functional connectivity (RSFC) is a dependable biomarker for identifying differential patterns of cognitive and emotional functioning during late childhood. Using baseline RSFC data from the Adolescent Brain Cognitive Development (ABCD) study, which includes children aged 9-11, we identified four distinct RSFC subtypes. We introduce an integrated methodological pipeline for testing the reliability and importance of these subtypes. In the Identification phase, Leiden Community Detection defined RSFC subtypes, with their reproducibility confirmed through a split-sample technique in the Validation stage. The Evaluation phase showed that distinct cognitive and mental health profiles are associated with each subtype, with the Predictive phase indicating that subtypes better predict various cognitive and mental health characteristics than individual RSFC connections. The Replication stage employed bootstrapping and down-sampling methods to substantiate the reproducibility of these subtypes further. This work allows future explorations of developmental trajectories of these RSFC subtypes.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Child , Female , Male , Brain/diagnostic imaging , Brain/growth & development , Magnetic Resonance Imaging/methods , Reproducibility of Results , Child Development/physiology , Connectome/methods , Cognition/physiology , Adolescent
14.
Front Psychiatry ; 15: 1428535, 2024.
Article in English | MEDLINE | ID: mdl-39224475

ABSTRACT

Background: Alzheimer's disease (AD) encompasses a spectrum that may progress from mild cognitive impairment (MCI) to full dementia, characterized by amyloid-beta and tau accumulation. Transcranial direct current stimulation (tDCS) is being investigated as a therapeutic option, but its efficacy in relation to individual genetic and biological risk factors remains underexplored. Objective: To evaluate the effects of a two-week anodal tDCS regimen on the left dorsolateral prefrontal cortex, focusing on functional connectivity changes in neural networks in MCI patients resulting from various possible underlying disorders, considering individual factors associated to AD such as amyloid-beta deposition, APOE ϵ4 allele, BDNF Val66Met polymorphism, and sex. Methods: In a single-arm prospective study, 63 patients with MCI, including both amyloid-PET positive and negative cases, received 10 sessions of tDCS. We assessed intra- and inter-network functional connectivity (FC) using fMRI and analyzed interactions between tDCS effects and individual factors associated to AD. Results: tDCS significantly enhanced intra-network FC within the Salience Network (SN) and inter-network FC between the Central Executive Network and SN, predominantly in APOE ϵ4 carriers. We also observed significant sex*tDCS interactions that benefited inter-network FC among females. Furthermore, the effects of multiple modifiers, particularly the interaction of the BDNF Val66Met polymorphism and sex, were evident, as demonstrated by increased intra-network FC of the SN in female Met non-carriers. Lastly, the effects of tDCS on FC did not differ between the group of 26 MCI patients with cerebral amyloid-beta deposition detected by flutemetamol PET and the group of 37 MCI patients without cerebral amyloid-beta deposition. Conclusions: The study highlights the importance of precision medicine in tDCS applications for MCI, suggesting that individual genetic and biological profiles significantly influence therapeutic outcomes. Tailoring interventions based on these profiles may optimize treatment efficacy in early stages of AD.

15.
Quant Imaging Med Surg ; 14(9): 6669-6683, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39281112

ABSTRACT

Background: The hypothalamus is a key hub of the neural circuits of motivated behavior. Alcohol misuse may lead to hypothalamic dysfunction. Here, we investigated how resting-state hypothalamic functional connectivities are altered in association with the severity of drinking and clinical comorbidities and how men and women differ in this association. Methods: We employed the data of the Human Connectome Project. A total of 870 subjects were included in data analyses. The severity of alcohol use was quantified for individual subjects with the first principal component (PC1) identified from principal component analyses of all drinking measures. Rule-breaking and intrusive scores were evaluated with the Achenbach Adult Self-Report Scale. We performed a whole-brain regression of hypothalamic connectivities on drinking PC1 in all subjects and men/women separately and evaluated the results at a corrected threshold. Results: Higher drinking PC1 was associated with greater hypothalamic connectivity with the paracentral lobule (PCL). Hypothalamic PCL connectivity was positively correlated with rule-breaking score in men (r=0.152, P=0.002) but not in women. In women but not men, hypothalamic connectivity with the left temporo-parietal junction (LTPJ) was negatively correlated with drinking PC1 (r=-0.246, P<0.001) and with intrusiveness score (r=-0.127, P=0.006). Mediation analyses showed that drinking PC1 mediated the relationship between hypothalamic PCL connectivity and rule-breaking score in men and between hypothalamic LTPJ connectivity and intrusiveness score bidirectionally in women. Conclusions: We characterized sex-specific hypothalamic connectivities in link with the severity of alcohol misuse and its comorbidities. These findings extend the literature by elucidating the potential impact of problem drinking on the motivation circuits.

16.
J Affect Disord ; 368: 23-32, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260575

ABSTRACT

BACKGROUND: While patients with major depressive disorder (MDD) and bipolar disorder (BD) exhibited default mode network (DMN) dysfunction revealed by aberrant resting-state functional connectivity (rsFC) patterns, previous findings have been inconsistent. Little is known about the similarities and differences in DMN rsFC between MDD and BD. METHODS: A voxel-wise meta-analysis of seed-based DMN rsFC studies on MDD or BD was performed using the Seed-based d Mapping software with permutation of subject images (SDM-PSI). Aberrant DMN rsFC in both disorders was investigated separately, followed by conjunction and between-disorder comparison analyses. Functional decoding was performed to implicate the psychophysiological underpinnings of derived brain abnormalities. RESULTS: Thirty-four studies comparing 1316 MDD patients with 1327 HC, and 22 studies comparing 1059 BD patients with 1396 HC were included. Compared to HC, MDD patients exhibited DMN hyperconnectivity with frontolimbic systems, and hypoconnectivity with temporal lobe and posterior cingulate cortex. BD patients displayed increased DMN connectivity with bilateral precuneus, and reduced connectivity with prefrontal cortex and middle temporal gyrus. No common patterns of DMN rsFC abnormalities were observed between MDD and BD. Compared to BD, MDD patients showed DMN hyperconnectivity with triangular part of the left inferior frontal gyrus and left fusiform gyrus. Functional decoding found that patterns of DMN rsFC alteration between MDD and BD were primarily related to action and perception domains. CONCLUSION: Distinct DMN dysfunction patterns in MDD and BD enhance current understanding of the neural substrates of mood disorders and may provide a potential biomarker for differentiation.

17.
J Neuroeng Rehabil ; 21(1): 133, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103924

ABSTRACT

BACKGROUND: Physical activity combined with virtual reality and exergaming has emerged as a new technique to improve engagement and provide clinical benefit for gait and balance disorders in people with Parkinson's disease (PD). OBJECTIVE: To investigate the effects of a training protocol using a home-based exergaming system on brain volume and resting-state functional connectivity (rs-FC) in persons with PD. METHODS: A single blind randomized controlled trial was conducted in people with PD with gait and/or balance disorders. The experimental (active) group performed 18 training sessions at home by playing a custom-designed exergame with full body movements, standing in front of a RGB-D Kinect® motion sensor, while the control group played using the computer keyboard. Both groups received the same training program. Clinical scales, gait recordings, and brain MRI were performed before and after training. We assessed the effects of both training on both the grey matter volumes (GVM) and rs-FC, within and between groups. RESULTS: Twenty-three patients were enrolled and randomly assigned to either the active (n = 11) or control (n = 12) training groups. Comparing pre- to post-training, the active group showed significant improvements in gait and balance disorders, with decreased rs-FC between the sensorimotor, attentional and basal ganglia networks, but with an increase between the cerebellar and basal ganglia networks. In contrast, the control group showed no significant changes, and rs-FC significantly decreased in the mesolimbic and visuospatial cerebellar and basal ganglia networks. Post-training, the rs-FC was greater in the active relative to the control group between the basal ganglia, motor cortical and cerebellar areas, and bilaterally between the insula and the inferior temporal lobe. Conversely, rs FC was lower in the active relative to the control group between the pedunculopontine nucleus and cerebellar areas, between the temporal inferior lobes and the right thalamus, between the left putamen and dorsolateral prefrontal cortex, and within the default mode network. CONCLUSIONS: Full-body movement training using a customized exergame induced brain rs-FC changes within the sensorimotor, attentional and cerebellar networks in people with PD. Further research is needed to comprehensively understand the neurophysiological effects of such training approaches. Trial registration ClinicalTrials.gov NCT03560089.


Subject(s)
Brain , Exercise Therapy , Parkinson Disease , Video Games , Humans , Parkinson Disease/rehabilitation , Parkinson Disease/physiopathology , Male , Female , Aged , Single-Blind Method , Middle Aged , Brain/diagnostic imaging , Brain/physiopathology , Exercise Therapy/methods , Postural Balance/physiology , Magnetic Resonance Imaging , Gait Disorders, Neurologic/rehabilitation , Gait Disorders, Neurologic/etiology , Virtual Reality
18.
Sci Rep ; 14(1): 18111, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103500

ABSTRACT

Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive, compulsive behaviors, with childhood trauma recognized as a contributing factor to its pathophysiology. This study aimed to delineate brain functional aberrations in OCD patients and explore the association between these abnormalities and childhood trauma, to gain insights into the neural underpinnings of OCD. Forty-eight drug-naive OCD patients and forty-two healthy controls (HC) underwent resting-state functional magnetic resonance imaging and clinical assessments, including the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) and Childhood Trauma Questionnaire-Short Form (CTQ-SF). Compared to HCs, OCD patients exhibited significantly decreased amplitude of low-frequency fluctuations (ALFF) in the right cerebellum, decreased regional homogeneity (ReHo) in the right cerebellum and right superior occipital lobes (FWE-corrected p < 0.05), which negatively correlated with Y-BOCS scores (p < 0.05). Furthermore, cerebellar ALFF negatively correlated with the CTQ emotional abuse subscale (r = - 0.514, p < 0.01). Mediation analysis revealed that cerebellar ALFF mediated the relationship between CTQ-emotional abuse and Y-BOCS (good model fit: R2 = 0.231, MSE = 14.311, F = 5.721, p < 0.01; direct effect, c' = 0.153, indirect effect, a*b = 0.191). Findings indicated abnormal spontaneous and regional cerebellar activity in OCD, suggesting childhood trauma impacts OCD symptoms through cerebellar neural remodeling, highlighting its importance for clinical treatment selection.


Subject(s)
Brain , Magnetic Resonance Imaging , Obsessive-Compulsive Disorder , Humans , Obsessive-Compulsive Disorder/physiopathology , Obsessive-Compulsive Disorder/diagnostic imaging , Male , Female , Adult , Brain/physiopathology , Brain/diagnostic imaging , Cerebellum/physiopathology , Cerebellum/diagnostic imaging , Brain Mapping , Young Adult , Case-Control Studies
19.
Article in English | MEDLINE | ID: mdl-39127423

ABSTRACT

BACKGROUND: The prevalence of internalizing psychopathology rises precipitously from early to mid-adolescence, yet the underlying neural phenotypes that give rise to depression and anxiety during this developmental period remain unclear. METHODS: Youth from the Adolescent Brain and Cognitive DevelopmentSM Study (ages 9-10 years at baseline) with a resting-state fMRI scan and mental health data were eligible for inclusion. Internalizing subscale scores from the Brief Problem Monitor - Youth Form were combined across two years of follow-up to generate a cumulative measure of internalizing symptoms. The total sample (n = 6521) was split into a large discovery dataset and a smaller validation dataset. Brain-behavior associations of resting-state functional connectivity (RSFC) with internalizing symptoms were estimated in the discovery dataset. The weighted contributions of each functional connection were aggregated using multivariate statistics to generate a polyneuro risk score (PNRS). The predictive power of the PNRS was evaluated in the validation dataset. RESULTS: The PNRS explained 10.73% of the observed variance in internalizing symptom scores in the validation dataset. Model performance peaked when the top 2% functional connections identified in the discovery dataset (ranked by absolute ß-weight) were retained. The RSFC networks that were implicated most prominently were the default mode, dorsal attention, and cingulo-parietal networks. These findings were significant (p < 1*10-6) as accounted for by permutation testing (n = 7000). CONCLUSIONS: These results suggest that the neural phenotype associated with internalizing symptoms during adolescence is functionally distributed. The PNRS approach is a novel method for capturing relationships between RSFC and behavior.

20.
Heliyon ; 10(15): e34910, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170550

ABSTRACT

Progressive supranuclear palsy (PSP) is an atypical Parkinsonian syndrome characterized initially by falls and eye movement impairment. This multimodal imaging study aimed at eliciting structural and functional disease-specific brain alterations. T1-weighted and resting-state functional MRI were applied in multi-centric cohorts of PSP and matched healthy controls. Midbrain, cerebellum, and cerebellar peduncles showed severely low gray/white matter volume, whereas thinner cortical gray matter was observed in cingulate cortex, medial and temporal gyri, and insula. Eigenvector centrality analyses revealed regionally specific alterations. Multivariate pattern recognition classified patients correctly based on gray and white matter segmentations with up to 98 % accuracy. Highest accuracies were obtained when restricting feature selection to the midbrain. Eigenvector centrality indices yielded an accuracy around 70 % in this comparison; however, this result did not reach significance. In sum, the study reveals multimodal, widespread brain changes in addition to the well-known midbrain atrophy in PSP. Alterations in brain structure seem to be superior to eigenvector centrality parameters, in particular for prediction with machine learning approaches.

SELECTION OF CITATIONS
SEARCH DETAIL