Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Cureus ; 16(8): e67093, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39286668

ABSTRACT

A huge number of new cases - around a few million of traumatic brain injury (TBI) - are recorded globally each year, making it a major public health risk. A significant portion of all accident-related deaths are attributable to TBI, a notable mortality rate. There are TBI deaths in every age range. Long-term neurobehavioral impacts, such as altered emotions and personalities, cognitive and mental deficits, and so on, are experienced by the majority of survivors. Our main objective is to understand the possible mechanism of the NLRP3 inflammasome in retinal neurons and enhance precision regarding reducing the burden of retinal neurodegeneration in TBI-induced AD. Both primary and secondary insults initiate the intricate pathophysiology of traumatic brain injury. Primary injuries are caused by mechanical force and occur right after the collision. Long-lasting and delayed secondary injuries follow. Studies demonstrating the continuous nature of research on the relationship between retinal neurons and TBI-induced Alzheimer's disease (AD) include neurodegeneration, retinal changes, and inflammatory response biomarkers. TBI can cause changes that resemble those seen in AD. This includes the accumulation of tau tangles and amyloid-beta plaques, which are also observed in the retina and imply a potential relationship between AD, traumatic brain injury, and retinal health. The linkage between TBI and AD, the effect of the innate immune system in post-TBI AD, the function of immunological moderators, the activation and assembly of inflammasomes in TBI, the pathophysiology of TBI, and the connection between TBI and inflammasome activity were the main topics of discussion in the following discussions. Of particular interest was the potential mechanism by which the NLRP3 inflammasome, in conjunction with SREBP2 and SCAP inflammasome, in retinal neurons in TBI-induced AD. The thinning of RNFL, poor lipid metabolism, and new developments such as drug delivery technologies, lipid metabolism modulation in retinal neurons, and drug-targeting lipid pathways and their mechanisms are then covered in this article.

2.
ACS Nano ; 18(34): 23785-23796, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39140995

ABSTRACT

In-sensor and near-sensor computing architectures enable multiply accumulate operations to be carried out directly at the point of sensing. In-sensor architectures offer dramatic power and speed improvements over traditional von Neumann architectures by eliminating multiple analog-to-digital conversions, data storage, and data movement operations. Current in-sensor processing approaches rely on tunable sensors or additional weighting elements to perform linear functions such as multiply accumulate operations as the sensor acquires data. This work implements in-sensor computing with an oscillatory retinal neuron device that converts incident optical signals into voltage oscillations. A computing scheme is introduced based on the frequency shift of coupled oscillators that enables parallel, frequency multiplexed, nonlinear operations on the inputs. An experimentally implemented 3 × 3 focal plane array of coupled neurons shows that functions approximating edge detection, thresholding, and segmentation occur in parallel. An example of inference on handwritten digits from the MNIST database is also experimentally demonstrated with a 3 × 3 array of coupled neurons feeding into a single hidden layer neural network, approximating a liquid-state machine. Finally, the equivalent energy consumption to carry out image processing operations, including peripherals such as the Fourier transform circuits, is projected to be <20 fJ/OP, possibly reaching as low as 15 aJ/OP.


Subject(s)
Retinal Neurons , Retinal Neurons/physiology , Retinal Neurons/cytology , Neural Networks, Computer , Neurons/physiology , Neurons/cytology , Animals
3.
Int J Mol Sci ; 24(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37686457

ABSTRACT

The human eye plays a critical role in vision perception, but various retinal degenerative diseases such as retinitis pigmentosa (RP), glaucoma, and age-related macular degeneration (AMD) can lead to vision loss or blindness. Although progress has been made in understanding retinal development and in clinical research, current treatments remain inadequate for curing or reversing these degenerative conditions. Animal models have limited relevance to humans, and obtaining human eye tissue samples is challenging due to ethical and legal considerations. Consequently, researchers have turned to stem cell-based approaches, specifically induced pluripotent stem cells (iPSCs), to generate distinct retinal cell populations and develop cell replacement therapies. iPSCs offer a novel platform for studying the key stages of human retinogenesis and disease-specific mechanisms. Stem cell technology has facilitated the production of diverse retinal cell types, including retinal ganglion cells (RGCs) and photoreceptors, and the development of retinal organoids has emerged as a valuable in vitro tool for investigating retinal neuron differentiation and modeling retinal diseases. This review focuses on the protocols, culture conditions, and techniques employed in differentiating retinal neurons from iPSCs. Furthermore, it emphasizes the significance of molecular and functional validation of the differentiated cells.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Degeneration , Retinal Neurons , Animals , Humans , Retina , Cell Differentiation , Retinal Degeneration/therapy , Blindness
4.
Int J Mol Sci ; 24(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37240082

ABSTRACT

An imbalance of homeostasis in the retina leads to neuron loss and this eventually results in a deterioration of vision. If the stress threshold is exceeded, different protective/survival mechanisms are activated. Numerous key molecular actors contribute to prevalent metabolically induced retinal diseases-the three major challenges are age-related alterations, diabetic retinopathy and glaucoma. These diseases have complex dysregulation of glucose-, lipid-, amino acid or purine metabolism. In this review, we summarize current knowledge on possible ways of preventing or circumventing retinal degeneration by available methods. We intend to provide a unified background, common prevention and treatment rationale for these disorders and identify the mechanisms through which these actions protect the retina. We suggest a role for herbal medicines, internal neuroprotective substances and synthetic drugs targeting four processes: parainflammation and/or glial cell activation, ischemia and related reactive oxygen species and vascular endothelial growth factor accumulation, apoptosis and/or autophagy of nerve cells and an elevation of ocular perfusion pressure and/or intraocular pressure. We conclude that in order to achieve substantial preventive or therapeutic effects, at least two of the mentioned pathways should be targeted synergistically. A repositioning of some drugs is considered to use them for the cure of the other related conditions.


Subject(s)
Diabetic Retinopathy , Glaucoma , Retinal Degeneration , Humans , Retinal Degeneration/etiology , Retinal Degeneration/prevention & control , Retinal Degeneration/metabolism , Vascular Endothelial Growth Factor A/metabolism , Retina/metabolism , Diabetic Retinopathy/metabolism , Glaucoma/metabolism
5.
Biochem Biophys Res Commun ; 663: 87-95, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37119770

ABSTRACT

miR-183/96/182 cluster plays a critical role in the developing retina by regulating many target genes involved in signaling pathways. This study aimed to survey the miR-183/96/182 cluster-target interactions that, potentially contribute to human retinal pigmented epithelial (hRPE) cell differentiation into photoreceptors. Target genes of the miR-183/96/182 cluster were obtained from miRNA-target databases and applied to construct miRNA-target networks. Gene ontology and KEGG pathway analysis was performed. miR-183/96/182 cluster sequence was cloned into an eGFP-intron splicing cassette in an AAV2 vector and overexpressed in hRPE cells. The expression level of target genes including HES1, PAX6, SOX2, CCNJ, and RORΒ was evaluated using qPCR. Our results showed that miR-183, miR-96, and miR-182 share 136 target genes that are involved in cell proliferation pathways such as PI3K/AKT and MAPK pathway. qPCR data indicated a 22-, 7-, and 4-fold overexpression of miR-183, miR-96, and miR-182, respectively, in infected hRPE cells. Consequently, the downregulation of several key targets such as PAX6, CCND2, CDK5R1, and CCNJ and upregulation of a few retina-specific neural markers such as Rhodopsin, red opsin, and CRX was detected. Our findings suggest that the miR-183/96/182 cluster may induce hRPE transdifferentiation by targeting key genes that involve in the cell cycle and proliferation pathways.


Subject(s)
MicroRNAs , Retinal Neurons , Humans , Cell Transdifferentiation/genetics , Phosphatidylinositol 3-Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Retinal Neurons/metabolism , Epithelial Cells/metabolism , Retinal Pigments/metabolism
6.
J Fish Biol ; 102(3): 550-563, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36482763

ABSTRACT

The authors studied the structure and diversity of retinal ganglion cells (GC) in the masked greenling Hexagrammos octogrammus. In vivo labelling with horseradish peroxidase revealed GCs of various structures in retinal wholemounts. A total of 154 cells were camera lucida drawn, and their digital models were generated. Each cell was characterized by 17 structural and topological parameters. Using nine clustering algorithms, a variety of clusterings were obtained. The optimum clustering was found using silhouette analysis. It was based on a set of three variables associated with dendritic field size and dendrite stratification depth in the retina. A total of nine cell types were discovered. A number of non-parametric tests showed significant pair-wise between-cluster differences in at least four parameters with medium and large effect sizes. Three large-field types differed mainly in dendritic field size, total dendrite length, level of dendrite stratification in the retina and position of somata. Six medium- to small-field types differed mainly in the structural complexity of dendritic arbors and level of dendrite arborization. Cells similar and obviously homologous to types 1-4 were identified in many fish species, including teleosts. Potential homologues of type 5 cells were identified in fewer teleost species. Cells similar to types 6-9 in relative dendritic field size and dendrite arborization pattern were also described in several teleostean species. Nonetheless, their homology is more questionable as their stratification patterns do not match so well as they do in large types. Potential functional matches of the GC types were identified in a number of teleostean species. Type 1 and 2 cells probably match spontaneously active units with the large receptive field centre, so-called dimming and lightening detectors; type 4 may be a counterpart of changing contrast detectors with medium receptive field centre size preferring fast-moving stimuli. Type 3 (biplexiform) cells have no obvious functional matches. Probable functional matches of types 6, 8 and 9 belong to ON-centre elements with small receptive fields such as ON-type direction-selective cells, ON-type spot detectors or ON-type spontaneously active units. Type 5 and 7 cells may match ON-OFF type units, in particular, changing contrast detectors or orientation-selective units. Potential functional matches of GC types presently described are involved in a wide spectrum of visual reactions related to adaptation to gradual change in illumination, predator escape, prey detection and capture, habitat selection and social behaviour.


Subject(s)
Perciformes , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/physiology , Retina , Fishes , Photic Stimulation
7.
ACS Nano ; 16(12): 20937-20945, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36413009

ABSTRACT

An artificial retina system shows a promising potential to achieve fast response, low power consumption, and high integration density for vision sensing systems. Optoelectronic sensors, which can emulate the neurobiological functionalities of retinal neurons, are crucial in the artificial retina systems. Here, we propose a WSe2 phototransistor with asymmetrical van der Waals (vdWs) stacking that can be used as an optoelectronic sensor in artificial retina systems. Through the utilization of the gate-tunable self-powered bidirectional photoresponse of this phototransistor, the neurobiological functionalities of both bipolar cells and cone cells, as well as the hierarchical connectivity between these two types of retinal neurons, are successfully mimicked by a single device. This self-powered bidirectional photoresponse is attributed to the asymmetrical vdWs stacking structure, which enables the transition from an n-p to p+-p homojunction in the WSe2 channel under different polarities of gate bias. Moreover, the detectivity and ON/OFF ratio of this phototransistor reach as high as 1.8 × 1013 Jones and 5.3 × 104, respectively, and a rise/fall time <80 µs is achieved, as well, which reveals good photodetection performance. The proof of this device provides a pathway for the future development of neuromorphic vision devices and systems.


Subject(s)
Optical Devices , Retinal Neurons , Transcription Factors
8.
Exp Eye Res ; 225: 109271, 2022 12.
Article in English | MEDLINE | ID: mdl-36195208

ABSTRACT

There are many theories surrounding the pathogenesis of glaucoma, and glutamate excitatory toxicity has been suggested to play an important role. Some studies have shown that glutamate excitatory toxicity is associated with mitochondrial dynamics; however, the relationship between glutamate excitatory toxicity and mitochondrial dynamics in the pathogenesis of glaucoma remains unclear. In this study, the glutamate transporter inhibitor, threohydroxyaspartate, was used to simulate the glutamate excitatory toxicity cell model of rat retinal neurons in vitro, and the changes in the level of proteins related to mitochondrial dynamics, mitochondrial morphology, and length of neuronal axons were measured. We found that in the glutamate excitotoxicity model, retinal neurons can promote mitochondrial fusion by reducing the phosphorylation of ERK1/2 and its downstream protein DRP1 S585, and enhance its ability to resist the excitotoxicity of glutamate. At the same time, the DRP1-specific inhibitor, Mdivi-1, could promote the mitochondrial fusion of retinal neurons.


Subject(s)
Glaucoma , Retinal Neurons , Animals , Rats , Mitochondrial Dynamics , Glutamic Acid/toxicity , Glutamic Acid/metabolism , Dynamins/metabolism , MAP Kinase Signaling System , Glaucoma/pathology , Retinal Neurons/metabolism
9.
Exp Eye Res ; 224: 109239, 2022 11.
Article in English | MEDLINE | ID: mdl-36067824

ABSTRACT

Oxidative stress plays a crucial role in the damage of retinal neuronal cells. Curcumin, the phytocompound, has anti-inflammatory and antioxidative properties. It was shown that curcumin exerted a beneficial effect on retinal neuronal cell survival. However, the role of mitochondrial dynamics in curcumin-mediated protective effect on retinal neuronal cells remains to be elucidated. Here, H2O2 was used to mimic the oxidative stress in retinal neuronal R28 cells. Drp1 and Mfn2 are key regulators of mitochondrial fission and fusion. 100 µM of H2O2 significantly increased the cleavage of caspase-3 and Drp1 expression, but downregulated the expression of Mfn2. Pretreatment with 5 µM curcumin effectively alleviated H2O2-induced alterations in the expression of Drp1 and Mfn2 and mitochondrial fission in R28 cells. In addition, curcumin and Drp1 knockdown prevented H2O2-induced intracellular ROS increment and mitochondrial membrane potential disruption. On the contrary, knockdown of Mfn2 diminished curcumin-mediated protection against ROS increment and mitochondrial membrane potential disruption after H2O2. Moreover, curcumin protected R28 cells against H2O2-induced PINK1 expression, mitophagy, caspase-3 cleavage and apoptosis. Knockdown of Mfn2 significantly alleviated the protective effect of curcumin on R28 cells after H2O2. Taken together, our data indicate that curcumin protects against oxidative stress-induced injury in retinal neuronal cells by promoting mitochondrial fusion.


Subject(s)
Curcumin , Mitochondrial Dynamics , Curcumin/pharmacology , Caspase 3/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/toxicity , Oxidative Stress , Apoptosis , Protein Kinases/metabolism , Protein Kinases/pharmacology
10.
Front Neurosci ; 16: 912757, 2022.
Article in English | MEDLINE | ID: mdl-35669493

ABSTRACT

Phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway mediates pro-survival function in neurons. In the retina, PI3K/AKT/mTOR signaling pathway is related to the early pathogenesis of diabetic retinopathy. Signaling molecules in the membrane-initiated signaling pathway exhibiting neuroprotective function interacts with the PI3K/Akt pathway as an important survival pathway. Molecular chaperone α-crystallins are known to potentially interact and/or regulate various pro-survival and pro-apoptotic proteins to regulate cell survival. Among these demonstrated mechanisms, they are well-reported to regulate and inhibit apoptosis by interacting and sequestrating the proapoptotic proteins such as Bax and Bcl-Xs. We studied the importance of metabolic stress-induced enhanced Akt signaling and αA-crystallin interdependence for exhibiting neuroprotection in metabolically challenged retinal neurons. For the first time, this study has revealed that αA-crystallin and activated Akt are significantly neuroprotective in the stressed retinal neurons, independent of each other. Furthermore, the study also highlighted that significant inhibition of the PI3K-Akt pathway does not alter the neuroprotective ability of αA-crystallin in stressed retinal neurons. Interestingly, our study also demonstrated that in the absence of Akt activation, αA-crystallin inhibits the translocation of Bax in the mitochondria during metabolic stress, and this function is regulated by the phosphorylation of αA-crystallin on residue 148.

11.
Front Aging Neurosci ; 14: 778404, 2022.
Article in English | MEDLINE | ID: mdl-35283756

ABSTRACT

Aging is associated with a broad range of visual impairments that can have dramatic consequences on the quality of life of those impacted. These changes are driven by a complex series of alterations affecting interactions between multiple cellular and extracellular elements. The resilience of many of these interactions may be key to minimal loss of visual function in aging; yet many of them remain poorly understood. In this review, we focus on the relation between retinal neurons and their respective mass transport systems. These metabolite delivery systems include the retinal vasculature, which lies within the inner portion of the retina, and the choroidal vasculature located externally to the retinal tissue. A framework for investigation is proposed and applied to identify the structures and processes determining retinal mass transport at the cellular and tissue levels. Spatial variability in the structure of the retina and changes observed in aging are then harnessed to explore the relation between variations in neuron populations and those seen among retinal metabolite delivery systems. Existing data demonstrate that the relation between inner retinal neurons and their mass transport systems is different in nature from that observed between the outer retina and choroid. The most prominent structural changes observed across the eye and in aging are seen in Bruch's membrane, which forms a selective barrier to mass transfers at the interface between the choroidal vasculature and the outer retina.

12.
Int J Stem Cells ; 15(2): 183-194, 2022 May 30.
Article in English | MEDLINE | ID: mdl-34711698

ABSTRACT

Background and Objectives: Retinal stem cells (RSCs) resided in ciliary epithelium have shown to possess a high capacity to self-renew and differentiate into retinal cells. RSCs could be induced to differentiate when they are exposed to stimuli like natural compounds and suitable contexts such as biomaterials. The aim of this study was to examine the effects of Retinol and alginate/gelatin-based scaffolds on differentiation potential of mesenchymal stem cells (MSCs) originated from mouse ciliary epithelium. Methods and Results: MSCs were extracted from mouse ciliary epithelium, and their identity was verified by detecting specific surface antigens. To provide a three-dimensional in vitro culture system, 2% alginate, 0.5% gelatin and the mixed alginate-gelatin hydrogels were fabricated and checked by SEM. Retinol treatment was performed on MSCs expanded on alginate/gelatin hydrogels and the survival rate and the ability of MSCs to differentiate were examined through measuring expression alterations of retina-specific genes by ICC and qPCR. The cell population isolated from ciliary epithelium contained more than 93.4% cells positive for MSC-specific marker CD105. Alginate/gelatin scaffolds showed to provide an acceptable viability (over 70%) for MSC cultures. Retinol treatment could induce a high expression of rhodopsin protein in MSCs expanded in alginate and alginate-gelatin mixtures. An elevated presentation of Nestin, RPE65 and Rhodopsin genes was detected in retinol-treated cultures expanded on alginate and alginate-gelatin scaffolds. Conclusions: The results presented here elucidate that retinol treatment of MSCs grown on alginate scaffolds would promote the mouse ciliary epithelium-derived MSCs to differentiate towards retinal neurons.

13.
Int J Ophthalmol ; 14(11): 1683-1689, 2021.
Article in English | MEDLINE | ID: mdl-34804857

ABSTRACT

AIM: To explore whether human umbilical cord mesenchymal stem cell (hUCMSC)-derived exosomes (hUCMSC-Exos) protect rat retinal neurons in high-glucose (HG) conditions by activating the brain-derived neurotrophic factor (BDNF)-TrkB pathway. METHODS: hUCMSC-Exos were collected with differential ultracentrifugation methods and observed by transmission electron microscopy. Enzyme-linked immunosorbent assays (ELISAs) was used to quantify BDNF in hUCMSC-Exos, and Western blot was used to identify surface markers of hUCMSC-Exos. Rat retinal neurons were divided into 4 groups. Furthermore, cell viability, cell apoptosis, and TrkB protein expression were measured in retinal neurons. RESULTS: hUCMSCs and isolated hUCMSC-Exos were successfully cultured. All hUCMSC-Exos showed a diameter of 30 to 150 nm and had a phospholipid bimolecular membrane structure, as observed by transmission electron microscopy. ELISA showed the BDNF concentration of hUCMSCs-Exos was 2483.16±281.75. hUCMSCs-Exos effectively reduced the apoptosis of retinal neuron rate and improved neuron survival rate, meanwhile, the results of immunofluorescence verified the fluorescence intensity of TrKB in neurons increased. And all above effects were reduced by treated hUCMSCs-Exos with BDNF inhibitors. hUCMSC-Exos effectively reduced the apoptosis rate of retinal neurons by activating the BDNF-TrkB pathway in a HG environment. CONCLUSION: In the HG environment, hUCMSC-Exos could carry BDNF into rat retinal neurons, inhibiting neuronal apoptosis by activating the BDNF-TrkB pathway.

15.
Ann Anat ; 235: 151672, 2021 May.
Article in English | MEDLINE | ID: mdl-33434657

ABSTRACT

Cellular FLICE-inhibitory protein (c-FLIP), an anti-apoptotic regulator, shows remarkable similarities to caspase-8, which plays a key role in the cleavage of gasdermin D (GSDMD). It has been reported that the oxygen-glucose deprivation/recovery (OGD/R) model and lipopolysaccharide (LPS)/adenosine triphosphate (ATP) treatment could induce inflammation and pyroptosis. However, the regulatory role of c-FLIP in the pyroptotic death of retinal neurons is unclear. In this study, we hypothesized that c-FLIP might regulate retinal neuronal pyroptosis by GSDMD cleavage. To investigate this hypothesis, we induced retinal neuronal damage in vitro (OGD/R and LPS/ATP) and in vivo (acute high intraocular pressure [aHIOP]). Our results demonstrated that the three injuries triggered the up-regulation of pyroptosis-related proteins, and c-FLIP could cleave GSDMD to generate a functional N-terminal (NT) domain of GSDMD, causing retinal neuronal pyroptosis. In addition, c-FLIP knockdown in vivo ameliorated the already established visual impairment mediated by acute IOP elevation. Taken together, these findings revealed that decreased c-FLIP expression protected against pyroptotic death of retinal neurons possibly by inhibiting GSDMD-NT generation. Therefore, c-FLIP might provide new insights into the pathogenesis of pyroptosis-related diseases and help to elucidate new therapeutic targets and potential treatment strategies.


Subject(s)
Pyroptosis , Retinal Neurons , CASP8 and FADD-Like Apoptosis Regulating Protein , Glucose , Oxygen , Phosphate-Binding Proteins
16.
J Pineal Res ; 71(1): e12716, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33426650

ABSTRACT

Retinopathy of prematurity is a vision-threatening disease associated with retinal hypoxia-ischemia, leading to the death of retinal neurons and chronic neuronal degeneration. During this study, we used the oxygen-induced retinopathy mice model to mimic retinal hypoxia-ischemia phenotypes to investigate further the neuroprotective effect of melatonin on neonatal retinal neurons. Melatonin helped maintain relatively normal inner retinal architecture and thickness and preserve inner retinal neuron populations in avascular areas by rescuing retinal ganglion and bipolar cells, and horizontal and amacrine neurons, from apoptosis. Meanwhile, melatonin recovered visual dysfunction, as reflected by the improved amplitudes and implicit times of a-wave, b-wave, and oscillatory potentials. Additionally, elevated cleaved caspase-3 and Bax protein levels and reduced Bcl-2 protein levels in response to hypoxia-ischemia were diminished after melatonin treatment. Moreover, melatonin increased BDNF and downstream phospho-TrkB/Akt/ERK/CREB levels. ANA-12, a TrkB receptor antagonist, antagonized these melatonin actions and reduced melatonin-induced neuroprotection. Furthermore, melatonin rescued the reduction in melatonin receptor expression. This study suggests that melatonin exerted anti-apoptotic and neuroprotective effects in inner retinal neurons after hypoxia-ischemia, at least partly due to modulation of the BDNF-TrkB pathway.


Subject(s)
Melatonin/pharmacology , Neuroprotective Agents/pharmacology , Retinal Neurons/drug effects , Retinal Neurons/pathology , Retinopathy of Prematurity , Animals , Animals, Newborn , Hypoxia/etiology , Hypoxia/pathology , Ischemia/etiology , Ischemia/pathology , Mice , Mice, Inbred C57BL , Retinopathy of Prematurity/complications , Retinopathy of Prematurity/pathology
17.
CNS Neurol Disord Drug Targets ; 20(3): 285-297, 2021 10 26.
Article in English | MEDLINE | ID: mdl-33045971

ABSTRACT

BACKGROUND: Glaucoma is a multifactorial optic neuropathy progressively characterized by structural loss of Retinal Ganglion Cells (RGCs) and irreversible loss of vision. High Intraocular Pressure (HIOP) is a high-risk factor for glaucoma. It has been reported that the mechanisms of the loss of RGCs are explored in-depth after acute HIOP injury, such as apoptosis, autophagy, and necrosis. However, pyroptosis, a novel type of pro-inflammatory cell programmed necrosis, is rarely reported after HIOP injury. Research studies also showed that melatonin (MT) possesses substantial anti-inflammatory properties. However, whether melatonin could alleviate retinal neuronal death, especially pyroptosis, by HIOP injury is still unclear. OBJECTIVE: This study explored pyroptosis of retinal neurons and the effects of melatonin in preventing retinal neurons from pyroptosis after acute HIOP injury. METHODS: An acute HIOP model of rats was established by increasing the IOP followed by reperfusion. Western Blot (WB) was adopted to detect molecules related to pyroptosis at the protein level, such as GSDMD, GASMDp32, Caspase-1, and caspase-1 p20, and the products of inflammatory reactions, such as IL -18 and IL-1ß. At the same time, immunofluorescence (IF) was used to co-localize caspase-1 with retinal neurons to determine the position of caspase-1 expression. Morphologically, ethidium homodimer III staining, a method commonly used to evaluate cell death, was carried out to stain dead cells. Subsequently, Lactate Dehydrogenase (LDH) cytotoxicity assay kit was used to quantitatively analyze the LDH released after cell disruption. RESULTS: The results suggested that pyroptosis played a vital role in retinal neuronal death, especially in the Ganglion Cell Layer, by acute HIOP injury and peaked at 6h after HIOP injury. Furthermore, it was found that melatonin (MT) might prevent retinal neurons of pyroptosis via NF-κ B/NLRP3 axis after HIOP injury in rats. CONCLUSION: Melatonin treatment might be considered a new strategy for protecting retinal neurons against pyroptosis following acute HIOP injury.


Subject(s)
Melatonin/therapeutic use , Ocular Hypertension/drug therapy , Pyroptosis/drug effects , Retinal Neurons/drug effects , Animals , Caspase 1/metabolism , Interleukin-18/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats , Retinal Ganglion Cells/drug effects , Signal Transduction/drug effects
18.
International Eye Science ; (12): 240-243, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-862418

ABSTRACT

@#Retinal degenerative diseases, a type of blinding eye diseases in which retinal neuron apoptosis is the main pathological process. Neuronal cells cannot be regenerated after damage, Müller cells are important glial cells of the retina and involved in retinal development, damage, and regeneration process. In recent years, studies have proved that Müller cells are an endogenous alternative source for stimulating damaged retinal neurons and an excellent target for retinal nerve regeneration. This article reviews the related factors of Müller cells and retinal nerve regeneration, and provides a new direction for nerve regeneration research.

19.
JMA J ; 3(3): 201-207, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-33150254

ABSTRACT

The retina transmits light signals to the brain via a complex structure composed of photoreceptor cells, neurons including ganglion cells, glial cells such as astrocytes and Mueller cells, as well as retinal blood vessels that feed the retina. The retina performs such high-level physiological function and maintains homeostasis effectively through interactions among the cells that form the neurovascular units (NVUs). Furthermore, as a component of the blood‒retinal barrier (BRB), the vascular structure of the retina is functionally based on the NVUs, in which the nervous system and the vascular tissues collaborate in a mutually supportive relationship. Retinal neurons such as ganglion cells and amacrine cells are traditionally considered to be involved only in visual function, but multiple functionality of neurons attracted attention lately, and retinal neurons play an important role in the formation and function of retinal blood vessels. In other words, damage to neurons indirectly affects retinal blood vessels. Diabetic macular edema is the leading cause of vision loss in diabetic retinopathy, and this type of edema results in neurological and vascular disorders. In this article, the regulatory mechanism of retinal capillaries in diabetic macular edema is reviewed from the viewpoint of NVU.

20.
Micromachines (Basel) ; 11(6)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481670

ABSTRACT

Retinal implant devices are becoming an increasingly realizable way to improve the vision of patients blinded by photoreceptor degeneration. As an electrode material that can improve restored visual acuity, carbon nanotubes (CNTs) excel due to their nanoscale topography, flexibility, surface chemistry, and double-layer capacitance. If vertically aligned carbon nanotubes (VACNTs) are biocompatible with retinal neurons and mechanically robust, they can further improve visual acuity-most notably in subretinal implants-because they can be patterned into high-aspect-ratio, micrometer-size electrodes. We investigated the role of an aluminum (Al) underlayer beneath an iron (Fe) catalyst layer used in the growth of VACNTs by chemical vapor deposition (CVD). In particular, we cultured dissociated retinal cells for three days in vitro (DIV) on unfunctionalized and oxygen plasma functionalized VACNTs grown from a Fe catalyst (Fe and Fe + Pl preparations, where Pl signifies the plasma functionalization) and an Fe catalyst with an Al underlayer (Al/Fe and Al/Fe + Pl preparations). The addition of the Al layer increased the mechanical integrity of the VACNT interface and enhanced retinal neurite outgrowth over the Fe preparation. Unexpectedly, the extent of neurite outgrowth was significantly greater in the Al/Fe than in the Al/Fe+Pl preparation, suggesting plasma functionalization can negatively impact biocompatibility for some VACNT preparations. Additionally, we show our VACNT growth process for the Al/Fe preparation can support neurite outgrowth for up to 7 DIV. By demonstrating the retinal neuron biocompatibility, mechanical integrity, and pattern control of our VACNTs, this work offers VACNT electrodes as a solution for improving the restored visual acuity provided by modern retinal implants.

SELECTION OF CITATIONS
SEARCH DETAIL