Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 676
Filter
1.
Orphanet J Rare Dis ; 19(1): 364, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358755

ABSTRACT

We aim to illustrate the role of complete and transparent reporting coupled with access to data sourced from published systematic reviews, especially assisting in the identification of evidence for subgroups within the context of a rare disease. To accomplish this principle, we provide a real-world example encountered during the revision of the Dutch clinical practice guideline for hepatocellular carcinoma. Specifically, we retrieved insights from two Cochrane reviews to identify direct evidence concerning the diagnostic test accuracy of computed tomography and magnetic resonance imaging for detecting hepatocellular carcinomas in suspected patients without liver cirrhosis. Through reusing the Cochrane review authors' efforts already undertaken in their exhaustive literature search and selection, we successfully identified relevant direct evidence for this subgroup of suspected patients without cirrhosis and performed an evidence synthesis within the constraints of limited resources for the guideline revision. This approach holds the potential for replication in other subgroups in the context of rare diseases, contingent on the transparent and complete reporting of systematic reviews, as well as the availability and accessibility of their extracted data. Consequently, we underscore the importance of adhering to established reporting guidelines for systematic reviews, while simultaneously advocating for increased availability and accessibility to data. Such practices would not only increase the transparency and reproducibility of systematic reviews but could also increase reusability of their data. In turn, the increased reusability could result in reduced resource utilization in other sectors such as the guideline developing community as we show in our example.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/pathology , Liver/diagnostic imaging , Liver/pathology
2.
Chemistry ; : e202402804, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39348501

ABSTRACT

The synthesis of peptide drugs has become facile with the use of supports that enable easy separation of the growing peptide. Peptide synthesis on insoluble supports typically employs excess reagents to enhance reaction efficiency and faces challenges during intramolecular cyclization. A non-crosslinked soluble polystyrene support is reported herein that improves cyclization efficiency on the support by using spacers. The support efficiency is illustrated by synthesizing octreotide drug in a scalable manner by on-support cyclization. The methodology drastically reduces the reagent waste, raw-material cost, and solvent requirement. The support can also be recovered and re-used up to 3 times making this a very sustainable method.

3.
J Water Health ; 22(9): 1704-1724, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39340383

ABSTRACT

The adsorption of trihalomethanes (THMs) from drinking water was investigated in the current study through comparison studies of kaolinite and ZnO@kaolinite nanocomposites. The clay structural network's successful immobilization on the zincite hexagonal structure of ZnO nanoparticles' lattice layers was verified by the SEM/EDX analysis. Under the optimum conditions, the maximum removal of THMs was achieved by kaolinite and ZnO@kaolinite nanocomposites after 60 min. The adsorption performance of the ZnO@kaolinite nanocomposites was greater than that of kaolinite because the former had a larger surface area than the latter. The Freundlich isotherm model best matched the adsorption experimental data, which also reveals the existence of multilayer adsorption on a diverse surface with the greatest correlation (R2 = 0.956 and 0.954, respectively) for both nanoadsorbents using the pseudo-first-order (PFO), pseudo-second-order (PSO), mixed 1, 2-order (MFSO), and intraparticle diffusion (IPD) models. The mechanism by which THMs in drinking water adsorb onto nanoadsorbents was examined. This revealed that both intraparticle and film diffusion were involved in the adsorption process. Kaolinite and ZnO@kaolinite nanocomposites can be used in water treatment to remove THMs due to their great recyclable and reusable properties, even after six cycles.


Subject(s)
Kaolin , Nanocomposites , Trihalomethanes , Water Pollutants, Chemical , Water Purification , Zinc Oxide , Zinc Oxide/chemistry , Kaolin/chemistry , Water Purification/methods , Water Pollutants, Chemical/chemistry , Adsorption , Trihalomethanes/chemistry , Nanocomposites/chemistry , Drinking Water/chemistry , Models, Chemical , Kinetics
4.
Environ Sci Technol ; 58(39): 17376-17385, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39305248

ABSTRACT

The membrane fouling derived from the accumulated dust pollutants and highly viscous oily particles causes irreversible damage to the filtration performance of air filters and results in a significant reduction in their service life. However, it is still challenging to construct high-efficiency and antifouling air filtration membranes with recyclable regeneration. Herein, the fluorine-free amphiphobic micro/nanofiber composite membrane was controllably constructed by integrating click chemistry reaction and electrospinning technique. Low-surface-energy fibers were constructed by a thiol-ene click chemical reaction between mercaptosilane and vinyl groups of polystyrene-butadiene-styrene (SBS), combined with hydroxyl-terminated poly(dimethylsiloxane) during the electrospinning process. The functional air filter is then prepared by the two-layer composite strategy. Because of the advantages of liquid-like fibrous surface and micro/nanofibrous porous structure, SBS/PAN composite membrane simultaneously shows superior antifouling performances of pollutants and filtration efficiency of over 97% PM0.3 removal. More importantly, the antifouling fibrous membrane still presents a stable and efficient filtration efficiency after multiple washes. Its service life in dust filtration environments is approximately 1.7 times longer than that of the substrate membrane. This work may provide a significant reference for the design of antifouling fiber membranes and high-efficiency air filters with long life spans and reusability.


Subject(s)
Membranes, Artificial , Nanofibers , Nanofibers/chemistry , Filtration , Air Filters , Click Chemistry , Fluorine/chemistry
5.
Molecules ; 29(18)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39339476

ABSTRACT

Poly(N-isopropylacrylamide) (PNIPAM) offers a promising platform for non-invasive and gentle cell detachment. However, conventional PNIPAM-based substrates often suffer from limitations including limited stability and reduced reusability, which hinder their widespread adoption in biomedical applications. In this study, PNIPAM copolymer films were formed on the surfaces of glass slides or silicon wafers using a two-step film-forming method involving coating and grafting. Subsequently, a comprehensive analysis of the films' surface wettability, topography, and thickness was conducted using a variety of techniques, including contact angle analysis, atomic force microscopy (AFM), and ellipsometric measurements. Bone marrow mesenchymal stem cells (BMMSCs) were then seeded onto PNIPAM copolymer films prepared from different copolymer solution concentrations, ranging from 0.2 to 10 mg·mL-1, to select the optimal culture substrate that allowed for good cell growth at 37 °C and effective cell detachment through temperature reduction. Furthermore, the stability and reusability of the optimal copolymer films were assessed. Finally, AFM and X-ray photoelectron spectroscopy (XPS) were employed to examine the surface morphology and elemental composition of the copolymer films after two rounds of BMMSC adhesion and detachment. The findings revealed that the surface properties and overall characteristics of PNIPAM copolymer films varied significantly with the solution concentration. Based on the selection criteria, the copolymer films derived from 1 mg·mL-1 solution were identified as the optimal culture substrates for BMMSCs. After two rounds of cellular adhesion and detachment, some proteins remained on the film surfaces, acting as a foundation for subsequent cellular re-adhesion and growth, thereby implicitly corroborating the practicability and reusability of the copolymer films. This study not only introduces a stable and efficient platform for stem cell culture and harvesting but also represents a significant advance in the fabrication of smart materials tailored for biomedical applications.


Subject(s)
Acrylic Resins , Cell Adhesion , Mesenchymal Stem Cells , Mesenchymal Stem Cells/cytology , Acrylic Resins/chemistry , Cell Adhesion/drug effects , Cell Culture Techniques/methods , Surface Properties , Cell Proliferation/drug effects , Temperature , Animals , Microscopy, Atomic Force , Cells, Cultured , Bone Marrow Cells/cytology
6.
Sensors (Basel) ; 24(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39275382

ABSTRACT

This research investigated the sustainability of textile garments with integrated electronics and their potential impact on the environment. The electronic textiles (E-textiles) sector is booming, with many advancements in E-textile product designs and construction methods having been made in recent years. Although there is a rapidly increasing interest in the reusability and sustainability of textiles, work towards E-textile sustainability requires further attention. Vastly different components are combined when constructing an electronic textile product, which makes it challenging at the end of the life of these products to dispose of them in a responsible way. In this study, a teardown analysis was conducted using a structured method, which first mapped out the interactions between each component of the product with the environment, followed by using Kuusk's sustainable framework to analyze sustainable strategies. The research provides a unique contribution to transitioning sustainability theories into practical applications in the area of E-textiles, and the method proposed in this work can be employed in modifying electronics-embedded textiles to improve longevity and reduce the negative environmental impact. The work has highlighted key points of improvement that could be applied to a series of commercial E-textile garments, as well as a prototype E-textile device. Beyond this, the work provides a systematic approach for implementing new E-textile product designs that can evaluate overall product sustainability from the design stage to material selection, construction, and the planning of the commercial approaches of a product.

7.
Materials (Basel) ; 17(18)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39336259

ABSTRACT

The present study is integrated in a global effort to capitalize waste cooking oil (WCO) into versatile compounds by introducing an oxirane ring into the unsaturated carbon chain of fatty acid residues (the epoxidation of double bound). Therefore, an enzymatic method was set up for the epoxidation of artificially adulterated WCO (SFw) and WCO under real conditions (SFr) derived from sunflower biomass. Commercial lipase (Novozyme, NZ) was used as a biocatalyst for generating the peracid requested by the epoxidation pathway. Optimum experimental conditions (e.g., 1.5 wt% NZ, 1:1:0.5 = H2O2/double bonds/peracid precursor (molar ratio) and 12 h reaction time) allowed for the conversion of 90% of the SFw substrate into products with an oxirane ring. Octanoic acid was selected as the best peracid precursor. The versatility of the developed system was tested for olive, milk thistle, hemp and linseed oils as both fresh and WCO samples. The characterization of the oil samples before and after the enzymatic epoxidation allowed for the evaluation of the system performance. SFw/SFr exhibited a better susceptibility to enzymatic epoxidation. In addition, the reusability of the biocatalytic system was investigated. Furthermore, different strategies, such as biocatalyst coating and the addition of organic solvents/buffers were applied, limiting enzyme leaching, for the better recovery of the biocatalyst activity.

8.
Materials (Basel) ; 17(18)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39336404

ABSTRACT

This comprehensive study explores the kinetics of adsorption and its photocatalytic degradation of methyl orange (MO) using an advanced copper-decorated photocatalyst in the form of hollow fibers (HFs). Designed to boost both adsorption capacity and photocatalytic activity, the photocatalyst was tested in batch experiments to efficiently remove MO from aqueous solutions. Various isotherm models, including Langmuir, Freundlich, Sips, Temkin, and Dubinin-Radushkevich, along with kinetic models like pseudo-first and pseudo-second order, Elovich, Bangham, and Weber-Morris, were utilized to assess adsorption capacity and kinetics at varying initial concentrations. The results indicated a favorable MO physisorption on the nanocomposite photocatalyst under specific conditions. Further analysis of photocatalytic degradation under UV exposure revealed that the material maintained high degradation efficiency and stability across different MO concentrations. Through the facilitation of reactive oxygen species generation, oxygen played a crucial role in enhancing photocatalytic performance, while the degradation process following the Langmuir-Hinshelwood model. The study also confirmed the robustness and sustained activity of the nanocomposite photocatalyst, which could be regenerated and reused over five successive cycles, maintaining 92% of their initial performance at concentrations up to 15 mg/L. Overall, this effective nanocomposite photocatalyst structured in the form of HF shows great promise for effectively removing organic pollutants through combined adsorption and photocatalysis, offering valuable potential in wastewater treatment and environmental remediation.

9.
Gels ; 10(9)2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39330199

ABSTRACT

According to environmental concerns related to water pollution, this study aims to develop a novel hydrogel bead as a biocompatible and efficient adsorbent by integrating bacterial cellulose-activated carbon (BCAC) and montmorillonite (MT) in alginate hydrogel (ALG). The ionotropic gelation method was applied to the fabrication of BCAC/MT/ALG hydrogel beads. The BCAC/MT/ALG hydrogel bead exhibited significantly higher tensile strength, Young's modulus, and thermal stability, with ~1.4 times higher adsorption uptake of methylene blue (MB) from aqueous solution as compared to the pristine ALG bead. The textural properties, including specific surface area and porosity, were beneficial to accommodate the size of cationic MB as the target molecule. This resulted in a remarkable MB adsorption uptake of 678.2 mg/g at pH 7 and 30 °C. The adsorption isotherm showed the best fit for the nonlinear Redlich-Peterson isotherm model. Experimental adsorption data were well-described by the pseudo-second order kinetic model, with R2 values reaching 0.997. In addition, the adsorbent bead demonstrated easy regeneration with high reusability with approximately 75% of MB removal after being used for six cycles. Therefore, BCAC/MT/ALG bead represents an eco-friendly, cost-effective, and highly efficient adsorbent for MB removal from water and could potentially be used for removal of a wide range of cationic dye pollutants from wastewater.

10.
Sensors (Basel) ; 24(18)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39338852

ABSTRACT

Many natural and artificial liquid environments, such as rivers, oceans, lakes, water storage tanks, aquariums, and urban water distribution systems, are difficult to access. As a result, technology is needed to enable autonomous liquid sampling to monitor water quality and ecosystems. Existing in situ sample acquisition and handling systems for liquid environments are currently limited to a single use and are semi-autonomous, relying on an operator. Liquid sampling systems should be robust and light and withstand long-term operation in remote locations. The system components involved in liquid sampling should be sterilisable to ensure reusability. Here, we introduce a prototype of a liquid sampler that can be used in various liquid environments and may be valuable for the scientific characterisation of different natural, remote, and planetary settings. The Autonomous Planetary Liquid Sampler (APLS) is equipped with pre-programmed, fully autonomous extraction, cleaning, and sterilisation functionalities. It can operate in temperatures between -10 °C and 60 °C and pressure of up to 0.24 MPa (~24 m depth below mean sea level on Earth). As part of the control experiment, we demonstrate its safe and robust autonomous operation in a laboratory environment using a liquid media with Bacillus subtilis. A typical sampling procedure required 28 s to extract 250 mL of liquid, 5 s to fill the MilliQ water, 25 s for circulation within the system for cleaning and disposal, and 200 s to raise the system temperature from ~30 °C ambient laboratory temperature to 150 °C. The temperature is then maintained for another 3.2 h to sterilise the critical parts, allowing a setup reset for a new experiment. In the future, the liquid sampler will be combined with various existing analytical instruments to characterise the liquid solution and enable the autonomous, systematic monitoring of liquid environments on Earth.

11.
Molecules ; 29(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39339294

ABSTRACT

The increasing global requirement for clean and safe drinking water has necessitated the development of efficient methods for the elimination of organic contaminants, especially dyes, from wastewater. This study reports the synthesis of magnesium oxide (MgO) nanoparticles via a simple precipitation approach and their thorough characterization using various techniques, including XRD, FT-IR, XPS, TGA, DLS, and FESEM. Synthesized MgO nanoparticles' photocatalytic effectiveness was evaluated towards rhodamine B and rhodamine 6G degradation under both UV and visible light irradiation. The results indicated that the MgO nanoparticles possess a face-centered cubic structure with enhanced crystallinity and purity, as well as an average crystallite size of approximately 3.20 nm. The nanoparticles demonstrated a significant BET surface area (52 m2/g) and a bandgap value equal to 5.27 eV. Photocatalytic experiments indicated complete degradation of rhodamine B dye under UV light within 180 min and 83.23% degradation under visible light. For rhodamine 6G, the degradation efficiency was 92.62% under UV light and 38.71% under visible light, thus verifying the MgO catalyst's selectivity towards degradation of rhodamine B dye. Also, reusability of MgO was investigated for five experimental photocatalytic trials with very promising results, mainly against rhodamine B. Scavenging experiments confirmed that •OH radicals were the major reactive oxygen species involved in the photodegradation procedure, unraveling the molecular mechanism of the photocatalytic efficiency of MgO.

12.
Chemosphere ; 364: 143103, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39154760

ABSTRACT

We applied a holistic, sustainable, and green approach to develop an effective multipurpose adsorbent from whole pine needles (PNs), a forest waste lignocellulosic biomass. The PNs were oxidized and modified with phenylhydrazine-4-sulphonic acid (ɸHSO3H) to OPN-ɸHSO3H. The latter was characterized and tested as an adsorbent for cationic dyes, malachite green (MG), methylene blue (MB), crystal violet (CV), and metal ions (Hg2⁺ and Pb2⁺). The adsorption followed different kinetic models: Elovich for MG and MB, pseudo-second-order for CV, and pseudo-first-order for Hg2⁺ and Pb2⁺. Langmuir isotherm indicated maximum adsorption capacities of 303.4 ± 8.91 mgg-1 (MG), 331.4 ± 17.50 mgg-1 (MB), 376.6 ± 22.47 mgg-1 (CV), 210.8 ± 28.86 mgg-1 (Hg2⁺), and 172.9 ± 20.93 mgg-1 (Pb2⁺) within 30 min. Maximum removal efficiencies were 99.0% (MG), 98.0% (MB), 96.04% (CV), 95.5% (Hg2⁺), and 89.8% (Pb2⁺). The adsorbent demonstrated significant regeneration and reusability over ten cycles, proving highly efficient for both cationic dyes and metal ions, with wide potential for practical applications where more than one adsorbate is present.


Subject(s)
Biomass , Coloring Agents , Metals, Heavy , Phenylhydrazines , Pinus , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Coloring Agents/chemistry , Water Pollutants, Chemical/chemistry , Pinus/chemistry , Adsorption , Metals, Heavy/chemistry , Phenylhydrazines/chemistry , Kinetics , Cations/chemistry , Waste Disposal, Fluid/methods , Rosaniline Dyes/chemistry , Water Purification/methods , Plant Leaves/chemistry , Methylene Blue/chemistry
13.
Int J Biol Macromol ; 278(Pt 3): 135005, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39181351

ABSTRACT

Dyes are indispensable for the rapid development of society, but untreated dye wastewater can threaten human health. In this study, an adsorbent (SA/SL/CCS/PEI@MNPs) was synthesized by one-pot method using magnetic nanoparticles (MNPs), sodium alginate (SA), sodium lignosulfonate (SL), carboxylated chitosan (CCS) and polyethyleneimine (PEI). The adsorbent was mesoporous micrometer-sized particles with pore size of 34.92 nm, which was favorable for dynamic column experiments. SA/SL/CCS/PEI@MNPs possessed pH-responsive performance. Under acidic condition, the maximum adsorption capacities for anionic dyes (tartrazine, reactive black-5, indigo carmine) reached >550 mg/g. Under alkaline condition, those for cationic dyes (methylene blue, methyl violet, neutral red) exceeded 1900 mg/g. The function of the various modifiers was investigated. The results indicated that the incorporation of SL, CCS and PEI was able to provide plenty of sulfonate, carboxylate and amino/imine reactive groups so that adsorption capacities of dyes were improved. The adsorption mechanism was explored by FTIR and XPS. At the same time, the adsorption mechanism was more deeply analyzed using molecular dynamics simulations and radial distribution function. It was demonstrated that the dyes adsorption on the SA/SL/CCS/PEI@MNPs was mainly due to electrostatic attraction and π-π interaction. In addition, the adsorbent had good reusability, and the removal still reached over 90 % after five cycles. In conclusion, the adsorbent displayed a broad prospect for the adsorption of organic dyes.


Subject(s)
Alginates , Chitosan , Coloring Agents , Lignin , Polyethyleneimine , Water Pollutants, Chemical , Chitosan/chemistry , Chitosan/analogs & derivatives , Alginates/chemistry , Polyethyleneimine/chemistry , Adsorption , Coloring Agents/chemistry , Coloring Agents/isolation & purification , Hydrogen-Ion Concentration , Lignin/chemistry , Lignin/analogs & derivatives , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods
14.
J Biotechnol ; 394: 1-10, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39153546

ABSTRACT

Biocatalytic membranes have great potential in various industrial sectors, with the immobilization of enzymes being a crucial stage. Immobilizing enzymes through covalent bonds is a complex and time-consuming process for large-scale applications. Polydopamine (PDA) offers a more sustainable and eco-friendly alternative for enzyme immobilization. Therefore, surface modification with polydopamine as mussel-inspired antifouling coatings has increased resistance to fouling. In this study, α-amylase enzyme was covalently bound to a bioactive PDA-coated polyethersulfone (PES) membrane surface using cyanuric chloride as a linker. The optimal activity of α-amylase enzyme immobilized on PES/PDA membrane was obtained at temperature and pH of 55°C and 6.5, respectively. The immobilized enzyme can be reused up to five reaction cycles with 55 % retention of initial activity. Besides, it maintained 60 % of its activity after being stored for five weeks at 4°C. Additionally, the immobilized enzyme demonstrated increased Michaelis constant and maximum velocity values during starch hydrolysis. The results of the biofouling experiment of various membranes in a dead-end cell demonstrated that the PES membrane's water flux increased from 6722.7 Lmh to 7560.2 Lmh after PDA modification. Although α-amylase immobilization reduced the flux to 7458.5 Lmh due to enhanced hydrophilicity, compared to unmodified membrane. The findings of this study demonstrated that the membrane produced through co-deposition exhibited superior hydrophilicity, enhanced coating stability, and strong antifouling properties, positioning it as a promising candidate for industrial applications.


Subject(s)
Enzyme Stability , Enzymes, Immobilized , Indoles , Membranes, Artificial , Polymers , Sulfones , alpha-Amylases , Indoles/chemistry , Polymers/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Sulfones/chemistry , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Hydrogen-Ion Concentration , Biofouling/prevention & control , Temperature , Hydrolysis , Triazines
15.
Food Chem ; 461: 140852, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39167946

ABSTRACT

Foodborne heterocyclic aromatic amines (HAAs) are potent mutagens and carcinogens, posing significant health risks. Existing enrichment methods for HAAs need better adsorption selectivity and capacity for daily exposure assessment. This study hypothesized that introducing carboxylic groups into magnetic covalent organic frameworks (m-COFs) would improve HAAs adsorption by providing additional binding sites. Hence, we prepared a novel magnetic adsorbent, termed as Fe3O4@DOPA-TpPa-(COOH)2 capable of enhancing the HAAs detection through magnetic solid-phase extraction (MSPE) coupled with UPLC-MS. This sorbent demonstrated a large specific surface area (130.7 m2/g), high magnetic responsivity (21.05 emu/g), and robust stability, with an adsorption capacity (Qm[cal]: 81.82 mg/g) driven by electrostatic, LP - π/C-H - π interactions, and hydrogen bonding. Optimal MSPE conditions provided sensitive detection with a broad linear range (5-500 ng/mL), low limits of detection (0.01-7.01 ng/g), and excellent repeatability. Application to Cantonese mooncake samples showed satisfactory recoveries (62.12%-126.86%). This method offers a more accurate tool for detecting HAAs.


Subject(s)
Amines , Food Contamination , Heterocyclic Compounds , Solid Phase Extraction , Amines/chemistry , Food Contamination/analysis , Chromatography, High Pressure Liquid , Heterocyclic Compounds/chemistry , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Adsorption , Metal-Organic Frameworks/chemistry , Mass Spectrometry , Liquid Chromatography-Mass Spectrometry
17.
Biosens Bioelectron ; 265: 116710, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39190969

ABSTRACT

The advancement in miniaturized Raman spectrometers, coupled with the single-molecule-level sensitivity and unique fingerprint identification capability of surface-enhanced Raman scattering (SERS), offers great potential for point-of-care testing (POCT). Despite this, accurately quantifying analyte molecules, particularly in complex samples with limited sample volumes, remains difficult. Herein, we present a versatile and reusable SERS microplatform for highly sensitive and reliable quantitative detection of adenosine triphosphate (ATP) in biological fluids. The platform utilizes gold-Prussian blue core-shell nanoparticles modified with polyethyleneimine (Au@PB@PEI NPs), embedded within gold nanoparticle-immobilized capillary-based silica monolithic materials. PB acts as an internal standard, while PEI enhances molecular capture. The periodic, bimodal porous structure of the silica monolithic materials provides uniform and abundant sites for nanoparticle attachment, facilitating rapid liquid permeation, intense SERS enhancement, and efficient enrichment. The platform regulates ATP capture and release through magnesium ions in the liquid phase, eliminating matrix interferences and enabling platform reuse. Integrating efficient molecular enrichment, separation, an interference-free internal standard, a liquid flow channel, and a detection chamber, our platform offers simplicity in operation, exceptional sensitivity and accuracy, and rapid analysis (∼10 min). Employing PB as an internal calibration standard, ratiometric Raman signals (I732/I2123) facilitate precise ATP quantification, achieving a remarkable limit of detection down to 0.62 pM. Furthermore, this platform has been proven to be highly reproducible and validated for ATP quantification in both mouse cerebrospinal fluid and human serum, underscoring its immense potential for POCT applications.


Subject(s)
Adenosine Triphosphate , Biosensing Techniques , Gold , Metal Nanoparticles , Point-of-Care Testing , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Adenosine Triphosphate/analysis , Adenosine Triphosphate/blood , Gold/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Animals , Humans , Limit of Detection , Mice , Polyethyleneimine/chemistry , Ferrocyanides/chemistry , Equipment Design , Silicon Dioxide/chemistry
18.
J Biotechnol ; 393: 117-127, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39098744

ABSTRACT

This study focuses on the development a green synthesis of epoxy fatty acids (EFAs) which are commonly used as the plasticizer in polymer industries. The intracellular lipases of Candida catenulata cells as a whole-cell biocatalyst (WCB) were examined in the bio-epoxidation of free fatty acids (FFAs) with hydrogen peroxide. The FFAs in soybean soap stock, an industrial by-product of vegetable oil factories, was used as the feedstock of the process. To remove phosphates from soap stock a degumming process was tested before the bio-epoxidation reaction and results revealed that the EFAs yield was improved using the degummed fatty acids (DFAs). The attachments of magnetic Fe3O4 nanoparticles to the surface of WCBs facilitated the recovery of the biocatalyst, and were improved stabilities. The activation energy for the magnetic whole-cell biocatalysts (MWCB) was 48.54 kJ mol-1, which was lower than the WCB system (51.28 kJ mol-1). The EFA yield was about 47.1 % and 33.8 % after 3 h for the MWCBs and 2 h for the WCBs, respectively. The MWCBs displayed acceptable reusability in the repetitious bio-epoxidation reaction with maintaining 59 % of the original activity after 5 cycles whereas the performance of the WCBs was 5.9 % at the same conditions. The effects of influential factors such as reaction time, molar ratio of H2O2 to CC, and batch and semi-batch operations were investigated for both biocatalyst systems. The quality of EFAs was characterized by FTIR and GC-MS analyses.


Subject(s)
Biocatalysis , Candida , Epoxy Compounds , Fatty Acids , Lipase , Lipase/metabolism , Lipase/chemistry , Candida/enzymology , Fatty Acids/metabolism , Epoxy Compounds/metabolism , Epoxy Compounds/chemistry , Hydrogen Peroxide/metabolism , Green Chemistry Technology/methods
19.
J Hazard Mater ; 477: 135413, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39106730

ABSTRACT

Developing recyclable adsorbents for co-capture of I2 and CH3I gas is a meaningful and challenging topic. Herein, Cu0-based mesoporous silica (C-S) materials were synthesized and applied for CH3I capture for the first time. Factors (Cu0 content, temperature, contact time and CH3I concentration) affecting the adsorption behavior were investigated. The results demonstrated that the CH3I adsorption capacity of the obtained C-S materials reached up to 1060 mg/g at 200 â„ƒ. Furthermore, the C-S material exhibited excellent reusability (91.3 %, 5 cycles). It was found that Cu0 could cleave the carbon iodine bonds, causing CH3I to dissociate into •CH3 and I-. Then the Cu+ converted from Cu0 reacted with I- to achieve the purpose of CH3I capture. The adsorption mechanism of CH3I on the C-S materials could be concluded that Cu0 reacted with CH3I form CuI (Cu + CH3I → CuI + •CH3). This work suggested that the obtained C-S materials could be promising adsorbents for CH3I capture.

20.
Int J Biol Macromol ; 279(Pt 1): 134913, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39208906

ABSTRACT

An increasing quantity of pollutants has been discharged into the aquatic media, posing a serious hazard to public health. To address this issue, a new sorbent material, MXene@i.Carr@MaMb, was developed through the functionalization of the MXene surface using iota-carrageenan (i.Carr), maleic anhydride, and N, N'-methylene bis-acrylamide. This sorbent material was designed to remove thorium (Th (IV)) effectively, uranium (U (IV)), sulfamethoxazole (SMX), and levofloxacin (LEV) from wastewater. The MXene@i.Carr@MaMb composite incorporated significant functional groups, including OH, F, and O from MXene, oxygen and ester sulfate groups from iota-carrageenan (i.Carr), and OH, NH, and CO groups from N, N'-methylene bis-acrylamide, and maleic anhydride, which interacted with the UV (IV), Th (IV), SMX, and LEV pollutants through electrostatic interaction, complexation, and hydrogen bonding. MXene@i.Carr@MaMb composite exhibited excellent sorption capacities for Th (IV) (3.6 ± 0.03 mmol g-1), U (IV) (3.7 ± 0.09 mmol g-1), SMX (5.8 ± 0.03 mmol g-1), and LEV (5.9 ± 0.05 mmol g-1) at 323.15 K. The sorption kinetics and isotherms of radioactive metals and antibiotics can be well-described using pseudo-first-order kinetic models and Langmuir and Sips isothermal equations. This study presented a novel sorbent material for efficiently removing radioactive metals and antibiotics from wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL