Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
ACS Nano ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39185924

ABSTRACT

Smart polymeric switchable adhesives represent a rapidly emerging class of advanced materials, exhibiting the ability to undergo on-demand transitioning between "On" and "Off" adhesion states. By selectively tuning external stimuli triggers (including temperature, light, electricity, magnetism, and chemical agents), we can engineer these materials to undergo reversible changes in their bonding capabilities. The strategic design selection of stimuli is a pivotal factor in the design of switchable adhesive systems. This review outlines recent advancements in the field of smart switchable polymeric adhesives over the past decade with a focus on the selection of stimulus triggers. These systems are further categorized into one of four adhesion switching mechanisms upon initiation by a specific stimuli-trigger: (i) interfacial adhesion, (ii) stiffness, (iii) contact area, or (iv) suction-based switching. Evaluation of adhesion switching performance across systems is primarily made based on three key metrics: (i) maximum adhesion strength, (ii) switch ratio, and (iii) switch time. Different stimuli and mechanisms offer distinct advantages and limitations, influencing the performance characteristics and applicability of these materials across domains such as detachable biomedical devices, robotic grippers, and climbing robots. This review thus offers a perspective on the present advancements and challenges in this emerging field, along with insights into future directions.

2.
Adv Sci (Weinh) ; 11(31): e2400938, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885493

ABSTRACT

It remains a great challenge to achieve strong and reversible hydrogel adhesion. Hydrogel adhesives also suffer from poor environmental stability due to dehydration. To overcome these problems, here reversible adhesive gels are designed using a new switching mechanism and new solvent. For the first time, the study observes UCST (upper critical solution temperature)-type thermosensitive behaviors of poly(benzyl acrylate) (PBnA) polymer and gel in menthol:thymol deep eutectic solvents (DESs). The temperature-induced phase transition allows adjusting cohesive force, and hence adhesion strength of PBnA gels by temperature. To further improve the mechanical and adhesion properties, a peptide crosslinker is used to allow energy dissipation when deforming. The resulting eutectogel exhibits thermal reversible adhesion with a high switching ratio of 14.0. The adhesion strength at attachment state reaches 0.627 MPa, which is much higher than most reversible adhesive hydrogels reported before. The low vapor pressure of DES endows the gel excellent environmental stability. More importantly, the gel can be repeatedly switched between attachment and detachment states. The strong and reversible gel adhesive is successfully used to design soft gripper for the transport of heavy cargos and climbing robot capable of moving on vertical and inverted surface in a manner similar to gecko.

3.
Small ; 20(33): e2401144, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38552250

ABSTRACT

On-demand switch on/off blood clogging is of paramount importance for the survival of mammals, for example as a quick response to seal damage wounds to minimize their bleeding rate. This mechanism is a complex chain process from initiated red blood cell aggregation at the target location (open wound) that quickly seals on a macroscopic scale the damaged flash. Inspired by nature an on-demand switchable particle clogging mechanism is developed with high spatial resolution down to micrometer size using light as an external non-invasive stimulation. Particle clogging can be adjusted on demand strong enough to even withstand pressure-driven fluid flow, additionally building up walls of aggregated particles, which stop the momentum of big particles under shear. The principle relies on a photosensitive surfactant, which induces under light illumination a long-ranged lateral attractive phoretic-osmotic activity of silica microparticles forcing them to aggregate. The strength of aggregation and therefore motion reduction or even stop of the particles against the fluid flow depends on the ratio between the aggregation strength and the velocity of the particles. The aggregation strength can be precisely controlled by the applied light intensity and adjusted particle concentration. Increasing both parameters results in a stronger aggregation tendency.

4.
Chemistry ; 30(24): e202304349, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38308610

ABSTRACT

Supramolecular reversible adhesives have garnered significant attention due to their potential applications in various fields. These adhesives exhibit remarkable properties such as reversible adhesion, self-healing, and high flexibility. This concept aims to present a comprehensive overview of the current research progress in developing supramolecular reversible adhesives. Firstly, the fundamentals of supramolecular chemistry and the principles underlying the design and synthesis of reversible adhesive systems are discussed. Next, the concept focuses on characterizing the reversible adhesion strength of supramolecular adhesive systems that have been developed. The adhesion performance of supramolecular reversible adhesives is summarized, highlighting their unique characteristics and promising applications. Finally, the challenges and future perspectives in the field of supramolecular reversible adhesives are discussed. The comprehensive overview provided in this concept aims to inspire further research and innovation in this exciting field.

5.
Adv Healthc Mater ; 13(14): e2400089, 2024 06.
Article in English | MEDLINE | ID: mdl-38354105

ABSTRACT

Oral wound treatment faces challenges due to the complex oral environment, thus, sealing the wound quickly becomes necessary. Although some materials have achieved adhesion and sterilization, how to effectively solve the contradiction between strong adhesion and on-demand removal remains a challenge. Herein, a reversibly adhesive hydrogel is designed by free radical copolymerization of cationic monomer [2-(acryloyloxy) ethyl] trimethylammonium chloride (ATAC), hydrophobic monomer ethylene glycol phenyl ether acrylate (PEA) and N-isopropylacrylamide (NIPAAm). The cationic quaternary ammonium salts provide electrostatic interactions, the hydrophobic groups provide hydrophobic interactions, and the PNIPAAm chain segments provide hydrogen bonding, leading to strong adhesion. Therefore, the hydrogel obtains an adhesion strength of 18.67 KPa to oral mucosa and can seal wounds fast within 10 s. Furthermore, unlike pure PNIPAAm, the hydrogel has a lower critical solution temperature of 40.3 °C due to the contribution of ATAC and PEA, enabling rapid removal with 40 °C water after treatment. In addition, the hydrogel realizes excellent anti-swelling ratio (≈80%) and antibacterial efficiency (over 90%). Animal experiments prove that the hydrogel effectively reduces inflammation infiltration, promotes collagen deposition and vascular regeneration. Thus, hydrogel as a multi-functional dressing has great application prospects in oral wound management.


Subject(s)
Anti-Bacterial Agents , Hydrogels , Wound Healing , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Adhesives/chemistry , Adhesives/pharmacology , Mice , Rats
6.
ACS Appl Mater Interfaces ; 16(5): 6462-6473, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38266189

ABSTRACT

The peelable microwave absorption (MA) coating with reversible adhesion for stable presence on substrates and easy release without any residuals is highly desired in temporary electromagnetic protection, which can quickly enter and disengage the electromagnetic protection state according to the real-time changeable harsh surroundings. On the contrary, with the incorporation of abundant absorbent to achieve excellent MA ability, the tunable adhesion and sufficient cohesion are extremely challenging to fulfill the above requirement. The reported peelable coatings still have problems in controlling adhesion/cohesion strength and coating release, facing substantial residuals after peeling even using complex chemical modification or abundant additives. Herein, a peelable MA coating based on the block characteristics of polar and nonpolar segments of poly(styrene-(ethylene-co-butylene)-styrene) (SEBS) is successfully developed. The polyaniline-decorated carbon nanotube as a microwave absorber plays a positive influence on the adhesion/cohesion of the coating due to bonding interaction. The competitive effective absorption bandwidth (EAB) of 8.8 GHz and controllable yet reversible adhesion release on various substrates and complex surfaces have been achieved. The reusability endows peelable MA coating with 93% retention of EAB even after ten coating-peeling cycles. The coating with excellent chemical and adhesion stability can effectively protect substrates from salt/acid/alkali corrosion, showing over 98% retention of EAB even after 8 h of accelerated corrosion. Our peelable MA coating via a general yet reliable approach provides a prospect for temporary electromagnetic protection.

7.
Bioact Mater ; 30: 62-72, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37575876

ABSTRACT

Protecting the skin from UV light irradiation in wet and underwater environments is challenging due to the weak adhesion of existing sunscreen materials but highly desired. Herein we report a polyethyleneimine/thioctic acid/titanium dioxide (PEI/TA/TiO2) coacervate-derived hydrogel with robust, asymmetric, and reversible wet bioadhesion and effective UV-light-shielding ability. The PEI/TA/TiO2 complex coacervate can be easily obtained by mixing a PEI solution and TA/TiO2 powder. The fluid PEI/TA/TiO2 coacervate deposited on wet skin can spread into surface irregularities and subsequently transform into a hydrogel with increased cohesion, thereby establishing interdigitated contact and adhesion between the bottom surface and skin. Meanwhile, the functional groups between the skin and hydrogel can form physical interactions to further enhance bioadhesion, whereas the limited movement of amine and carboxyl groups on the top hydrogel surface leads to low adhesion. Therefore, the coacervate-derived hydrogel exhibits asymmetric adhesiveness on the bottom and top surfaces. Moreover, the PEI/TA/TiO2 hydrogel formed on the skin could be easily removed using a NaHCO3 aqueous solution without inflicting damage. More importantly, the PEI/TA/TiO2 hydrogel can function as an effective sunscreen to block UV light and prevent UV-induced MMP-9 overexpression, inflammation, and DNA damage in animal skin. The advantages of PEI/TA/TiO2 coacervate-derived hydrogels include robust, asymmetric, and reversible wet bioadhesion, effective UV light-shielding ability, excellent biocompatibility, and easy preparation and usage, making them a promising bioadhesive to protect the skin from UV light-associated damage in wet and underwater environments.

8.
R Soc Open Sci ; 10(3): 221263, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36908990

ABSTRACT

Biomimetic adhesives with a stiff fibre-reinforced base layer generate strong attachment, even without bioinspired micropatterning of the contact surface. However, current fibre-reinforced adhesive designs are still less versatile with respect to substrate variability than their biological counterparts. In this study, we enhance the comformability of a fibre-reinforced adhesive on curved substrates by adding bioinspired soft backings. We designed and fabricated soft backing variations (polyurethane foams and silicone hydroskeletons) with varying compressive stiffnesses that mimic the soft viscoelastic structures in the adhesive appendages of tree frogs, geckos and other animals. The backings were mounted on a smooth silicone layer enforced with a polyester mesh, and we experimentally investigated the contact area and friction performance of these adhesives on a curved substrate. The results show that the contact area and friction created by a fibre-reinforced adhesive with a soft backing in contact with a non-flat substrate scale inversely with backing stiffness. The integration of stiff fibre-reinforcement with a compressible backing represents an important step in bringing bioinspired adhesives out of the laboratory and into the real world, for example in soft robotic grippers. Moreover, our findings stimulate further research into the role of soft tissues in biological adhesive systems.

9.
Biomimetics (Basel) ; 8(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36648826

ABSTRACT

The agile locomotion of adhesive animals is mainly attributed to their sophisticated hierarchical feet and reversible adhesion motility. Their structure-function relationship is an urgent issue to be solved to understand biologic adhesive systems and the design of bionic applications. In this study, the reversible adhesion/release behavior and structural properties of gecko toes were investigated, and a hierarchical adhesive bionic toe (bio-toe) consisting of an upper elastic actuator as the supporting/driving layer and lower bionic lamellae (bio-lamellae) as the adhesive layer was designed, which can adhere to and release from targets reversibly when driven by bi-directional pressure. A mathematical model of the nonlinear deformation and a finite element model of the adhesive contact of the bio-toe were developed. Meanwhile, combined with experimental tests, the effects of the structure and actuation on the adhesive behavior and mechanical properties of the bio-toe were investigated. The research found that (1) the bending curvature of the bio-toe, which is approximately linear with pressure, enables the bio-toe to adapt to a wide range of objects controllably; (2) the tabular bio-lamella could achieve a contact rate of 60% with a low squeeze contact of less than 0.5 N despite a ±10° tilt in contact posture; (3) the upward bending of the bio-toe under negative pressure provided sufficient rebounding force for a 100% success rate of release; (4) the ratio of shear adhesion force to preload of the bio-toe with tabular bio-lamellae reaches approximately 12, which is higher than that of most existing adhesion units and frictional gripping units. The bio-toe shows good adaptability, load capacity, and reversibility of adhesion when applied as the basic adhesive unit in a robot gripper and wall-climbing robot. Finally, the proposed reversible adhesive bio-toe with a hierarchical structure has great potential for application in space, defense, industry, and daily life.

10.
J Theor Biol ; 557: 111315, 2023 01 21.
Article in English | MEDLINE | ID: mdl-36332666

ABSTRACT

Several creatures can climb on smooth surfaces with the help of hairy adhesive pads on their legs. A rapid change from strong attachment to effortless detachment of the leg is enabled by the asymmetric geometry of the tarsal hairs. In this study, we propose mechanisms by which the hairy pad can be easily detached, even when the hairs possess no asymmetry. Here, we examine the possible function of the tibia-tarsus leg joint and the claws. Based on a spring-based model, we consider three modes of detachment: vertically pulling the pad while maintaining either a (1) fixed or a (2) free joint, or by (3) flexing the pad about the claw. We show that in all cases, the adhesion force can be significantly reduced due to elastic forces when the hairs deform non-uniformly across the array. Our proposed model illustrates the design advantage of such fibrillar adhesive systems, that not only provide strong adhesion, but also allow easy detachment, making them suitable as organs for fast locomotion and reliable hold. The presented approaches can be potentially used to switch the adhesion state in bio-inspired fibrillar adhesives, by incorporating artificial joints and claws into their design, without the need of asymmetric or stimuli-responsive fibrillar structures.


Subject(s)
Adhesives , Cytoskeleton , Locomotion , Seasons , Tibia
11.
Colloids Surf B Biointerfaces ; 221: 112987, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36370644

ABSTRACT

Development of wound dressings that not only have multiple advantages including good biocompatibility, barrier properties, adhesive properties, but also exhibit anti-bacterial, anti-infection, and promote cell adhesion, accelerated wound healing process, remains challenging in the skin tissue engineering. In this work, a noninvasive adhesive biofoam with interconnectivity structure and antibacterial property was first-time designed through solid surfactant stabilized high internal phase emulsion (HIPE) template, where bacteriostatic Zn-CuO@GO nanosheets dynamic assemble with 4-vinylphenylboronic acid at the oil/water interface as cooperative emulsifier. Taking advantage of the cooperative assembly of the PBA/Zn-CuO@GO, the biofoams display microfibrousity and interconnectivity to facilitate material-cellular interaction as well nutrient exchange, and can effectively inhibit the growth of E. coli and S. aureus. Meanwhile, phenylboronic acid functional groups not only endow biofoam reversible adhesive property though dynamic phenylboronic acid/cis-diol interaction, but also facilitate the rearrangement of Zn-CuO@GO nanosheets in more uniform way at emulsion interface. Taken together, the biofoams can strongly adhere to the wound bed reducing the risk of infection and accelerate earlier tissue regeneration, which exhibit great potential in bioengineering application.


Subject(s)
Adhesives , Bacterial Infections , Humans , Adhesives/pharmacology , Staphylococcus aureus , Escherichia coli , Emulsions , Wound Healing
12.
Nanomicro Lett ; 14(1): 185, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36098823

ABSTRACT

Hydrogels with multifunctionalities, including sufficient bonding strength, injectability and self-healing capacity, responsive-adhesive ability, fault-tolerant and repeated tissue adhesion, are urgently demanded for invasive wound closure and wound healing. Motivated by the adhesive mechanism of mussel and brown algae, bioinspired dynamic bonds cross-linked multifunctional hydrogel adhesive is designed based on sodium alginate (SA), gelatin (GT) and protocatechualdehyde, with ferric ions added, for sutureless post-wound-closure. The dynamic hydrogel cross-linked through Schiff base bond, catechol-Fe coordinate bond and the strong interaction between GT with temperature-dependent phase transition and SA, endows the resulting hydrogel with sufficient mechanical and adhesive strength for efficient wound closure, injectability and self-healing capacity, and repeated closure of reopened wounds. Moreover, the temperature-dependent adhesive properties endowed mispositioning hydrogel to be removed/repositioned, which is conducive for the fault-tolerant adhesion of the hydrogel adhesives during surgery. Besides, the hydrogels present good biocompatibility, near-infrared-assisted photothermal antibacterial activity, antioxidation and repeated thermo-responsive reversible adhesion and good hemostatic effect. The in vivo incision closure evaluation demonstrated their capability to promote the post-wound-closure and wound healing of the incisions, indicating that the developed reversible adhesive hydrogel dressing could serve as versatile tissue sealant.

13.
Angew Chem Int Ed Engl ; 61(40): e202211495, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36000163

ABSTRACT

Surface adhesion has a great contradiction in high strength and good reversibility given their mutually exclusive requirements of fixed crosslinked networks and dynamic chain motion. Herein, we demonstrate a supramolecular organoplatinum(II) adhesive system regulated by intermolecular PtII ⋅⋅⋅PtII interactions that can simultaneously achieve high-strength and excellent reversible adhesion to various substrates. Upon alternating temperature, the assembly of suitably substituted organoplatinum(II) molecules can switch between well-ordered and disordered states via tuning PtII ⋅⋅⋅PtII interactions, resulting in stable reversible adhesion even after 100 cycles with a robust strength of ≈1.25 MPa and a large on-off ratio of ≈25. Along with the switch of PtII ⋅⋅⋅PtII contacts, the surface adhesion of organoplatinum(II) adhesives can be monitored by their changes in electrical signals. This study will open up new inspirations for developing high-performance reversible adhesives.

14.
ACS Appl Mater Interfaces ; 14(7): 9855-9863, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35080367

ABSTRACT

Various insects can entrap and stabilize air plastrons and bubbles underwater. When these bubbles interact with surfaces underwater, they create air capillary bridges that de-wet surfaces and even allow underwater reversible adhesion. In this study, a robotic arm with interchangeable three-dimensional (3D)-printed bubble-stabilizing units is used to create air capillary bridges underwater for manipulation of small objects. Particles of various sizes and shapes, thin sheets and substrates of diverse surface tensions, from hydrophilic to superhydrophobic, can be lifted, transported, placed, and oriented using one- or two-dimensional arrays of bubbles. Underwater adhesion, derived from the air capillary bridges, is quantified depending on the number, arrangement, and size of bubbles and the contact angle of the counter surface. This includes a variety of commercially available materials and chemically modified surfaces. Overall, it is possible to manipulate millimeter- to sub-millimeter-scale objects underwater. This includes cleaning submerged surfaces from colloids and arbitrary contaminations, folding thin sheets to create three-dimensional structures, and precisely placing and aligning objects of various geometries. The robotic underwater manipulator can be used for automation and control in cell culture experiments, lab-on-chip devices, and manipulation of objects underwater. It offers the ability to control the transport and release of small objects without the need for chemical adhesives, suction-based adhesion, anchoring devices, or grabbers.

15.
Adv Mater ; 33(40): e2103174, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34418193

ABSTRACT

High-strength and reversible adhesion technology, which is a universal phenomenon in nature but remains challenging for artificial synthesis, is essential for the development of modern science. Existing adhesive designs without interface versatility hinder their application to arbitrary surfaces. Bioinspired by creeper suckers, a crystal-fiber reinforced polymer gel adhesive with ultrastrong adhesion strength and universal interface adaptability is creatively prepared via introducing a room-temperature crystallizable solvent into the polymer network. The gel adhesive formed by hydrogen bonding interaction between crystal fibers and polymer network can successfully realize over 9.82 MPa reversible adhesion strength for rough interface and 406.87 J m-2 peeling toughness for skin tissue. In situ anchoring is achieved for adapting to different geometrical surfaces. The adhesion performance can be significantly improved with the further increase of the interfacial roughness and hydrophilicity, whose dissipation mechanism is simulated by finite element analysis. The melting-crystallization equilibrium of the crystal fibers is proved by synchrotron radiation scattering. Accordingly, reversible phase-transition triggered by light and heat can realize the controlled adhere-detach recycle. Later adjustments to the monomers or crystals are expected to broaden its applications to various fields such as bioelectronics, electronic processing, and machine handling.


Subject(s)
Adhesives/chemistry , Gels/chemistry , Polymers/chemistry , Crystallization , Hydrophobic and Hydrophilic Interactions , Imidazoles/chemistry , Temperature , Ultraviolet Rays
16.
Adv Mater ; 33(40): e2103826, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34396591

ABSTRACT

Bioinspired elastomeric structural adhesives can provide reversible and controllable adhesion on dry/wet and synthetic/biological surfaces for a broad range of commercial applications. Shape complexity and performance of the existing structural adhesives are limited by the used specific fabrication technique, such as molding. To overcome these limitations by proposing complex 3D microstructured adhesive designs, a 3D elastomeric microstructure fabrication approach is implemented using two-photon-polymerization-based 3D printing. A custom aliphatic urethane-acrylate-based elastomer is used as the 3D printing material. Two designs are demonstrated with two combined biological inspirations to show the advanced capabilities enabled by the proposed fabrication approach and custom elastomer. The first design focuses on springtail- and gecko-inspired hybrid microfiber adhesive, which has the multifunctionalities of side-surface liquid super-repellency, top-surface liquid super-repellency, and strong reversible adhesion features in a single fiber array. The second design primarily centers on octopus- and gecko-inspired hybrid adhesive, which exhibits the benefits of both octopus- and gecko-inspired microstructured adhesives for strong reversible adhesion on both wet and dry surfaces, such as skin. This fabrication approach could be used to produce many other 3D complex elastomeric structural adhesives for future real-world applications.


Subject(s)
Adhesives/chemistry , Elastomers/chemistry , Printing, Three-Dimensional , Acrylates/chemistry , Biomimetic Materials/chemistry , Elastic Modulus , Surface Properties , Urethane/chemistry
17.
Nanomicro Lett ; 13(1): 124, 2021 May 11.
Article in English | MEDLINE | ID: mdl-34138351

ABSTRACT

HIGHLIGHTS: Shape memory self-soldering tape used as conductive interconnecting material. Perfect shape and conductivity memory performance and anti-fatigue performance. Reversible strong-to-weak adhesion switched by temperature. With practical interest in the future applications of next-generation electronic devices, it is imperative to develop new conductive interconnecting materials appropriate for modern electronic devices to replace traditional rigid solder tin and silver paste of high melting temperature or corrosive solvent requirements. Herein, we design highly stretchable shape memory self-soldering conductive (SMSC) tape with reversible adhesion switched by temperature, which is composed of silver particles encapsulated by shape memory polymer. SMSC tape has perfect shape and conductivity memory property and anti-fatigue ability even under the strain of 90%. It also exhibits an initial conductivity of 2772 S cm-1 and a maximum tensile strain of ~ 100%. The maximum conductivity could be increased to 5446 S cm-1 by decreasing the strain to 17%. Meanwhile, SMSC tape can easily realize a heating induced reversible strong-to-weak adhesion transition for self-soldering circuit. The combination of stable conductivity, excellent shape memory performance, and temperature-switching reversible adhesion enables SMSC tape to serve two functions of electrode and solder simultaneously. This provides a new way for conductive interconnecting materials to meet requirements of modern electronic devices in the future.

18.
ACS Appl Mater Interfaces ; 13(2): 3435-3444, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33405512

ABSTRACT

Underwater adhesives (UAs) have promising applications in diverse areas. However, traditional UAs have several drawbacks such as weak and irreversible adhesion behaviors as well as poor performance in biological environments. To address these challenges, we engineered a novel synthetic adhesive based on dynamic hydrophilic and hydrophobic moieties, which shows very strong underwater adhesion strength (30-110 kPa) and debonding energy (20-100 J/m2) to diverse substrates. Interestingly, the UAs could also be switched reversibly and repeatedly by the dynamic exchange of hydrophilic and hydrophobic moieties under alternating temperatures. We also demonstrate the versatile functions and practical value of the UAs for clinical applications as tissue sealants and hemostatic dressing in emergency rescue operations. This general and efficient strategy may be generalized to develop additional next generation UAs for many emerging technological and medical applications.

19.
Environ Int ; 140: 105722, 2020 07.
Article in English | MEDLINE | ID: mdl-32474216

ABSTRACT

The initial bacterial adhesion phase is a pivotal and unstable step in the formation of biofilms. The initiation of biofilm formation is an unstable process caused by the reversible adhesion of bacteria, which is always time-consuming and yet to be elucidated. In this study, impedance-based real time cell analysis (RTCA) was employed to comprehensively investigate the initial bacterial adhesion process. Results showed that the time required for the unstable adhesion process was significantly (p < 0.05) reduced by increasing the initial concentration of bacteria, which is mainly attributed to the large deposition rate of bacteria at high concentrations. In addition, the unstable adhesion process is also regulated by shear stress, derived in this work from orbital shaking. Shear stress improves the reversibility of unstable bacterial attachment. Furthermore, attachment characteristics during the unstable phase vary between different species of bacteria (Sphingomonas rubra, Nakamurella multipartita and mixed bacteria). The S. rubra strain and mixed culture were more prone to adhere to the substratum surface during the unstable process, which was attributed to the smaller xDLVO energy barrier and motility of species in comparison with N. multipartita. Meanwhile, the molecular composition of extracellular polymeric substances (EPS) in the initial attachment phase presented a significant difference in expressed proteins, indicating the important role of proteins in EPS that strengthen bacterial adhesion. Overall, these findings suggest that during the biofilm reactor start-up process, seed sludge conditions, including the bacterial concentration, composition and hydraulics, need to be carefully considered.


Subject(s)
Bacterial Adhesion , Wastewater , Actinobacteria , Biofilms , Sphingomonas
20.
Environ Int ; 135: 105326, 2020 02.
Article in English | MEDLINE | ID: mdl-31794939

ABSTRACT

Initial attachment plays an important role in biofilm formation in wastewater treatment processes. However, the initial attachment process mediated by N-acyl-homoserine lactones (AHLs) is difficult to be fully understood due to the lack of non-invasive and on-line investigation techniques. In this study, the AHL-regulated wastewater biofilm attachment was quantified using ultrasonic time-domain reflectometry (UTDR) as an in-situ and non-invasive monitoring technique. Results demonstrated that the reversible adhesion time in municipal and industrial wastewaters was significantly decreased in the presence of exogenous AHLs. Biofilm thickness in municipal and industrial wastewaters increased significantly with the addition of exogenous AHLs. Also, the addition of acylase delayed the initial biofilm formation (lengthened reversible adhesion time and decreased biofilm thickness and density). Compared with biofilm behavior in the presence of low concentrations of AHLs (4.92 ± 0.17 µg/L), both reversible adhesion time and biofilm thickness were not significantly increased (p > 0.05) with an increase in AHL concentration (9.75 ± 0.41 µg/L). Furthermore, the addition of exogenous AHLs resulted in significant changes in the attached bacterial community structures, in which both QS and quorum-quenching (QQ) bacteria were stimulated. The current work presents an effective approach to in-situ monitoring of the regulation of AHL-mediated QS in the initial attachment of biofilms, especially in the reversible adhesion process, which may provide a potential strategy to facilitate biofilm establishment in wastewater treatment processes.


Subject(s)
Biofilms , Quorum Sensing , Wastewater , Acyl-Butyrolactones , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL