Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Brain Connect ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302050

ABSTRACT

BACKGROUND: Functional magnetic resonance imaging (fMRI) has not previously been used to localize the swallowing functional area in repetitive transcranial magnetic stimulation (rTMS) treatment for post-stroke dysphagia; Traditionally, the target area for rTMS is the hotspot, which is defined as the specific region of the brain identified as the optimal location for transcranial magnetic stimulation (TMS). This study aims to compare the network differences between the TMS hotspot and the saliva swallowing fMRI activation to determine the better rTMS treatment site and investigate changes in functional connectivity related to post-stroke dysphagia using resting-state fMRI. METHODS: Using an information-based approach, we conducted a single case study to explore neural functional connectivity in a patient with post-stroke dysphagia before, immediately after rTMS, and four weeks after rTMS intervention. 20 healthy participants underwent fMRI and TMS hotspot localization as a control group. Neural network alterations were assessed , and functional connections related to post-stroke dysphagia were examined using resting-state fMRI. RESULTS: Compared to the TMS-induced hotspots, the fMRI activation peaks were located significantly more posteriorly and exhibited stronger functional connectivity with bilateral postcentral gyri. Following rTMS treatment, this patient developed functional connection between the brainstem and the bilateral insula, caudate, anterior cingulate cortex, and cerebellum. CONCLUSION: The saliva swallowing fMRI activation peaks show more intense functional connectivity with bilateral postcentral gyri compared to the TMS hotspots. Activation peak-guided rTMS treatment improves swallowing function in post-stroke dysphagia. This study proposes a novel and potentially more efficacious therapeutic target for rTMS, expanding its therapeutic options for treating post-stroke dysphagia.

2.
J Affect Disord ; 329: 257-272, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36863463

ABSTRACT

BACKGROUND: The advances in resting-state functional magnetic resonance imaging techniques motivate parsing heterogeneity in major depressive disorder (MDD) through neurophysiological subtypes (i.e., biotypes). Based on graph theories, researchers have observed the functional organization of the human brain as a complex system with modular structures and have found wide-spread but variable MDD-related abnormality regarding the modules. The evidence implies the possibility of identifying biotypes using high-dimensional functional connectivity (FC) data in ways that suit the potentially multifaceted biotypes taxonomy. METHODS: We proposed a multiview biotype discovery framework that involves theory-driven feature subspace partition (i.e., "view") and independent subspace clustering. Six views were defined using intra- and intermodule FC regarding three MDD focal modules (i.e., the sensory-motor system, default mode network, and subcortical network). For robust biotypes, the framework was applied to a large multisite sample (805 MDD participants and 738 healthy controls). RESULTS: Two biotypes were stably obtained in each view, respectively characterized by significantly increased and decreased FC compared to healthy controls. These view-specific biotypes promoted the diagnosis of MDD and showed different symptom profiles. By integrating the view-specific biotypes into biotype profiles, a broad spectrum in the neural heterogeneity of MDD and its separation from symptom-based subtypes was further revealed. LIMITATIONS: The power of clinical effects is limited and the cross-sectional nature cannot predict the treatment effects of the biotypes. CONCLUSIONS: Our findings not only contribute to the understanding of heterogeneity in MDD, but also provide a novel subtyping framework that could transcend current diagnostic boundaries and data modality.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Cross-Sectional Studies , Brain , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Cluster Analysis
3.
Psychiatry Investig ; 19(7): 562-569, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35903058

ABSTRACT

OBJECTIVE: Some pharmacological treatments are ineffective in parts of patients with major depressive disorder (MDD), hence this needs prediction of effective treatment responses. The study aims to examine the relationship between dynamic functional connectivity (dFC) of the hippocampal subregion and antidepressant improvement of MDD patients and to estimate the capability of dFC to predict antidepressant efficacy. METHODS: The data were from 70 MDD patients and 43 healthy controls (HC); the dFC of hippocampal subregions was estimated by sliding-window approach based on resting-state functional magnetic resonance imaging (R-fMRI). After 3 months treatment, 36 patients underwent second R-fMRI scan and were then divided into the response group and non-response group according to clinical responses. RESULTS: The result manifested that MDD patients exhibited lower mean dFC of the left rostral hippocampus (rHipp.l) compared with HC. After 3 months therapy, the response group showed lower dFC of rHipp.l compared with the non-response group. The dFC of rHipp.l was also negatively correlated with the reduction rate of Hamilton Depression Rating Scale. CONCLUSION: These findings highlighted the importance of rHipp in MDD from the dFC perspective. Detection and estimation of these changes might demonstrate helpful for comprehending the pathophysiological mechanism and for assessment of treatment reaction of MDD.

4.
Front Psychiatry ; 13: 902707, 2022.
Article in English | MEDLINE | ID: mdl-35530027

ABSTRACT

[This corrects the article DOI: 10.3389/fpsyt.2022.802449.].

5.
Front Neurosci ; 16: 838347, 2022.
Article in English | MEDLINE | ID: mdl-35356058

ABSTRACT

Brain parcellation helps to understand the structural and functional organization of the cerebral cortex. Resting-state functional magnetic resonance imaging (fMRI) and connectivity analysis provide useful information to delineate individual brain parcels in vivo. We proposed an individualized cortical parcellation based on graph neural networks (GNN) to learn the reliable functional characteristics of each brain parcel on a large fMRI dataset and to infer the areal probability of each vertex on unseen subjects. A subject-specific confidence mask was implemented in the GNN model to account for the tradeoff between the topographic alignment across subjects and functional homogeneity of brain parcels on individual brains. The individualized brain parcellation achieved better functional homogeneity at rest and during cognitive tasks compared with the group-registered atlas (p-values < 0.05). In addition, highly reliable and replicable parcellation maps were generated on multiple sessions of the same subject (intrasubject similarity = 0.89), while notable variations in the topographic organization were captured across subjects (intersubject similarity = 0.81). Moreover, the intersubject variability of brain parcellation indicated large variations in the association cortices while keeping a stable parcellation on the primary cortex. Such topographic variability was strongly associated with the functional connectivity variability, significantly predicted cognitive behaviors, and generally followed the myelination, cytoarchitecture, and functional organization of the human brain. This study provides new avenues to the precise individualized mapping of the cortical areas through deep learning and shows high potentials in the personalized localization diagnosis and treatment of neurological disorders.

6.
Front Neuroinform ; 16: 761942, 2022.
Article in English | MEDLINE | ID: mdl-35273487

ABSTRACT

An increasing number of resting-state functional magnetic resonance neuroimaging (R-fMRI) studies have used functional connections as discriminative features for machine learning to identify patients with brain diseases. However, it remains unclear which functional connections could serve as highly discriminative features to realize the classification of autism spectrum disorder (ASD). The aim of this study was to find ASD-related functional connectivity patterns and examine whether these patterns had the potential to provide neuroimaging-based information to clinically assist with the diagnosis of ASD by means of machine learning. We investigated the whole-brain interregional functional connections derived from R-fMRI. Data were acquired from 48 boys with ASD and 50 typically developing age-matched controls at NYU Langone Medical Center from the publicly available Autism Brain Imaging Data Exchange I (ABIDE I) dataset; the ASD-related functional connections identified by the Boruta algorithm were used as the features of support vector machine (SVM) to distinguish patients with ASD from typically developing controls (TDC); a permutation test was performed to assess the classification performance. Approximately, 92.9% of participants were correctly classified by a combined SVM and leave-one-out cross-validation (LOOCV) approach, wherein 95.8% of patients with ASD were correctly identified. The default mode network (DMN) exhibited a relatively high network degree and discriminative power. Eight important brain regions showed a high discriminative power, including the posterior cingulate cortex (PCC) and the ventrolateral prefrontal cortex (vlPFC). Significant correlations were found between the classification scores of several functional connections and ASD symptoms (p < 0.05). This study highlights the important role of DMN in ASD identification. Interregional functional connections might provide useful information for the clinical diagnosis of ASD.

7.
Front Psychiatry ; 13: 802449, 2022.
Article in English | MEDLINE | ID: mdl-35350427

ABSTRACT

Stress exposures and dysregulated responses to stress are implicated in psychiatric disorders of mood, anxiety, and cognition. Perceived stress, an individual's appraisal of experienced stress and ability for coping, relates to dysregulated functioning in resting state brain networks. Alterations in GABAergic function may underlie perceived stress-related functional dysregulation in resting state networks but this has not yet been explored. Therefore, the current study examined the association of perceived stress, via the Perceived Stress Scale (PSS), with prefrontal GABA levels and corresponding resting state functional connectivity (RSFC) alterations. Twelve women and five men, ages 35-61, participated. MR spectroscopy was used to measure brain GABA levels in the anterior cingulate cortex (ACC), left dorsolateral prefrontal cortex (DLPFC), and ventromedial prefrontal cortex (VMPFC). Resting state functional scans acquired at 3 Tesla were used to measure RSFC within and between the default mode (DMN), salience (SN), and central executive networks (CEN), hippocampus and amygdala. We observed significant negative correlations between total PSS scores and left DLPFC GABA levels (r = -0.62, p = 0.023). However, PSS scores were not significantly correlated with RSFC measures (all p > 0.148). These preliminary results support a relationship between perceived stress and GABAergic functioning in DLPFC, a core node of the CEN, an intrinsic network thought to underlie goal-directed attentional processes. Our findings extend previous work suggesting that functioning in the CEN is related to perceived stress and may inform treatment strategies to improve outcomes in stress-related conditions.

8.
Bipolar Disord ; 24(4): 400-411, 2022 06.
Article in English | MEDLINE | ID: mdl-34606159

ABSTRACT

BACKGROUND: Recently, functional homotopy (FH) architecture, defined as robust functional connectivity (FC) between homotopic regions, has been frequently reported to be altered in MDD patients (MDDs) but with divergent locations. METHODS: In this study, we obtained resting-state functional magnetic resonance imaging (R-fMRI) data from 1004 MDDs (mean age, 33.88 years; age range, 18-60 years) and 898 matched healthy controls (HCs) from an aggregated dataset from 20 centers in China. We focused on interhemispheric function integration in MDDs and its correlation with clinical characteristics using voxel-mirrored homotopic connectivity (VMHC) devised to inquire about FH patterns. RESULTS: As compared with HCs, MDDs showed decreased VMHC in visual, motor, somatosensory, limbic, angular gyrus, and cerebellum, particularly in posterior cingulate gyrus/precuneus (PCC/PCu) (false discovery rate [FDR] q < 0.002, z = -7.07). Further analysis observed that the reduction in SMG and insula was more prominent with age, of which SMG reflected such age-related change in males instead of females. Besides, the reduction in MTG was found to be a male-special abnormal pattern in MDDs. VMHC alterations were markedly related to episode type and illness severity. The higher Hamilton Depression Rating Scale score, the more apparent VMHC reduction in the primary visual cortex. First-episode MDDs revealed stronger VMHC reduction in PCu relative to recurrent MDDs. CONCLUSIONS: We confirmed a significant VMHC reduction in MDDs in broad areas, especially in PCC/PCu. This reduction was affected by gender, age, episode type, and illness severity. These findings suggest that the depressive brain tends to disconnect information exchange across hemispheres.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Adolescent , Adult , Brain/diagnostic imaging , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Young Adult
9.
Psychoradiology ; 2(1): 32-42, 2022 Mar.
Article in English | MEDLINE | ID: mdl-38665141

ABSTRACT

Despite a growing neuroimaging literature on the pathophysiology of major depressive disorder (MDD), reproducible findings are lacking, probably reflecting mostly small sample sizes and heterogeneity in analytic approaches. To address these issues, the Depression Imaging REsearch ConsorTium (DIRECT) was launched. The REST-meta-MDD project, pooling 2428 functional brain images processed with a standardized pipeline across all participating sites, has been the first effort from DIRECT. In this review, we present an overview of the motivations, rationale, and principal findings of the studies so far from the REST-meta-MDD project. Findings from the first round of analyses of the pooled repository have included alterations in functional connectivity within the default mode network, in whole-brain topological properties, in dynamic features, and in functional lateralization. These well-powered exploratory observations have also provided the basis for future longitudinal hypothesis-driven research. Following these fruitful explorations, DIRECT has proceeded to its second stage of data sharing that seeks to examine ethnicity in brain alterations in MDD by extending the exclusive Chinese original sample to other ethnic groups through international collaborations. A state-of-the-art, surface-based preprocessing pipeline has also been introduced to improve sensitivity. Functional images from patients with bipolar disorder and schizophrenia will be included to identify shared and unique abnormalities across diagnosis boundaries. In addition, large-scale longitudinal studies targeting brain network alterations following antidepressant treatment, aggregation of diffusion tensor images, and the development of functional magnetic resonance imaging-guided neuromodulation approaches are underway. Through these endeavours, we hope to accelerate the translation of functional neuroimaging findings to clinical use, such as evaluating longitudinal effects of antidepressant medications and developing individualized neuromodulation targets, while building an open repository for the scientific community.

10.
Front Hum Neurosci ; 15: 748919, 2021.
Article in English | MEDLINE | ID: mdl-34867242

ABSTRACT

It remains controversial whether long-term logographic-logographic bilingual experience shapes the special brain functional subnetworks underlying different components of executive function (EF). To address this question, this study explored the differences in the functional connections underlying EF between the Cantonese-Mandarin bilinguals and Mandarin monolinguals. 31 Cantonese-Mandarin bilinguals and 31 Mandarin monolinguals were scanned in a 3-T magnetic resonance scanner at rest. 4 kinds of behavioral tasks of EF were tested. Network-based statistics (NBS) was performed to compare the connectomes of fronto-parietal (FP) and cingulo-opercular (CO) network between groups. The results showed that the bilinguals had stronger connectivity than monolinguals in a subnetwork located in the CO network rather than the FP network. The identified differential subnetwork referred to as the CO subnetwork contained 9 nodes and 10 edges, in which the center node was the left mid-insula with a degree centrality of 5. The functional connectivity of the CO subnetwork was significantly negatively correlated with interference effect in bilinguals. The results suggested that long-term Cantonese-Mandarin bilingual experience was associated with stronger functional connectivity underlying inhibitory control in the CO subnetwork.

11.
Front Neurosci ; 15: 620750, 2021.
Article in English | MEDLINE | ID: mdl-34764846

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease that is associated with motor and non-motor symptoms and caused by lack of dopamine in the substantia nigra of the brain. Subthalamic nucleus deep brain stimulation (STN-DBS) is a widely accepted therapy of PD that mainly inserts electrodes into both sides of the brain. The effect of STN-DBS was mainly for motor function, so this study focused on the recovery of motor function for PD after DBS. Hemispherical asymmetry in the brain network is considered to be a potential indicator for diagnosing PD patients. This study investigated the value of hemispheric brain connection asymmetry in predicting the DBS surgery outcome in PD patients. Four types of brain connections, including left intra-hemispheric (LH) connection, right intra-hemispheric (RH) connection, inter-hemispheric homotopic (Ho) connection, and inter-hemispheric heterotopic (He) connection, were constructed based on the resting state functional magnetic resonance imaging (rs-fMRI) performed before the DBS surgery. We used random forest for selecting features and the Ridge model for predicting surgical outcome (i.e., improvement rate of motor function). The functional connectivity analysis showed that the brain has a right laterality: the RH networks has the best correlation (r = 0.37, p = 5.68E-03) between the predicted value and the true value among the above four connections. Moreover, the region-of-interest (ROI) analysis indicated that the medioventral occipital cortex (MVOcC)-superior temporal gyrus (STG) and thalamus (Tha)-precentral gyrus (PrG) contributed most to the outcome prediction model for DBS without medication. This result provides more support for PD patients to evaluate DBS before surgery.

12.
Front Neurosci ; 15: 768418, 2021.
Article in English | MEDLINE | ID: mdl-34744623

ABSTRACT

The objective of this study is to introduce a new quantitative data-driven analysis (QDA) framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI measurements were conducted on a 3T clinical MRI scanner in 227 healthy adult volunteers (N = 227, aged 18-76 years old, male/female = 99/128). With the proposed QDA framework we derived two types of voxel-wise RFC metrics: the connectivity strength index and connectivity density index utilizing the convolutions of the cross-correlation histogram with different kernels. Furthermore, we assessed the negative and positive portions of these metrics separately. With the QDA framework we found age-related declines of RFC metrics in the superior and middle frontal gyri, posterior cingulate cortex (PCC), right insula and inferior parietal lobule of the default mode network (DMN), which resembles previously reported results using other types of RFC data processing methods. Importantly, our new findings complement previously undocumented results in the following aspects: (1) the PCC and right insula are anti-correlated and tend to manifest simultaneously declines of both the negative and positive connectivity strength with subjects' age; (2) separate assessment of the negative and positive RFC metrics provides enhanced sensitivity to the aging effect; and (3) the sensorimotor network depicts enhanced negative connectivity strength with the adult age. The proposed QDA framework can produce threshold-free and voxel-wise RFC metrics from R-fMRI data. The detected adult age effect is largely consistent with previously reported studies using different R-fMRI analysis approaches. Moreover, the separate assessment of the negative and positive contributions to the RFC metrics can enhance the RFC sensitivity and clarify some of the mixed results in the literature regarding to the DMN and sensorimotor network involvement in adult aging.

13.
Data Brief ; 38: 107333, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34504919

ABSTRACT

To investigate the impact of adult age on the brain functional connectivity, whole-brain resting-state functional magnetic resonance imaging (R-fMRI) data were acquired on a 3T clinical MRI scanner in a cohort of 227, right-handed, native Swedish-speaking, healthy adult volunteers (N=227, aged 18-74 years old, male/female=99/128). The dataset is mainly consisted of a younger (18-30 years old n=124, males/females=51/73) and elderly adult (n=76, 60-76 years old, males/females=35/41) subgroups. The dataset was analyzed using a new data-driven analysis (QDA) framework. With QDA two types of threshold-free voxel-wise resting-state functional connectivity (RFC) metrics were derived: the connectivity strength index (CSI) and connectivity density index (CDI), which can be utilized to assess the brain changes in functional connectivity associated with adult age. The dataset can also be useful as a reference to identify abnormal changes in brain functional connectivity resulted from neurodegenerative or neuropsychiatric disorders.

14.
Brain Imaging Behav ; 15(4): 1986-1996, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32990896

ABSTRACT

Parkinson's disease (PD) is the most universal chronic degenerative neurological dyskinesia and an important threat to elderly health. At present, the researches of PD are mainly based on single-modal data analysis, while the fusion research of multi-modal data may provide more meaningful information in the aspect of comprehending the pathogenesis of PD. In this paper, 104 samples having resting functional magnetic resonance imaging (rfMRI) and gene data are from Parkinson's Progression Markers Initiative (PPMI) and Alzheimer's Disease Neuroimaging Initiative (ADNI) database to predict pathological brain areas and risk genes related to PD. In the experiment, Pearson correlation analysis is adopted to conduct fusion analysis from the data of genes and brain areas as multi-modal sample characteristics, and the clustering evolution random forest (CERF) method is applied to detect the discriminative genes and brain areas. The experimental results indicate that compared with several existing advanced methods, the CERF method can further improve the diagnosis of PD and healthy control, and can achieve a significant effect. More importantly, we find that there are some interesting associations between brain areas and genes in PD patients. Based on these associations, we notice that PD-related brain areas include angular gyrus, thalamus, posterior cingulate gyrus and paracentral lobule, and risk genes mainly include C6orf10, HLA-DPB1 and HLA-DOA. These discoveries have a significant contribution to the early prevention and clinical treatments of PD.


Subject(s)
Parkinson Disease , Aged , Brain/diagnostic imaging , Data Analysis , Humans , Magnetic Resonance Imaging , Neuroimaging , Parkinson Disease/diagnostic imaging , Parkinson Disease/genetics
15.
Front Aging Neurosci ; 12: 604995, 2020.
Article in English | MEDLINE | ID: mdl-33381021

ABSTRACT

Early- and late-onset Parkinson's disease (EOPD and LOPD, respectively) have different risk factors, clinical features, and disease course; however, the functional outcome of these differences have not been well characterized. This study investigated differences in global brain synchronization changes and their clinical significance in EOPD and LOPD patients. Patients with idiopathic PD including 25 EOPD and 24 LOPD patients, and age- and sex-matched healthy control (HC) subjects including 27 younger and 26 older controls (YCs and OCs, respectively) were enrolled. Voxel-based degree centrality (DC) was calculated as a measure of global synchronization and compared between PD patients and HC groups matched in terms of disease onset and severity. DC was decreased in bilateral Rolandic operculum and left insula and increased in the left superior frontal gyrus (SFG) and precuneus of EOPD patients compared to YCs. DC was decreased in the right putamen, mid-cingulate cortex, bilateral Rolandic operculum, and left insula and increased in the right cerebellum-crus1 of LOPD patients compared to OCs. Correlation analyses showed that DC in the right cerebellum-crus1 was inversely associated with the Hamilton Depression Scale (HDS) score in LOPD patients. Thus, EOPD and LOPD patients show distinct alterations in global synchronization relative to HCs. Furthermore, our results suggest that the left SFG and right cerebellum-crus1 play important roles in the compensation for corticostriatal-thalamocortical loop injury in EOPD and LOPD patients, whereas the cerebellum is a key hub in the neural mechanisms underlying LOPD with depression. These findings provide new insight into the clinical heterogeneity of the two PD subtypes.

16.
Med Image Anal ; 65: 101752, 2020 10.
Article in English | MEDLINE | ID: mdl-32623273

ABSTRACT

Higher spatial resolution in resting-state functional magnetic resonance imaging (R-fMRI) can give reliable information about the functional networks in the cerebral cortex. Typical methods can achieve higher spatial or temporal resolution by speeding up scans using either (i) complex pulse-sequence designs or (ii) k-space undersampling coupled with priors on the signal. We propose to undersample the R-fMRI acquisition in k-space and time to speedup scans in order to improve spatial resolution. We propose a novel model-based R-fMRI reconstruction framework using a robust, subject-invariant, spatially regularized dictionary prior on the signal. Furthermore, we propose a novel inference framework based on variational Bayesian expectation maximization with nested minorization (VB-EM-NM). Our inference framework allows us to provide an estimate of uncertainty of the reconstruction, unlike typical reconstruction methods. Empirical evaluation of (i) simulated R-fMRI reconstruction and (ii) functional-network estimates from brain R-fMRI reconstructions demonstrate that our framework improves over the state of the art, and, additionally, enables significantly higher spatial resolution.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Bayes Theorem , Brain/diagnostic imaging , Humans , Image Processing, Computer-Assisted
17.
Neuropsychiatr Dis Treat ; 16: 691-702, 2020.
Article in English | MEDLINE | ID: mdl-32210565

ABSTRACT

PURPOSE: In recent years, machine learning techniques have received increasing attention as a promising approach to differentiating patients from healthy subjects. Therefore, some resting-state functional magnetic resonance neuroimaging (R-fMRI) studies have used interregional functional connections as discriminative features. The aim of this study was to investigate ADHD-related spatially distributed discriminative features derived from whole-brain resting-state functional connectivity patterns using machine learning. PATIENTS AND METHODS: We measured the interregional functional connections of the R-fMRI data from 40 ADHD patients and 28 matched typically developing controls. Machine learning was used to discriminate ADHD patients from controls. Classification performance was assessed by permutation tests. RESULTS: The results from the model with the highest classification accuracy showed that 85.3% of participants were correctly identified using leave-one-out cross-validation (LOOV) with support vector machine (SVM). The majority of the most discriminative functional connections were located within or between the cerebellum, default mode network (DMN) and frontoparietal regions. Approximately half of the most discriminative connections were associated with the cerebellum. The cerebellum, right superior orbitofrontal cortex, left olfactory cortex, left gyrus rectus, right superior temporal pole, right calcarine gyrus and bilateral inferior occipital cortex showed the highest discriminative power in classification. Regarding the brain-behaviour relationships, some functional connections between the cerebellum and DMN regions were significantly correlated with behavioural symptoms in ADHD (P < 0.05). CONCLUSION: This study indicated that whole-brain resting-state functional connections might provide potential neuroimaging-based information for clinically assisting the diagnosis of ADHD.

18.
Jpn J Radiol ; 38(5): 440-450, 2020 May.
Article in English | MEDLINE | ID: mdl-32067145

ABSTRACT

PURPOSE: To explore the brain microstructural and functional changes in patients with postherpetic neuralgia (PHN). MATERIALS AND METHODS: 12 PHN patients and 12 healthy volunteers were enrolled. Diffusion tensor imaging (DTI) and resting-state functional MRI (rfMRI) sequences were scanned by a 3T MR scanner. Fractional anisotropy (FA) and mean diffusivity (MD) t-maps were obtained following DTI data processing. The amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) were obtained following rfMRI data processing. A two sample t-test was performed to compare the FA, MD, ALFF and fALFF differences between the PHN patients and healthy controls. RESULTS: No significant differences were noted with regard to the parameters gender, age and education years between the two groups. FA, MD, ALFF and/or fALFF indicated significant alterations in specific pain or pain-related brain regions, such as brainstem, cerebellum, parietal lobe, precuneus, frontal lobe, temporal lobe, postcentral and precentral gyrus, corpus callosum, cingulate gyrus, putamen and insula. CONCLUSION: Multi-local alterations of spontaneous brain activity could form a network related to chronic pain, sensory discrimination, emotion and cognition, suggesting complicated central mechanisms of PHN. The combined-action of brain microstructure and function may play a critical role in comprehension of neurological mechanisms of PHN-induced pain.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuralgia, Postherpetic/diagnostic imaging , Adult , Aged , Brain/physiopathology , Brain Mapping/methods , Diffusion Tensor Imaging/methods , Female , Humans , Male , Middle Aged , Neuralgia, Postherpetic/physiopathology
19.
Brain Imaging Behav ; 14(1): 186-199, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30382529

ABSTRACT

Bipolar disorder (BD) is frequently misdiagnosed as major depressive disorder (MDD) in clinical practice, especially during depressive episodes. A unifying triple-network model, involving the default mode network (DMN), central executive network (CEN) and salience network (SN), has been proposed to explain the neural physiopathology of psychiatric and neurological disorders. Although several studies revealed shared and specific alterations between BD and MDD in key regions of DMN, CEN, and SN, and a few studies used different measures to detect detailed alterations in the triple networks in BD and MDD, their shared and specific patterns of altered functional connectivity (FC) in the triple networks has remained unclear. In this study, we acquired resting-state fMRI (R-fMRI) data from 38 unmedicated BD and 35 unmedicated MDD patients during depressive episodes along with 47 healthy controls. We first determined the spatially independent components of the DMN, SN, and CEN by using independent component analysis (ICA); then we estimated the inter-ROI and inter-network FC for each group. By comparing the differences between the three groups, we obtained the following results: (1) both the BD and MDD patients showed shared weaker intra-network FC in the left mPFC and right precuneus within the DMN as well as weaker inter-ROI FC between the left AI and right AI compared with the healthy controls; (2) the BD had weaker while the MDD had stronger intra-network FC in the right dlPFC within the rCEN as well as stronger inter-ROI FC between the right dlPFC and right ANG compared with the healthy controls; (3) the BD showed specific, stronger inter-ROI FC between the left PPC and right AI as well as stronger inter-network FC between the lCEN and SN compared with either the MDD or the control group. Our findings provide new information for understanding the neural physiopathology and clinical symptoms of depressed BD and MDD patients.


Subject(s)
Bipolar Disorder/physiopathology , Depressive Disorder, Major/physiopathology , Neural Pathways/physiopathology , Adult , Brain/physiopathology , Brain Mapping/methods , Connectome/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Parietal Lobe/physiopathology , Prefrontal Cortex/physiopathology , Rest/physiology
20.
Front Psychiatry ; 10: 418, 2019.
Article in English | MEDLINE | ID: mdl-31249539

ABSTRACT

Background: Neuroimaging studies have shown that the high synchrony of spontaneous neural activity in the homotopic regions between hemispheres is an important functional structural feature of normal human brains, and this feature is abnormal in the patients with various mental disorders. However, little is known about this feature in obsessive-compulsive disorder (OCD). This study aimed to further analyze the underlying neural mechanisms of OCD and to explore whether clinical characteristics are correlated with the alerted homotopic connectivity in patients with OCD. Methods: Using voxel-mirrored homotopic connectivity (VMHC) during resting state, we compared 46 OCD patients and 46 healthy controls (HCs) matched for age, gender, and education level. A partial correlation analysis was used to investigate the relationship between altered VMHC and clinical characteristics in patients with OCD. Results: Patients with OCD showed lower VMHC than HCs in fusiform gyrus/inferior occipital gyrus, lingual gyrus, postcentral gyrus/precentral gyrus, putamen, and orbital frontal gyrus. A significant positive correlation was observed between altered VMHC in the angular gyrus/middle occipital gyrus and illness duration in patients. Conclusions: Interhemispheric functional imbalance may be an essential aspect of the pathophysiological mechanism of OCD, which is reflected not only in the cortico-striato-thalamo-cortical (CSTC) loop but also elsewhere in the brain.

SELECTION OF CITATIONS
SEARCH DETAIL