Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38310575

ABSTRACT

BACKGROUND: Neglected tropical diseases (NTDs) are parasitic and bacterial diseases that affect approximately 149 countries, mainly the poor population without basic sanitation. Among these, African Human Trypanosomiasis (HAT), known as sleeping sickness, shows alarming data, with treatment based on suramin and pentamidine in the initial phase and melarsoprol and eflornithine in the chronic phase. Thus, to discover new drugs, several studies point to rhodesain as a promising drug target due to the function of protein degradation and intracellular transport of proteins between the insect and host cells and is present in all cycle phases of the parasite. METHODOLOGY: Here, based on the previous studies by Nascimento et al. (2021) that show the main rhodesain inhibitors development in the last decade, molecular docking and dynamics were applied in these inhibitors datasets to reveal crucial information that can be into drug design. Thus, conventional and covalent docking was employed and highlighted the presence of Michael acceptors in the ligands in a peptidomimetics scaffold, and interaction with Gly19, Gly23, Gly65, Asp161, and Trp184 is essential to the inhibiting activity. RESULTS: Also, our findings using MD simulations and MM-PBSA calculations confirmed Gly19, Gly23, Gly65, Asp161, and Trp184, showing high binding energy (ΔGbind between -72.782 to -124.477 kJ.mol-1). In addition, Van der Waals interactions have a better contribution (-140,930 to -96,988 kJ.mol-1) than electrostatic forces (-43,270 to -6,854 kJ.mol-1), indicating Van der Waals interactions are the leading forces in forming and maintaining ligand-rhodesain complexes. CONCLUSION: Furthermore, the Dynamic Cross-Correlation Maps (DCCM) show more correlated movements for all complexes than the free rhodesain and strong interactions in the regions of the aforementioned residues. Principal Component Analysis (PCA) demonstrates complex stability corroborating with RMSF and RMSD. This study can provide valuable insights that can guide researchers worldwide to discover a new promising drug against HAT.

2.
Curr Top Med Chem ; 21(21): 1871-1899, 2021.
Article in English | MEDLINE | ID: mdl-33797369

ABSTRACT

Neglected tropical diseases (NTDs) are a group of approximately 20 diseases that affect part of the population in Sub- and Tropical countries. In the past, pharmaceutical industries and governmental agencies have invested in the control, elimination and eradication of such diseases. Among these diseases, Chagas disease (CD) and Human African trypanosomiasis (HAT) are a public health problem, mainly in the countries from the American continent and sub-Saharan African. In this context, the search for new therapeutic alternatives against such diseases has been growing in recent years, presenting cysteine proteases as the main strategy to discover new anti-trypanosomal drugs. Thus, cruzain and rhodesain enzymes are targets widely studied, since the cruzain is present in all stages of the parasite's life, related to the stages of proliferation and differentiation and infection of macrophages; while the rhodesain is related to the immune defense process. In addition, knowledge about the amino acid sequences and availability of X-ray complexes have stimulated the drug searching against these targets, mainly through molecular modeling studies. Thus, this review manuscript will be addressed to cruzain and rhodesain inhibitors developed in the last 10 years, which could provide basis for new lead compounds in the discovery of new trypanocidal drugs. We found 117 studies involving inhibitors of cruzain and rhodesain, being thiosemicarbazones, semicarbazones, N-acylhydrazones, thiazoles-hydrazone, thiazolidinones-hydrazones, oxadiazoles, triazoles, triazines, imidazoles, peptidomimetic, and others. All references were obtained using "cruzain" or "rhodesain" and "inhibitor" as keywords in Science Direct, Bentham Science, PubMed, Espacenet, Springer, ACS Publisher, Wiley, Taylor and Francis, and MDPI (Multidisciplinary Digital Publishing Institute) databases. Finally, we highlighted all these chemical classes of molecules to provide valuable information that could be used to design new inhibitors against Chagas disease and sleeping sickness in the future.


Subject(s)
Chagas Disease/drug therapy , Chagas Disease/parasitology , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/therapeutic use , Protozoan Proteins/antagonists & inhibitors , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Animals , Humans
3.
Future Med Chem ; 11(13): 1537-1551, 2019 07.
Article in English | MEDLINE | ID: mdl-31469332

ABSTRACT

Aim: Limitations in available therapies for trypanosomiases indicate the need for improved medicines. Cysteine proteases cruzain and rhodesain are validated targets for treatment of Chagas disease and human African trypanosomiasis. Previous studies reported a benzimidazole series as potent cruzain inhibitors. Results & methodology: Considering the high similarity between these proteases, we evaluated 40 benzimidazoles against rhodesain. We describe their structure-activity relationships (SAR), revealing trends similar to those observed for cruzain and features that lead to enzyme selectivity. This series comprises noncovalent competitive inhibitors (best Ki = 0.21 µM against rhodesain) and micromolar activity against Trypanosoma brucei brucei. A cheminformatics analysis confirms scaffold novelty, and the inhibitors described have favorable predicted physicochemical properties. Conclusion: Our results support this series as a starting point for new human African trypanosomiasis medicines.


Subject(s)
Benzimidazoles/pharmacology , Cysteine Proteases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma brucei brucei/enzymology , Trypanosomiasis, African/drug therapy
4.
Eur J Med Chem ; 179: 765-778, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31284086

ABSTRACT

Chagas disease, Human African Trypanosomiasis, and schistosomiasis are neglected parasitic diseases for which new treatments are urgently needed. To identify new chemical leads, we screened the 400 compounds of the Open Access Malaria Box against the cysteine proteases, cruzain (Trypanosoma cruzi), rhodesain (Trypanosoma brucei) and SmCB1 (Schistosoma mansoni), which are therapeutic targets for these diseases. Whereas just three hits were observed for SmCB1, 70 compounds inhibited cruzain or rhodesain by at least 50% at 5 µM. Among those, 15 commercially available compounds were selected for confirmatory assays, given their potency, time-dependent inhibition profile and reported activity against parasites. Additional assays led to the confirmation of four novel classes of cruzain and rhodesain inhibitors, with potency in the low-to mid-micromolar range against enzymes and T. cruzi. Assays against mammalian cathepsins S and B revealed inhibitor selectivity for parasitic proteases. For the two competitive inhibitors identified (compounds 7 and 12), their binding mode was predicted by docking, providing a basis for structure-based optimization efforts. Compound 12 also acted directly against the trypomastigote and the intracellular amastigote forms of T. cruzi at 3 µM. Therefore, through a combination of experimental and computational approaches, we report promising hits for optimization in the development of new trypanocidal drugs.


Subject(s)
Cysteine Proteases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Drug Discovery , Malaria/drug therapy , Schistosoma mansoni/metabolism , Trypanocidal Agents/pharmacology , Animals , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Malaria/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Schistosoma mansoni/drug effects , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/metabolism , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/metabolism
5.
Eur J Med Chem ; 157: 1426-1459, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30282318

ABSTRACT

Chagas disease and Human African trypanosomiasis (HAT) are important public health issues in Latin American and sub-Saharan African countries, respectively, and are responsible for a significant number of deaths. The drugs currently used to treat Chagas disease and HAT present efficacy, toxicity, and/or resistance issues; thus, there is a clear need for the discovery of novel targets and drug candidates to combat these diseases. In recent years, much effort has been made to find inhibitors of cruzain and rhodesain, which are promising targets for the design of novel trypanocidal compounds, since they are essential for parasite survival. Many reviews covering the design of novel cruzain and rhodesain inhibitors have been published; however, none have focused on the chemistry of the inhibitors. Thus, in the present work we reviewed the synthetic strategies and routes for the preparation of relevant classes of cruzain and rhodesain inhibitors. Perhaps the most important are the vinyl sulfone derivatives, and a very efficient synthetic strategy based on the Horner-Wadsworth-Emmons reaction was developed to yield these compounds. Modern approaches such as the asymmetric addition of substituted ethynyllithium to N-sulfinyl ketimines were used to produce the chiral alkynes that were employed in the preparation of important chiral triazole derivatives (potent cruzain inhibitors) and chiral HPLC resolution was used for the preparation of enantiopure 3-bromoisoxazoline derivatives (rhodesain inhibitors). Moreover, we also highlight the most important activity results and updated SAR results.


Subject(s)
Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/pharmacology , Protozoan Proteins/antagonists & inhibitors , Sulfones/chemistry , Sulfones/pharmacology , Animals , Chagas Disease/drug therapy , Chagas Disease/metabolism , Cysteine Endopeptidases/chemical synthesis , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/pharmacology , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Protozoan Proteins/chemical synthesis , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Protozoan Proteins/pharmacology , Structure-Activity Relationship , Sulfones/chemical synthesis , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/metabolism
6.
Pharmacol Ther ; 180: 49-61, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28579388

ABSTRACT

Chagas disease and human African trypanosomiasis are endemic conditions in Latin America and Africa, respectively, for which no effective and safe therapy is available. Efforts in drug discovery have focused on several enzymes from these protozoans, among which cysteine proteases have been validated as molecular targets for pharmacological intervention. These enzymes are expressed during the entire life cycle of trypanosomatid parasites and are essential to many biological processes, including infectivity to the human host. As a result of advances in the knowledge of the structural aspects of cysteine proteases and their role in disease physiopathology, inhibition of these enzymes by small molecules has been demonstrated to be a worthwhile approach to trypanosomatid drug research. This review provides an update on drug discovery strategies targeting the cysteine peptidases cruzain from Trypanosoma cruzi and rhodesain and cathepsin B from Trypanosoma brucei. Given that current chemotherapy for Chagas disease and human African trypanosomiasis has several drawbacks, cysteine proteases will continue to be actively pursued as valuable molecular targets in trypanosomatid disease drug discovery efforts.


Subject(s)
Chagas Disease/drug therapy , Cysteine Proteinase Inhibitors/therapeutic use , Neglected Diseases/drug therapy , Trypanosomiasis, African/drug therapy , Animals , Chagas Disease/metabolism , Cysteine Proteases/metabolism , Drug Discovery , Humans , Neglected Diseases/metabolism , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/enzymology , Trypanosoma cruzi/enzymology , Trypanosomiasis, African/metabolism
7.
Bioorg Med Chem ; 25(6): 1889-1900, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28215783

ABSTRACT

Analogues of 8-chloro-N-(3-morpholinopropyl)-5H-pyrimido[5,4-b]indol-4-amine 1, a known cruzain inhibitor, were synthesized using a molecular simplification strategy. Five series of analogues were obtained: indole, pyrimidine, quinoline, aniline and pyrrole derivatives. The activity of the compounds was evaluated against the enzymes cruzain and rhodesain as well as against Trypanosoma cruzi amastigote and trypomastigote forms. The 4-aminoquinoline derivatives showed promising activity against both enzymes, with IC50 values ranging from 15 to 125µM. These derivatives were selective inhibitors for the parasitic proteases, being unable to inhibit mammalian cathepsins B and S. The most active compound against cruzain (compound 5a; IC50=15µM) is considerably more synthetically accessible than 1, while retaining its ligand efficiency. As observed for the original lead, compound 5a was shown to be a competitive enzyme inhibitor. In addition, it was also active against T. cruzi (IC50=67.7µM). Interestingly, the pyrimidine derivative 4b, although inactive in enzymatic assays, was highly active against T. cruzi (IC50=3.1µM) with remarkable selectivity index (SI=128) compared to uninfected fibroblasts. Both 5a and 4b exhibit drug-like physicochemical properties and are predicted to have a favorable ADME profile, therefore having great potential as candidates for lead optimization in the search for new drugs to treat Chagas disease.


Subject(s)
Cysteine Endopeptidases/drug effects , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/pharmacology , Protozoan Proteins/antagonists & inhibitors , Cysteine Proteinase Inhibitors/chemistry , Drug Evaluation, Preclinical , Spectrum Analysis/methods , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL