Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 18592, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127859

ABSTRACT

Pecan (Carya illinoinensis) is an economically important nut crop known for its genetic diversity and adaptability to various climates. Understanding the growth variability, phenological traits, and population structure of pecan populations is crucial for breeding programs and conservation. In this study, plant growth and phenological traits were evaluated over three consecutive seasons (2015-2017) for 550 genotypes from 26 provenances. Significant variations in plant height, stem diameter, and budbreak were observed among provenances, with Southern provenances exhibiting faster growth and earlier budbreak compared to Northern provenances. Population structure analysis using SNP markers revealed eight distinct subpopulations, reflecting genetic differentiation among provenances. Notably, Southern Mexico collections formed two separate clusters, while Western collections, such as 'Allen 3', 'Allen 4', and 'Riverside', were distinguished from others. 'Burkett' and 'Apache' were grouped together due to their shared maternal parentage. Principal component analysis and phylogenetic tree analysis further supported subpopulation differentiation. Genetic differentiation among the 26 populations was evident, with six clusters highly in agreement with the subpopulations identified by STRUCTURE and fastSTRUCTURE. Principal components analysis (PCA) revealed distinct groups, corresponding to subpopulations identified by genetic analysis. Discriminant analysis of PCA (DAPC) based on provenance origin further supported the genetic structure, with clear separation of provenances into distinct clusters. These findings provide valuable insights into the genetic diversity and growth patterns of pecan populations. Understanding the genetic basis of phenological traits and population structure is essential for selecting superior cultivars adapted to diverse environments. The identified subpopulations can guide breeding efforts to develop resilient rootstocks and contribute to the sustainable management of pecan genetic resources. Overall, this study enhances our understanding of pecan genetic diversity and informs conservation and breeding strategies for the long-term viability of pecan cultivation.


Subject(s)
Carya , Genetic Variation , Phenotype , Carya/genetics , Carya/growth & development , Phylogeny , Genotype , Mexico , Polymorphism, Single Nucleotide , Principal Component Analysis , Genetics, Population
2.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892245

ABSTRACT

Breeding salt-tolerant crops is necessary to reduce food insecurity. Prebreeding populations are fundamental for uncovering tolerance alleles from wild germplasm. To obtain a physiological interpretation of the agronomic salt tolerance and better criteria to identify candidate genes, quantitative trait loci (QTLs) governing productivity-related traits in a population of recombinant inbred lines (RIL) derived from S. pimpinellifolium were reanalyzed using an SNP-saturated linkage map and clustered using QTL meta-analysis to synthesize QTL information. A total of 60 out of 85 QTLs were grouped into 12 productivity MQTLs. Ten of them were found to overlap with other tomato yield QTLs that were found using various mapping populations and cultivation conditions. The MQTL compositions showed that fruit yield was genetically associated with leaf water content. Additionally, leaf Cl- and K+ contents were related to tomato productivity under control and salinity conditions, respectively. More than one functional candidate was frequently found, explaining most productivity MQTLs, indicating that the co-regulation of more than one gene within those MQTLs might explain the clustering of agronomic and physiological QTLs. Moreover, MQTL1.2, MQTL3 and MQTL6 point to the root as the main organ involved in increasing productivity under salinity through the wild allele, suggesting that adequate rootstock/scion combinations could have a clear agronomic advantage under salinity.


Subject(s)
Chromosome Mapping , Quantitative Trait Loci , Salt Tolerance , Solanum , Salt Tolerance/genetics , Solanum/genetics , Solanum/metabolism , Phenotype , Polymorphism, Single Nucleotide , Plant Breeding , Genetic Linkage , Genes, Plant
3.
Int J Mol Sci ; 24(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37958745

ABSTRACT

The excessive accumulation of chloride (Cl-) in leaves due to salinity is frequently related to decreased yield in citrus. Two salt tolerance experiments to detect quantitative trait loci (QTLs) for leaf concentrations of Cl-, Na+, and other traits using the same reference progeny derived from the salt-tolerant Cleopatra mandarin (Citrus reshni) and the disease-resistant donor Poncirus trifoliata were performed with the aim to identify repeatable QTLs that regulate leaf Cl- (and/or Na+) exclusion across independent experiments in citrus, as well as potential candidate genes involved. A repeatable QTL controlling leaf Cl- was detected in chromosome 6 (LCl-6), where 23 potential candidate genes coding for transporters were identified using the C. clementina genome as reference. Transcriptomic analysis revealed two important candidate genes coding for a member of the nitrate transporter 1/peptide transporter family (NPF5.9) and a major facilitator superfamily (MFS) protein. Cell wall biosynthesis- and secondary metabolism-related processes appeared to play a significant role in differential gene expression in LCl-6. Six likely gene candidates were mapped in LCl-6, showing conserved synteny in C. reshni. In conclusion, markers to select beneficial Cleopatra mandarin alleles of likely candidate genes in LCl-6 to improve salt tolerance in citrus rootstock breeding programs are provided.


Subject(s)
Citrus , Quantitative Trait Loci , Salt Tolerance/genetics , Transcriptome , Citrus/genetics , Plant Breeding , Membrane Transport Proteins/genetics
4.
Plants (Basel) ; 12(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37176932

ABSTRACT

The spatial arrangement and growth pattern of root systems, defined by the root system architecture (RSA), influences plant productivity and adaptation to soil environments, playing an important role in sustainable horticulture. Florida's peach production area covers contrasting soil types, making it necessary to identify rootstocks that exhibit soil-type-specific advantageous root traits. In this sense, the wide genetic diversity of the Prunus genus allows the breeding of rootstock genotypes with contrasting root traits. The evaluation of root traits expressed in young seedlings and plantlets facilitates the early selection of desirable phenotypes in rootstock breeding. Plantlets from three peach × (peach × almond) backcross populations were vegetatively propagated and grown in rhizoboxes. These backcross populations were identified as BC1251, BC1256, and BC1260 and studied in a completely randomized design. Scanned images of the entire root systems of the plantlets were analyzed for total root length distribution by diameter classes, root dry weight by depth horizons, root morphological components, structural root parameters, and root spreading angles. The BC1260 progeny presented a shallower root system and lower root growth. Backcross BC1251 progeny exhibited a more vigorous and deeper root system at narrower root angles, potentially allowing it to explore and exploit water and nutrients in deep sandy entisols from the Florida central ridge.

5.
Plants (Basel) ; 12(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37111854

ABSTRACT

Sexual breeding at the tetraploid level is a promising strategy for rootstock breeding in citrus. Due to the interspecific origin of most of the conventional diploid citrus rootstocks that produced the tetraploid germplasm, the optimization of this strategy requires better knowledge of the meiotic behavior of the tetraploid parents. This work used Genotyping By Sequencing (GBS) data from 103 tetraploid hybrids to study the meiotic behavior and generate a high-density recombination landscape for their tetraploid intergenic Swingle citrumelo and interspecific Volkamer lemon progenitors. A genetic association study was performed with root architecture traits. For citrumelo, high preferential chromosome pairing was revealed and led to an intermediate inheritance with a disomic tendency. Meiosis in Volkamer lemon was more complex than that of citrumelo, with mixed segregation patterns from disomy to tetrasomy. The preferential pairing resulted in low interspecific recombination levels and high interspecific heterozygosity transmission by the diploid gametes. This meiotic behavior affected the efficiency of Quantitative Trait Loci (QTL) detection. Nevertheless, it enabled a high transmission of disease and pest resistance candidate genes from P. trifoliata that are heterozygous in the citrumelo progenitor. The tetrazyg strategy, using doubled diploids of interspecific origin as parents, appears to be efficient in transferring the dominant traits selected at the parental level to the tetraploid progenies.

6.
Int J Mol Sci ; 23(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35563521

ABSTRACT

Salt tolerance is a target trait in plant science and tomato breeding programs. Wild tomato accessions have been often explored for this purpose. Since shoot Na+/K+ is a key component of salt tolerance, RNAi-mediated knockdown isogenic lines obtained for Solanum galapagense alleles encoding both class I Na+ transporters HKT1;1 and HKT1;2 were used to investigate the silencing effects on the Na and K contents of the xylem sap, and source and sink organs of the scion, and their contribution to salt tolerance in all 16 rootstock/scion combinations of non-silenced and silenced lines, under two salinity treatments. The results show that SgHKT1;1 is operating differently from SgHKT1;2 regarding Na circulation in the tomato vascular system under salinity. A model was built to show that using silenced SgHKT1;1 line as rootstock would improve salt tolerance and fruit quality of varieties carrying the wild type SgHKT1;2 allele. Moreover, this increasing effect on both yield and fruit soluble solids content of silencing SgHKT1;1 could explain that a low expressing HKT1;1 variant was fixed in S. lycopersicum during domestication, and the paradox of increasing agronomic salt tolerance through silencing the HKT1;1 allele from S. galapagense, a salt adapted species.


Subject(s)
Cation Transport Proteins , Solanum lycopersicum , Solanum , Cation Transport Proteins/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Potassium/metabolism , Salinity , Sodium/metabolism , Solanum/genetics
7.
Plant Dis ; 105(12): 4132-4137, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34110229

ABSTRACT

The ectoparasitic nematode Xiphinema index transmits grapevine fanleaf virus (GFLV) during feeding on grapevine roots, causing fanleaf degeneration in the plant. Hence, resistance breeding is a key to develop novel rootstocks to overcome such threats. In past years, various grapevine species were screened, and a few candidates with partial resistance were identified. However, they were hardly sufficient for viticulture because of their many agronomical defects. To develop reliably resistant rootstocks applicable in viticulture, multiple Vitis spp. genotypes were analyzed using root inoculation with nematodes in glass vials as an early and easy evaluation test. Resistance levels were evaluated 35 days after inoculation based on nematode reproduction factors, focusing on juveniles and eggs. Infection of grapevines with GFLV was analyzed after inoculation with viruliferous X. index. With this fast screening system, putative candidates with resistances against X. index have been identified for future breeding programs. Particularly, genotypes with the genetic background of Vitis aestivalis and Vitis labrusca were found to be nematode-resistant.


Subject(s)
Nematoda , Vitis , Animals , Genetic Background , Genotype , Plant Diseases/genetics
8.
Genes (Basel) ; 12(1)2020 12 23.
Article in English | MEDLINE | ID: mdl-33374834

ABSTRACT

Developing drought-tolerant crops is an important strategy to mitigate climate change impacts. Modulating root system function provides opportunities to improve crop yield under biotic and abiotic stresses. With this aim, a commercial hybrid tomato variety was grafted on a genotyped population of 123 recombinant inbred lines (RILs) derived from Solanumpimpinellifolium, and compared with self- and non-grafted controls, under contrasting watering treatments (100% vs. 70% of crop evapotranspiration). Drought tolerance was genetically analyzed for vegetative and flowering traits, and root xylem sap phytohormone and nutrient composition. Under water deficit, around 25% of RILs conferred larger total shoot dry weight than controls. Reproductive and vegetative traits under water deficit were highly and positively correlated to the shoot water content. This association was genetically supported by linkage of quantitative trait loci (QTL) controlling these traits within four genomic regions. From a total of 83 significant QTLs, most were irrigation-regime specific. The gene contents of 8 out of 12 genomic regions containing 46 QTLs were found significantly enriched at certain GO terms and some candidate genes from diverse gene families were identified. Thus, grafting commercial varieties onto selected rootstocks derived from S.pimpinellifolium provides a viable strategy to enhance drought tolerance in tomato.


Subject(s)
Acclimatization/genetics , Droughts , Quantitative Trait Loci , Solanum lycopersicum/physiology , Water/metabolism , Chimera/genetics , Chimera/metabolism , Crop Production/methods , Genetic Linkage , Genome, Plant , Plant Growth Regulators/analysis , Plant Roots/chemistry , Plant Roots/genetics , Plant Roots/metabolism , Xylem/chemistry , Xylem/genetics , Xylem/metabolism
9.
Front Plant Sci ; 11: 1132, 2020.
Article in English | MEDLINE | ID: mdl-32849694

ABSTRACT

Saline stress is one of most important problems that agriculture must face in the context of climate change. In the Mediterranean basin, one of the regions most affected, persimmon production can be compromised by this effect, due to the limited availability of salt tolerant rootstocks. Seedlings coming from four populations from the Diospyros genus have been exposed to salt stress in order to identify salt tolerance genotypes within these populations. Morphological, physiological, and transcriptomic approaches have revealed different mechanisms of tolerance among the population studied. An HKT1-like gene has been shown to have different root expression related to the salt tolerance phenotypes among and within populations. Additionally, we have observed differences in salt-responsive expression among PIP aquaporin genes. Genetic variability for salt tolerance can be generated in Diospyros species through crossings and used for overcome salt stress. Furthermore, differences in water use efficiency (WUE) have been obtained between and within populations. The information gathered at transcriptomic and physiological level demonstrated natural and heritable variability among Diospyros genus which is the key for salt-tolerant rootstock breeding programs.

10.
Front Plant Sci ; 9: 901, 2018.
Article in English | MEDLINE | ID: mdl-30123223

ABSTRACT

Polyploidy is one of the main forces that drives the evolution of plants and provides great advantages for breeding. Somatic hybridization by protoplast fusion is used in citrus breeding programs. This method allows combining the whole parental genomes in a single genotype, adding complementary dominant characters, regardless of parental heterozygosity. It also contributes to surpass limitations imposed by reproductive biology and quickly generates progenies that combine the required traits. Two allotetraploid somatic hybrids recovered from the citrus rootstocks-Citrus macrophylla (CM) and Carrizo citrange (CC)-were characterized for morphology, genome composition using molecular markers (SNP, SSR, and InDel), and their tolerance to iron chlorosis, salinity, and Citrus tristeza virus (CTV). Both hybrids combine the whole parental genomes even though the loss of parental alleles was detected in most linkage groups. Mitochondrial genome was inherited from CM in both the hybrids, whereas recombination was observed for chloroplastic genome. Thus, somatic hybrids differ from each other in their genome composition, indicating that losses and rearrangements occurred during the fusion process. Both inherited the tolerance to stem pitting caused by CTV from CC, are tolerant to iron chlorosis such as CM, and have a higher tolerance to salinity than the sensitive CC. These hybrids have potential as improved rootstocks to grow citrus in areas with calcareous and saline soils where CTV is present, such as the Mediterranean region. The provided knowledge on the effects of somatic hybridization on the genome composition, anatomy, and physiology of citrus rootstocks will be key for breeding programs that aim to address current and future needs of the citrus industry.

11.
New Phytol ; 211(1): 41-56, 2016 07.
Article in English | MEDLINE | ID: mdl-27128375

ABSTRACT

I. 42 II. 43 III. 44 IV. 47 V. 49 VI. 50 VII. 50 VIII. 50 IX. 52 52 References 52 SUMMARY: Root-knot nematodes (RKNs) Meloidogyne spp. cause major damage to cultivated woody plants. Among them, Prunus, grapevine and coffee are the crops most infested by worldwide polyphagous species and species with a more limited distribution and/or narrower host range. The identification and characterization of natural sources of resistance are important steps to develop RKN control strategies. In woody crops, resistant rootstocks genetically different from the scion of agronomical interest may be engineered. We describe herein the interactions between RKNs and different woody crops, and highlight the plant species in which resistance and corresponding resistance (R) genes have been discovered. Even though grapevine and, to a lesser extent, coffee have a history of rootstock selection for RKN resistance, few cases of resistance have been documented. By contrast, in Prunus, R genes with different spectra have been mapped in plums, peach and almond and can be pyramided for durable resistance in interspecific rootstocks. We particularly discuss here the Ma Toll/interleukin-1 receptor-like-nucleotide binding-leucine-rich repeat gene from Myrobalan plum, one of the longest plant R genes cloned to date, due to its unique biological and structural properties. RKN R genes in Prunus will enable us to carry out molecular studies aimed at improving our knowledge of plant immunity in woody plants.


Subject(s)
Crops, Agricultural/parasitology , Plant Diseases , Plant Roots/parasitology , Tylenchoidea/pathogenicity , Animals , Coffea/parasitology , Disease Resistance , Gene Expression Regulation, Plant , Host-Parasite Interactions/physiology , Plant Breeding/methods , Plant Diseases/parasitology , Plant Roots/genetics , Prunus/genetics , Prunus/parasitology , Vitis/genetics , Vitis/parasitology
12.
Plant Dis ; 85(10): 1052-1054, 2001 Oct.
Article in English | MEDLINE | ID: mdl-30823275

ABSTRACT

A technique to evaluate the root-knot nematode resistance of grape seedlings was developed. Seedlings of rootstock crosses and nematode-susceptible Vitis vinifera cvs. Colombard and Carignane were inoculated with Meloidogyne incognita juveniles. Reproduction of nematodes on individual plants was measured by counting the number of egg masses stained with eosin and the number of eggs present. Egg mass counts were highly correlated with egg counts. Resistant and susceptible cultivars could be clearly distinguished by the number of egg masses produced on vegetatively propagated cuttings. It is concluded that egg mass counting can substitute for the more laborious and time-consuming methods of counting nematode eggs or juveniles in the evaluation of root-knot nematode resistance in Vitis.

13.
J Nematol ; 16(2): 207-8, 1984 Apr.
Article in English | MEDLINE | ID: mdl-19295902
SELECTION OF CITATIONS
SEARCH DETAIL