Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1218031, 2023.
Article in English | MEDLINE | ID: mdl-37304139

ABSTRACT

Due to high growth rate, outstanding abiotic stress tolerance, and rich value-added substances, Chrysotila roscoffensis, belonging to the phylum of Haptophyta, can be considered as a versatile resource for industrial exploitation of bioactive compounds. However, the application potential of C. roscoffensis has drawn attention until just recently, and the understanding related to the biological properties of this species is still scarce. For example, the sensitivities of C. roscoffensis to antibiotics, which is essential for the verification of heterotrophic capacity and the establishment of efficient genetic manipulation system is still unavailable. Aiming to provide fundamental information for future exploitation, the sensitivities of C. roscoffensis to nine types of antibiotics were tested in this study. The results demonstrated that C. roscoffensis exhibited relatively high resistances to ampicillin, kanamycin, streptomycin, gentamicin, and geneticin, while was sensitive to bleomycin, hygromycin B, paromomycin, and chloramphenicol. Using the former five types of antibiotics, a bacteria removal strategy was established tentatively. Finally, the axenicity of treated C. roscoffensis was confirmed based on a multi-strategy method including solid plate, 16S rDNA amplification, and nuclear acid staining. This report can provide valuable information for the development of optimal selection markers, which are meaningful for more extensive transgenic studies in C. roscoffensis. Moreover, our study also paves the way for the establishment of heterotrophic/mixotrophic cultivation modes of C. roscoffensis.

2.
Article in English | MEDLINE | ID: mdl-37200211

ABSTRACT

A novel Gram-negative, aerobic, motile, rod-shaped, beige-pigmented bacterium, strain ARW1-2F2T, was isolated from a seawater sample collected from Roscoff, France. Strain ARW1-2F2T was catalase-negative and oxidase-positive, and grew under mesophilic, neutrophilic and halophilic conditions. The 16S rRNA sequences revealed that strain ARW1-2F2T was closely related to Arcobacter lekithochrous LFT 1.7T and Arcobacter caeni RW17-10T(95.8 and 95.5 % gene sequence similarity, respectively). The genome of strain ARW1-2F2T was sequenced and had a G+C content of 28.7%. Two different measures of genome similarity, average nucleotide identity based on blast and digital DNA-DNA hybridization, indicated that strain ARW1-2F2T represents a new Arcobacter species. The predominant fatty acids were C16 : 1 ω7c/C16 : 1 ω6c and C18 : 1 ω7c/C18 : 1 ω6c. The results of a polyphasic analysis supported the description of strain ARW1-2F2T as representing a novel species of the genus Arcobacter, for which the name Arcobacter roscoffensis sp. nov. is proposed with the type strain ARW1-2F2T (DSM 29169T=KCTC 52423T).


Subject(s)
Arcobacter , Fatty Acids , Fatty Acids/chemistry , Phospholipids/analysis , RNA, Ribosomal, 16S/genetics , Base Composition , Phylogeny , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques , Seawater/microbiology
3.
Article in English | MEDLINE | ID: mdl-34346862

ABSTRACT

Four marine bacterial strains were isolated from a thallus of the brown alga Ascophyllum nodosum collected in Roscoff, France. Cells were Gram-stain-negative, strictly aerobic, non-flagellated, gliding, rod-shaped and grew optimally at 25-30 °C, at pH 7-8 and with 2-4 % NaCl. Phylogenetic analyses of their 16S rRNA gene sequences showed that the bacteria were affiliated to the genus Zobellia (family Flavobacteriaceae, phylum Bacteroidetes). The four strains exhibited 97.8-100 % 16S rRNA gene sequence similarity values among themselves, 97.9-99.1 % to the type strains of Zobellia amurskyensis KMM 3526T and Zobellia laminariae KMM 3676T, and less than 99 % to other species of the genus Zobellia. The DNA G+C content of the four strains ranged from 36.7 to 37.7 mol%. Average nucleotide identity and digital DNA-DNA hybridization calculations between the new strains and other members of the genus Zobellia resulted in values of 76.4-88.9 % and below 38.5 %, respectively. Phenotypic, phylogenetic and genomic analyses showed that the four strains are distinct from species of the genus Zobellia with validly published names. They represent two novel species of the genus Zobellia, for which the names Zobellia roscoffensis sp. nov. and Zobellia nedashkovskayae sp. nov. are proposed with Asnod1-F08T (RCC6906T=KMM 6823T=CIP 111902T) and Asnod2-B07-BT (RCC6908T=KMM 6825T=CIP 111904T), respectively, as the type strains.


Subject(s)
Ascophyllum , Flavobacteriaceae , Phylogeny , Ascophyllum/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Flavobacteriaceae/classification , Flavobacteriaceae/isolation & purification , France , Microbiota , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Seawater , Sequence Analysis, DNA
4.
Genes (Basel) ; 13(1)2021 12 23.
Article in English | MEDLINE | ID: mdl-35052381

ABSTRACT

Chrysotila is a genus of coccolithophores. Together with Emiliania, it is one of the representative genera in the Haptophyta which have been extensively studied. They are photosynthetic unicellular marine algae sharing the common characteristic of the production of CaCO3 platelets (coccoliths) on the surface of their cells and are crucial contributors to global biogeochemical cycles. Here, we report the genome assembly of Chrysotila roscoffensis. The assembled genome size was ~636 Mb distributed across 769 scaffolds with N50 of 1.63 Mb, and maximum contig length of ~2.6 Mb. Repetitive elements accounted for approximately 59% of the genome. A total of 23,341 genes were predicted from C. roscoffensis genome. The divergence time between C. roscoffensis and Emiliania huxleyi was estimated to be around 537.6 Mya. Gene families related to cytoskeleton, cellular motility and morphology, and ion transport were expanded. The genome of C. roscoffensis will provide a foundation for understanding the genetic and phenotypic diversification and calcification mechanisms of coccolithophores.


Subject(s)
Genome/genetics , Haptophyta/genetics , Calcification, Physiologic/genetics , Ion Transport/genetics , Repetitive Sequences, Nucleic Acid/genetics
5.
Biol Open ; 4(12): 1688-95, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26581588

ABSTRACT

The ability of some animals to regrow their head and brain after decapitation provides a striking example of the regenerative capacity within the animal kingdom. The acoel worm Symsagittifera roscoffensis can regrow its head, brain and sensory head organs within only a few weeks after decapitation. How rapidly and to what degree it also reacquires its functionality to control behavior however remains unknown. We provide here a neuroanatomical map of the brain neuropils of the adult S. roscoffensis and show that after decapitation a normal neuroanatomical organization of the brain is restored in the majority of animals. By testing different behaviors we further show that functionality of both sensory perception and the underlying brain architecture are restored within weeks after decapitation. Interestingly not all behaviors are restored at the same speed and to the same extent. While we find that phototaxis recovered rapidly, geotaxis is not restored within 7 weeks. Our findings show that regeneration of the head, sensory organs and brain result in the restoration of directed navigation behavior, suggesting a tight coordination in the regeneration of certain sensory organs with that of their underlying neural circuits. Thus, at least in S. roscoffensis, the regenerative capacity of different sensory modalities follows distinct paths.

6.
Front Microbiol ; 5: 498, 2014.
Article in English | MEDLINE | ID: mdl-25324833

ABSTRACT

A remarkable example of biological engineering is the capability of some marine animals to take advantage of photosynthesis by hosting symbiotic algae. This capacity, referred to as photosymbiosis, is based on structural and functional complexes that involve two distantly unrelated organisms. These stable photosymbiotic associations between metazoans and photosynthetic protists play fundamental roles in marine ecology as exemplified by reef communities and their vulnerability to global changes threats. Here we introduce a photosymbiotic tidal acoel flatworm, Symsagittifera roscoffensis, and its obligatory green algal photosymbiont, Tetraselmis convolutae (Lack of the algal partner invariably results in acoel lethality emphasizing the mandatory nature of the photosymbiotic algae for the animal's survival). Together they form a composite photosymbiotic unit, which can be reared in controlled conditions that provide easy access to key life-cycle events ranging from early embryogenesis through the induction of photosymbiosis in aposymbiotic juveniles to the emergence of a functional "solar-powered" mature stage. Since it is possible to grow both algae and host under precisely controlled culture conditions, it is now possible to design a range of new experimental protocols that address the mechanisms and evolution of photosymbiosis. S. roscoffensis thus represents an emerging model system with experimental advantages that complement those of other photosymbiotic species, in particular corals. The basal taxonomic position of S. roscoffensis (and acoels in general) also makes it a relevant model for evolutionary studies of development, stem cell biology and regeneration. Finally, it's autotrophic lifestyle and lack of calcification make S. roscoffensis a favorable system to study the role of symbiosis in the response of marine organisms to climate change (e.g., ocean warming and acidification). In this article we summarize the state of knowledge of the biology of S. roscoffensis and its algal partner from studies dating back over a century, and provide an overview of ongoing research efforts that take advantage of this unique system.

SELECTION OF CITATIONS
SEARCH DETAIL