Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
1.
Tetrahedron Chem ; 112024 Aug.
Article in English | MEDLINE | ID: mdl-39239262

ABSTRACT

While their broad utility in various chemistry fields were well recognized for decades, fluoroalcohols have recently emerged as a unique solvent system for bioconjugation development. This review describes examples and roles of fluoroalcohols such as trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP) for chemical modification of biomolecules such as polypeptides, nucleic acids, and saccharides. Many chemical modification processes were facilitated by notable functions of those fluoroalcohols such as a proton shuttle, reversible adduct formation with reactive species, and compatibility with electrochemistry/photochemistry. The usefulness of the fluoroalcohol solvents can be even promoted by its combination with a different solvent system for reaction enhancement and protein stabilization. The collection of the various chemical transformations in this review is an indication of the rapid growth of the solvent-assisted bioconjugation field.

2.
Adv Sci (Weinh) ; : e2405613, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39193873

ABSTRACT

Saccharides are involved in nearly all life processes. However, due to the complexity and diversity of saccharide structures, their selective recognition is one of the most challenging tasks. Distinct from conventional receptor designs that rely on delicate and complicated molecular structures, here a novel and precise ternary co-assembled strategy is reported for achieving saccharide recognition, which originates from a halogen ions-driven aggregation-induced emission module called p-Toluidine, N, N'-1-propen-1-yl-3-ylidene hydrochloride (PN-Tol). It exhibits ultra-strong self-assembly capability and specifically binds to 4-mercaptophenylboronic acid (MPBA), forming highly ordered co-assemblies. Subsequent binding of various saccharides results in heterogeneous ternary assembly behaviors, generating cluster-like, spherical, and rod-like microstructures with well-defined crystalline patterns, accompanied by significant enhancement of fluorescence. Owing to the excellent expandability of the PN module, an array sensor is constructed that enables easy classification of diverse saccharides, including epimer and optical isomers. This strategy demonstrates wide applicability and paves a new avenue for saccharide recognition, analysis, and sequencing.

3.
Sensors (Basel) ; 24(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39205136

ABSTRACT

Saccharides, being one of the fundamental molecules of life, play essential roles in the physiological and pathological functions of cells. However, their intricate structures pose challenges for detection. Nanopore technology, with its high sensitivity and capability for single-molecule-level analysis, has revolutionized the identification and structural analysis of saccharide molecules. This review focuses on recent advancements in nanopore technology for carbohydrate detection, presenting an array of methods that leverage the molecular complexity of saccharides. Biological nanopore techniques utilize specific protein binding or pore modifications to trigger typical resistive pulses, enabling the high-sensitivity detection of monosaccharides and oligosaccharides. In solid-state nanopore sensing, boronic acid modification and pH gating mechanisms are employed for the specific recognition and quantitative analysis of polysaccharides. The integration of artificial intelligence algorithms can further enhance the accuracy and reliability of analyses. Serving as a crucial tool in carbohydrate detection, we foresee significant potential in the application of nanopore technology for the detection of carbohydrate molecules in disease diagnosis, drug screening, and biosensing, fostering innovative progress in related research domains.


Subject(s)
Biosensing Techniques , Nanopores , Biosensing Techniques/methods , Carbohydrates/chemistry , Carbohydrates/analysis , Humans , Monosaccharides/chemistry , Monosaccharides/analysis
4.
Methods Appl Fluoresc ; 12(4)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39013401

ABSTRACT

Guanine-rich single-stranded DNA folds into G-quadruplex DNA (GqDNA) structures, which play crucial roles in various biological processes. These structures are also promising targets for ligands, potentially inducing antitumor effects. While thermodynamic parameters of ligand/DNA interactions are well-studied, the kinetics of ligand interaction with GqDNA, particularly in cell-like crowded environments, remain less explored. In this study, we investigate the impact of molecular crowding agents (glucose, sucrose, and ficoll 70) at physiologically relevant concentrations (20% w/v) on the association and dissociation rates of the benzophenoxazine-core based ligand, cresyl violet (CV), with human telomeric antiparallel-GqDNA. We utilized fluorescence correlation spectroscopy (FCS) along with other techniques. Our findings reveal that crowding agents decrease the binding affinity of CV to GqDNA, with the most significant effect-a nearly three-fold decrease-observed with ficoll 70. FCS measurements indicate that this decrease is primarily due to a viscosity-induced slowdown of ligand association in the crowded environment. Interestingly, dissociation rates remain largely unaffected by smaller crowders, with only small effect observed in presence of ficoll 70 due to direct but weak interaction between the ligand and ficoll. These results along with previously reported data provide valuable insights into ligand/GqDNA interactions in cellular contexts, suggesting a conserved mechanism of saccharide crowder influence, regardless of variations in GqDNA structure and ligand binding mode. This underscores the importance of considering crowding effects in the design and development of GqDNA-targeted drugs for potential cancer treatment.


Subject(s)
G-Quadruplexes , Spectrometry, Fluorescence , Spectrometry, Fluorescence/methods , Ligands , Kinetics , Humans , DNA/chemistry
5.
Polymers (Basel) ; 16(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000794

ABSTRACT

Due to the presence of the boronic acid moieties, poly-3-thienylboronic acid has an affinity for saccharides and other diol-containing compounds. Thin films of this novel chemosensitive polymer were synthesized electrochemically on the gold surface. The adhesion of the polymer was enhanced by the deposition of a monomolecular layer of thiophenol. The technology was used to fabricate conductometric sensors for glucose and other diol-containing compounds. Simultaneous two- and four-electrode conductivity measurements were performed. The chemical sensitivity to sorbitol, fructose, glucose, and ethylene glycol was studied at different pH and electrode potentials, and the corresponding binding constants were obtained. Depending on the electrode potential, the reciprocal values of the binding constants of glucose to poly-3-thienylboronic acid at neutral pH are in the range of 0.2 mM-1.0 mM. The affinity for glucose has been studied in buffer solutions and in solutions containing the major components of human blood. It was shown that the presence of human serum albumin increases the affinity of poly-3-thienylboronic acid for diol-containing compounds.

6.
Plant Cell Rep ; 43(8): 199, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039362

ABSTRACT

KEY MESSAGE: Metabolomic and transcriptomic analyses revealed an intensification of energy metabolism in rice grains under DMA stress, possibly causing the consumption of sugars or non-sugars and the development of unfilled grains Excessive dimethylarsinic acid (DMA) causes rice straighthead disease, a physiological disorder typically with erect panicle due to empty grain at maturity. Although the toxicity of DMA and its uptake and transport in rice are well recognized, the underlying mechanism of unfilled grains remains unclear. Therefore, a pot experiment was conducted using a susceptible variety (Ruanhuayou1179, RHY) and a resistant one (Nanjingxiangzhan, NJXZ) via the metabolomic and transcriptomic approaches to explore the mechanisms of empty grains in diseased rice under DMA stress. The results demonstrate an increase in total and methylated As in grains of RHY and NJXZ under DMA addition, with RHY containing higher levels of DMA. DMA addition increased the soluble sugar content in grains of RHY and NJXZ by 17.1% and 14.3% compared to the control, respectively, but significantly reduced the levels of amino acid, soluble protein, and starch. The decrease of grain Zn and B contents was also observed, and inadequate Zn might be a key factor limiting rice grain yield under DMA stress. Notably, DMA addition altered the expression levels of genes involved in the transport of sugar, amino acids, nitrates/peptides, and mineral ions. In sugar and amino acid metabolism, the reduction of metabolites and the upregulated expression of genes reflect positive regulation at the level of energy metabolism, implying that the reduction of grain starch and proteins might be ascribed to generate sufficient energy to resist the stress. This study provides a useful reference for understanding the molecular mechanism of grain emptying under DMA stress.


Subject(s)
Amino Acids , Cacodylic Acid , Gene Expression Regulation, Plant , Oryza , Stress, Physiological , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Amino Acids/metabolism , Gene Expression Regulation, Plant/drug effects , Cacodylic Acid/metabolism , Edible Grain/metabolism , Edible Grain/genetics , Edible Grain/drug effects , Micronutrients/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Zinc/metabolism
7.
Chem Senses ; 492024 Jan 01.
Article in English | MEDLINE | ID: mdl-39046896

ABSTRACT

Postprandial regulation of the gastric emptying (GE) rate plays an important role in food intake. Although oral sweetening with glucose may accelerate GE, the effects of different sweetness intensities of glucose (10% and 20%, w/v) and other energy sweeteners (e.g. fructose and sucrose) remain uncertain. The purpose of this study was to determine the effects of different glucose concentrations (Experiment 1) and different sugars with the same sweet taste intensity (Experiment 2) on postprandial GE. In both experiments, after ingesting a 200 kcal carbohydrate solution containing 50 g of maltodextrin, participants repeatedly sipped, but did not swallow, one of three (water, 10% and 20%, w/v glucose) or four (water and equally sweet 20%, w/v glucose, 12%, w/v fructose, and 14%, w/v sucrose) solutions for 1 min every 5 min over a 30 min period. GE was evaluated by measuring the temporal change in the cross-sectional area of the gastric antrum using ultrasound. In Experiment 1, oral stimulation with 20% (w/v) glucose resulted in greater GE than the control stimulus (i.e. water), but the effect of stimulation with 10% (w/v) glucose on GE was not different from that of the control stimulus. In Experiment 2, stimulation with 20% (w/v) glucose or 12% (w/v) fructose resulted in greater GE than the control stimulus. However, the effect of stimulation with 14% (w/v) sucrose on GE did not differ from that of the control stimulus. Consequently, oral stimulation with glucose or fructose solutions of moderate to high sweetness following a meal facilitates postprandial GE.


Subject(s)
Fructose , Gastric Emptying , Glucose , Sucrose , Humans , Gastric Emptying/drug effects , Fructose/pharmacology , Glucose/pharmacology , Glucose/administration & dosage , Male , Adult , Sucrose/pharmacology , Female , Young Adult , Postprandial Period/drug effects , Sweetening Agents/pharmacology , Administration, Oral
8.
Int J Biol Macromol ; 275(Pt 1): 133350, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960255

ABSTRACT

Saccharide mapping was a promising scheme to unveil the mystery of polysaccharide structure by analysis of the fragments generated from polysaccharide decomposition process. However, saccharide mapping was not widely applied in the polysaccharide analysis for lacking of systematic introduction. In this review, a detailed description of the establishment process of saccharide mapping, the pros and cons of downstream technologies, an overview of the application of saccharide mapping, and practical strategies were summarized. With the updating of the available downstream technologies, saccharide mapping had been expanding its scope of application to various kinds of polysaccharides. The process of saccharide mapping analysis included polysaccharides degradation and hydrolysates analysis, and the degradation process was no longer limited to acid hydrolysis. Some downstream technologies were convenient for rapid qualitative analysis, while others could achieve quantitative analysis. For the more detailed structure information could be provided by saccharide mapping, it was possible to improve the quality control of polysaccharides during preparation and application. This review filled the blank of basic information about saccharide mapping and was helpful for the establishment of a professional workflow for the saccharide mapping application to promote the deep study of polysaccharide structure.


Subject(s)
Fungal Polysaccharides , Plants , Fungal Polysaccharides/chemistry , Hydrolysis , Plants/chemistry , Polysaccharides/chemistry , Fungi/chemistry
9.
ChemSusChem ; : e202400962, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959341

ABSTRACT

Conversion of hemicellulose streams and the constituent monosaccharides, xylose, arabinose, glucose, mannose, and galactose, was conducted to produce value-added chemicals, including furfural, hydroxymethylfurfural (HMF), levulinic acid and anhydrosugars. The study aimed at developing a kinetic model relevant for direct post-Organosolv hemicellulose conversion. Monosaccharides served as a tool to in detail describe the kinetic behavior and segregate contribution of hydrothermal decomposition and acid catalyzed dehydration at the temperature range of 120-190 °C. Catalyst free aqueous media demonstrated enhanced formation of furanics, while elevated temperatures led to significant saccharide isomerization. The introduction of sulfuric and formic acids maximized furfural yield and significantly reduced HMF concentration by facilitating its rehydration into levulinic acid (46 mol%). Formic acid additionally substantially enhanced formation of anhydrosaccharides. An excellent correlation between modeled and experimental data enabled process optimization to maximize furanic yield in two distinct hemicellulose streams. Sulfuric acid-containing hemicellulose stream achieved the highest furfural yield after 30 minutes at 238 °C, primarily due to the high Ea for pentose dehydration (150-160 kJ mol-1). Contrarily, formic acid-containing hemicellulose stream enabled maximal furfural yield at more moderate temperature and extended reaction time due to its lower Ea for the same reaction step (115-125 kJ mol-1).

10.
Int J Biol Macromol ; 268(Pt 2): 131724, 2024 May.
Article in English | MEDLINE | ID: mdl-38653427

ABSTRACT

The emergence of novel well-defined biological macromolecular architectures containing fluorine moieties displaying superior functionalities can satisfactorily address many biomedical challenges. In this research, ABA- and AB-type glucose-based biological macromolecules were synthesized using acryl-2,3,4,6-tetra-O-acetyl-D-glucopyranoside with pentafluorophenyl (FPM), pentafluorobenzyl (FBM), phenyl (PM) and benzyl (BM) methacrylate-based macro-RAFT agents following RAFT polymerization. The macro-RAFT agents and the corresponding copolymers were characterized by 19F, 1H, and 13C NMR and FTIR spectroscopic techniques to understand the chemical structure, molecular weight by size-exclusion chromatography, thermal analysis by TGA and DSC. Thermal stability (Td5%) of the FPM and FBM fluoro-based polymers was observed in the range of 219-267 °C, while the non-fluoro PM and BM polymers exhibited in the range of 216-264 °C. Among the macro-RAFT agents, PFPM (107 °C, ΔH: 0.613 J/g) and PPM (103 °C, ΔH: 0.455 J/g) showed higher Tm values, while among the block copolymers, PFBM-b-PG (123 °C, ΔH: 0.412 J/g) and PG-b-PFPM-b-PG (126 °C, ΔH: 0.525 J/g) exhibited higher Tm values. PFBMT and PPM macro-RAFT agents, PPM-b-PG and PG-b-PPM-b-PG copolymer spin-coated films showed the highest hydrophobicity (120°) among the synthesized polymers. The block copolymers exhibited self-assembled segregation by using relatively hydrophobic segments as the core and hydrophilic moieties as the corona. Synthesized biological macromolecules exhibit maximum antibacterial activity towards S. aureus than E. coli bacteria. Fluorophenyl (PFPM) and non-fluorobenzyl-based (PBMT) macro-RAFT agents exhibit low IC50 values, suggesting high cytotoxicity. All the triblock copolymers exhibit lesser cytotoxicity than the di-block polymers.


Subject(s)
Glucose , Macromolecular Substances , Glucose/chemistry , Macromolecular Substances/chemistry , Macromolecular Substances/chemical synthesis , Macromolecular Substances/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Polymers/chemistry , Polymers/chemical synthesis , Polymers/pharmacology , Humans , Polymerization , Molecular Weight , Fluorine/chemistry , Chemistry Techniques, Synthetic
11.
Chem Biodivers ; 21(7): e202400277, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38686912

ABSTRACT

The classical Chinese Medicine prescription, Quanzhenyiqitang (QZYQT), containing seven tonic herbs (Shudi, Dangshen, Maidong, Baizhu, Niuxi, Fuzi, and Wuweizi) is clinically used to treat chronic obstructive pulmonary disease (COPD). Although there are studies on the pharmacological effects of QZYQT, little attention has been paid to its active carbohydrate ingredients. We performed a systematic chemical analysis of the crude glycan isolates from the seven-herb decoction (GI-QZYQT) after confirming its anti-COPD activity. GI-QZYQT could enhance lung function, reduce lung damage, and alleviate inflammatory response in mice with COPD. Moreover, two monosaccharides (fructose and glucose) and six oligosaccharides (sucrose, melibiose, 1-kestose, raffinose, mannotriose, and stachyose), accounting for 40.23 % of GI-QZYQT, were discovered using hydrophilic interaction liquid chromatography-evaporative light-scattering detection. Inulin-type fructan with an average molecular weight of 2112 Da was identified using high-performance gel-permeation chromatography in combination with monosaccharide mapping analysis, accounting for 20.10 % of GI-QZYQT in mass. The comparison study showed that the identified monosaccharides, oligosaccharides, and the inulin-type fructan of GI-QZYQT were mainly derived from herbs of Shudi, Dangshen, Maidong, Baizhu, and Niuxi. These findings provide crucial information on the chemical composition of GI-QZYQT, which is vital for the in-depth understanding of its bioactivity, mechanism, and product development.


Subject(s)
Drugs, Chinese Herbal , Polysaccharides , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/drug therapy , Animals , Mice , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/isolation & purification , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Male , Mice, Inbred C57BL
12.
Chembiochem ; 25(9): e202400026, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38506247

ABSTRACT

In this work, we have discovered that the Gal-α-(1→3)-Gal-ß-(1→3)-GlcNAc trisaccharide, a fragment of the B antigen Type-1, is a new ligand of two C-type lectin receptors (CLRs) i. e. DCAR and Mincle which are key players in different types of autoimmune diseases. Accordingly, we report here on a straightforward methodology to access pure Gal-α-(1→3)-Gal-ß-(1→3)-GlcNAc trisaccharide. A spacer with a terminal primary amine group was included at the reducing end of the GlcNAc residue thus ensuring the further functionalization of the trisaccharide Gal-α-(1→3)-Gal-ß-(1→3)-GlcNAc.


Subject(s)
Lectins, C-Type , Receptors, Immunologic , Trisaccharides , Lectins, C-Type/metabolism , Lectins, C-Type/chemistry , Trisaccharides/chemistry , Trisaccharides/chemical synthesis , Ligands , Stereoisomerism , Humans , Membrane Proteins/chemistry , Membrane Proteins/metabolism
13.
Environ Sci Pollut Res Int ; 31(13): 19961-19973, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38368299

ABSTRACT

Mixed carbon sources have been developed for denitrification to eliminate the "carbon dependency" problem of single carbon. The metabolic correlation between different carbon sources is significant as guidance for the development of novel mixed carbon sources. In this study, to explore the metabolic similarity of denitrifying carbon sources, we selected alcohols (methanol, ethanol, and glycerol) and saccharide carbon sources (glucose, sucrose, and starch). Batch denitrification experiments revealed that methanol-acclimated sludge improved the denitrification rate of both methanol (14.42 mg-N/gMLVSS*h) and ethanol (9.65 mg-N/gMLVSS*h), whereas ethanol-acclimated sludge improved the denitrification rate of both methanol (7.80 mg-N/gMLVSS*h) and ethanol (22.23 mg-N/gMLVSS*h). In addition, the glucose-acclimated sludge and sucrose-acclimated sludge possibly improved the denitrification rate of glucose and sucrose, and the glycerol-acclimated sludge improved the denitrification rate of volatile fatty acids (VFAs), alcohols, and saccharide carbon sources. Functional gene analysis revealed that methanol, ethanol, and glycerol exhibited active alcohol oxidation and glyoxylate metabolism, and glycerol, glucose, and sucrose exhibited active glycolysis metabolism. This indicated that the similarity in the denitrification metabolism of these carbon sources was based on functional gene similarity, and glycerol-acclimated sludge exhibited the most diverse metabolism, which ensured its good denitrification effect with other carbon sources.


Subject(s)
Carbon , Methanol , Carbon/metabolism , Sewage , Glycerol , Bioreactors , Ethanol/metabolism , Glucose , Sucrose , Denitrification , Nitrogen
14.
Carbohydr Polym ; 327: 121651, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38171674

ABSTRACT

In this work, saccharide branched cellulose (saccharide b-Cel) was synthesized by combining reducing saccharides with cellulose molecules using Ugi four-component reaction (Ugi-4CR). First, the carboxyl groups required for Ugi-4CR are obtained by carboxymethylating cellulose molecules. Then, saccharide b-Cel with a controlled molecular structure is formed when the terminal aldehyde group of reducing saccharides combines with the carboxyl group and auxiliary functional group. The types of saccharides, the degree of substitution of carboxymethyl groups, and the degree of branching all affect the molecular structure of saccharide b-Cel. Through molecular structural regulation, the relationship between the branching structure and water retention ability of saccharide b-Cel was examined in detail. This work not only provides new insights into the synthesis of cellulose derivatives, but it also provides a template for the synthesis of other biomass derivatives.

15.
Sci Total Environ ; 916: 170322, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38278262

ABSTRACT

The chemical composition of aerosols plays a significant role in aerosol-cloud interactions and, although saccharides make up their largest organic mass fraction, the current process model for understanding sea spray aerosol (SSA) composition struggles to replicate the enrichment of saccharides that has been observed. Here, we simulated the generation of SSA and quantified the enrichment of two soluble saccharides (glucose and trehalose) in SSA with a homemade sea spray aerosol generator. The results of the generation experiments demonstrated that both saccharides, especially trehalose, can promote the generation of SSA, whereas surface-active fatty acids primarily inhibit SSA production due to fewer bubble bursts caused by a large amount of foam accumulation. A significant decrease in surface tension of seawater with the addition of fatty acids was observed, while only a minor decrease was observed for seawater with the addition of only saccharide. Enrichment factors (EFs) of saccharides measured using high performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD) revealed no enrichment of glucose in submicron SSA, while trehalose showed a slight enrichment. In the presence of surface-active fatty acids on the seawater surface, a significant increase in the enrichment of saccharides in SSA was observed, with glucose and trehalose showing EF of approximately 27-fold and 58-fold, respectively. Besides, this enrichment was accompanied by the accumulation of calcium and magnesium ions. The results presented here suggest that the coupling interaction mechanism of soluble saccharides and surface-active fatty acids on the ocean surface contributes to the enrichment of soluble saccharides in SSA.


Subject(s)
Aerosolized Particles and Droplets , Fatty Acids , Trehalose , Seawater/chemistry , Aerosols/analysis , Glucose
16.
Int J Biol Macromol ; 261(Pt 2): 129789, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38296127

ABSTRACT

Interactions between polysaccharides and ionic liquids (ILs) at the molecular level are essential to elucidate the dissolution and/or plasticization mechanism of polysaccharides. Herein, saccharide-based ILs (SILs) were synthesized, and cellulose membrane was soaked in different SILs to evaluate the interactions between SILs and cellulose macromolecules. The relevant results showed that the addition of SILs into cellulose can effectively reduce the intra- and/or inter-molecular hydrogen bonds of polysaccharides. Glucose-based IL showed the intensest supramolecular interactions with cellulose macromolecules compared to sucrose- and raffinose-based ILs. Two-dimensional correlation and perturbation-correlation moving window Fourier transform infrared techniques were for the first time used to reveal the dynamic variation of the supramolecular interactions between SILs and cellulose macromolecules. Except for the typical HO⋯H interactions of cellulose itself, stronger -Cl⋯HO hydrogen bonding interactions were detected in the specimen of SILs-modified cellulose membranes. Supramolecular interactions of -Cl⋯H, HO⋯H, C-Cl⋯H, and -C=O⋯H between SILs and cellulose macromolecules sequentially responded to the stimuli of temperature. This work provides a new perspective to understanding the interaction mechanism between polysaccharides and ILs, and an avenue to develop the next-generation ILs for dissolving or thermoplasticizing polysaccharide materials.


Subject(s)
Ionic Liquids , Ionic Liquids/chemistry , Imidazoles/chemistry , Cellulose/chemistry , Polysaccharides , Temperature
17.
Fitoterapia ; 172: 105701, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37832877

ABSTRACT

In this study, eight new natural products were isolated from the leaves of Picrasma quassioides. Spectroscopic techniques were used for the elucidation of their planar structures. Their absolute configurations were elucidated on the basis of electron circular dichroism (ECD) techniques combined with the P/M helicity rule for the 2,3-dihydrobenzofuran chromophore, and saccharide hydrolysis. Cholinesterase inhibitors are often used as Alzheimer's disease inhibitors.Thus, acetylcholinesterase and butyrylcholinesterase inhibitory activity of these eight compounds were tested, and results showed that only compound 6 showed weakly acetylcholinesterase inhibitory activity. In particular, molecular docking was used to illustrate the bindings between compound 6 and the active sites of AChE.


Subject(s)
Lignans , Picrasma , Lignans/pharmacology , Molecular Structure , Acetylcholinesterase , Picrasma/chemistry , Butyrylcholinesterase , Glycosides/pharmacology , Molecular Docking Simulation , Cholinesterase Inhibitors/pharmacology , Circular Dichroism
18.
Int J Biol Macromol ; 256(Pt 1): 128083, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000595

ABSTRACT

Chemical protein (semi-)synthesis is a powerful technique allowing the incorporation of unnatural functionalities at any desired protein site. Herein we describe a facile one-pot semi-synthetic strategy for the construction of a type 2 copper center in the active site of azurin, which is achieved by substitution of Met121 with unnatural amino acid residues bearing a strong ligand N,N-bis(pyridylmethyl)amine (DPA) to mimic the function of typical histidine brace-bearing copper monooxygenases, such as lytic polysaccharide monooxygenases (LPMOs) involved in polysaccharide breakdown. The semi-synthetic proteins were routinely obtained in over 10-mg scales to allow for spectroscopic measurements (UV-Vis, CD, and EPR), which provides structural evidences for the CuII-DPA-modified azurins. 4-nitrophenyl-ß-D-glucopyranoside (PNPG) was used as a model substrate for the H2O2-driven oxidative cleavage reaction facilitated by semi-synthetic azurins, and the CuII-6 complex showed a highest activity (TTN 253). Interestingly, our semi-synthetic azurins were able to tolerate high H2O2 concentrations (up to 4000-fold of the enzyme), making them promising for practical applications. Collectively, we establish that chemical protein synthesis can be exploited as a reliable technology in affording large quantities of artificial metalloproteins to facilitate the transformation of challenging chemical reactions.


Subject(s)
Azurin , Copper , Azurin/chemistry , Copper/chemistry , Hydrogen Peroxide , Mixed Function Oxygenases/chemistry , Oxidative Stress , Polysaccharides/metabolism
19.
J Sci Food Agric ; 104(4): 2518-2525, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37938188

ABSTRACT

BACKGROUND: Xylobiose, a non-digestible disaccharide, largely contributes to the beneficial physiological effects of xylooligosaccharides. However, there is insufficient evidence to assess the direct effect of xylobiose on intestinal barrier function. Here, we investigated the intestinal barrier function in human intestinal Caco-2 cells treated with xylobiose. RESULTS: In total, 283 genes were upregulated and 256 genes were downregulated in xylobiose-treated Caco-2 cells relative to the controls. We focused on genes related to intestinal barrier function, such as tight junction (TJ) and heat shock protein (HSP). Xylobiose decreased the expression of the TJ gene Claudin 2 (CLDN2) and increased the expression of the cytoprotective HSP genes HSPB1 and HSPA1A, which encode HSP27 and HSP70, respectively. Immunoblot analysis confirmed that xylobiose suppressed CLDN2 expression and enhanced HSP27 and HSP70 expression. A quantitative reverse transcription-PCR and promoter assays indicated that xylobiose post-transcriptionally regulated CLDN2 and HSPB1 levels. Additionally, selective inhibition of phosphatidyl-3-inositol kinase (PI3K) inhibited xylobiose-mediated CLDN2 expression, whereas HSP27 expression induced by xylobiose was sensitive to the inhibition of PI3K, mitogen-activated protein kinase kinase and Src. CONCLUSION: The results of the present study reveal that xylobiose suppresses CLDN2 and increases HSP27 expression in intestinal Caco-2 cells via post-transcriptional regulation, potentially strengthening intestinal barrier integrity; however, these effects seem to occur via different signaling pathways. Our findings may help to assess the physiological role of xylobiose. © 2023 Society of Chemical Industry.


Subject(s)
Claudin-2 , HSP27 Heat-Shock Proteins , Humans , Caco-2 Cells , HSP27 Heat-Shock Proteins/metabolism , Claudin-2/metabolism , Intestinal Mucosa/metabolism , Intestinal Barrier Function , Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Disaccharides/pharmacology , Phosphatidylinositol 3-Kinases/metabolism
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016845

ABSTRACT

ObjectiveThe glycosidic linkage structural characteristics of polysaccharides from Pinelliae Rhizoma(PR) and its processed products were analyzed by sugar spectrum, high performance thin layer chromatography(HPTLC), fluorescence-assisted carbohydrate gel electrophoresis(PACE) based on partial acid hydrolysis and specific glycosidase hydrolysis, and the antioxidant activities of polysaccharides before and after hydrolysis(enzymolysis) were compared. MethodPolysaccharides from PR and its processed products were extracted by ultrasound extraction, starch was hydrolyzed by α-amylase, and small molecules below 3 kDa were removed by ultrafiltration. The purified polysaccharides were prepared by hydrolysis of acid and five different specific glycosidases, and the hydrolysates were analyzed by HPTLC and PACE. The antioxidant capacity of polysaccharides was analyzed by 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)(ABTS) and 2,2-diphenyl-1-picrylhydrazyl(DPPH) free radical scavenging experiment before and after different hydrolysis. ResultThrough HPTLC and PACE analysis, it was found that polysaccharides from PR and its processed products could be hydrolyzed by β-galactosidase, β-mannase, cellulase and pectinase, but hardly hydrolyzed by glucanase, indicating that the polysaccharides contained β-galactopyranoside bond, β-1,4-mannoside bond, β-1,4-glucoside bond and α-1,4-galacturonic acid glycosidic bond. In vitro antioxidant experiments showed that the ABTS radical scavenging capacity of the polysaccharides from PR and its processed products was weakened after acid hydrolysis and pectinase enzymatic hydrolysis, while the ABTS radical scavenging capacity was enhanced after enzymatic hydrolysis with cellulase, β-galactosidase, and β-mannase. And after different hydrolysis, the DPPH free radical scavenging capacity of polysaccharides from PR and its processed products was all significantly enhanced. ConclusionThe glycosidic linkage structural characteristics of polysaccharides from PR and its processed products was analyzed by sugar spectrum in this paper, and the relationship between glycosidic bond types and their antioxidant activity was clarified through in vitro antioxidant experiments, which is beneficial for further elucidating the material basis of the related efficacy of PR and its processed products, and providing new ideas and methods for analyzing the structural characteristics of polysaccharides in Chinese medicines.

SELECTION OF CITATIONS
SEARCH DETAIL