Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38139772

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive loss of cognitive functions, and it is the most prevalent type of dementia worldwide, accounting for 60 to 70% of cases. The pathogenesis of AD seems to involve three main factors: deficiency in cholinergic transmission, formation of extracellular deposits of ß-amyloid peptide, and accumulation of deposits of a phosphorylated form of the TAU protein. The currently available drugs are prescribed for symptomatic treatment and present adverse effects such as hepatotoxicity, hypertension, and weight loss. There is urgency in finding new drugs capable of preventing the progress of the disease, controlling the symptoms, and increasing the survival of patients with AD. This study aims to present new multipurpose compounds capable of simultaneously inhibiting acetylcholinesterase (AChE), butyrylcholinesterase (BChE)-responsible for recycling acetylcholine in the synaptic cleft-and beta-secretase 1 (BACE-1)-responsible for the generation of amyloid-ß plaques. AChE, BChE, and BACE-1 are currently considered the best targets for the treatment of patients with AD. Virtual hierarchical screening based on a pharmacophoric model for BACE-1 inhibitors and a dual pharmacophoric model for AChE and BChE inhibitors were used to filter 214,446 molecules by QFITBACE > 0 and QFITDUAL > 56.34. The molecules selected in this first round were subjected to molecular docking studies with the three targets and further evaluated for their physicochemical and toxicological properties. Three structures: ZINC45068352, ZINC03873986, and ZINC71787288 were selected as good fits for the pharmacophore models, with ZINC03873986 being ultimately prioritized for validation through activity testing and synthesis of derivatives for SAR studies.

2.
Curr Issues Mol Biol ; 45(12): 9674-9691, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38132450

ABSTRACT

Ginkgo biloba (GB) extracts have been used in clinical studies as an alternative therapy for Alzheimer's disease (AD), but the exact bioaction mechanism has not yet been elucidated. In this work, an in silico study on GB metabolites was carried out using SwissTargetPrediction to determine the proteins associated with AD. The resulting proteins, AChE, MAO-A, MAO-B, ß-secretase and γ-secretase, were studied by molecular docking, resulting in the finding that kaempferol, quercetin, and luteolin have multitarget potential against AD. These compounds also exhibit antioxidant activity towards reactive oxygen species (ROS), so antioxidant tests were performed on the extracts using the DPPH and ABTS techniques. The ethanol and ethyl acetate GB extracts showed an important inhibition percentage, higher than 80%, at a dose of 0.01 mg/mL. The effect of GB extracts on AD resulted in multitarget action through two pathways: firstly, inhibiting enzymes responsible for degrading neurotransmitters and forming amyloid plaques; secondly, decreasing ROS in the central nervous system (CNS), reducing its deterioration, and promoting the formation of amyloid plaques. The results of this work demonstrate the great potential of GB as a medicinal plant.

3.
Neurooncol Adv ; 5(1): vdad147, 2023.
Article in English | MEDLINE | ID: mdl-38024245

ABSTRACT

Background: Infiltration is a life-threatening growth pattern in malignant astrocytomas and a significant cause of therapy resistance. It results in the tumor cell spreading deeply into the surrounding brain tissue, fostering tumor recurrence and making complete surgical resection impossible. We need to thoroughly understand the mechanisms underlying diffuse infiltration to develop effective therapies. Methods: We integrated in vitro and in vivo functional assays, RNA sequencing, clinical, and expression information from public data sets to investigate the role of ADAM23 expression coupling astrocytoma's growth and motility. Results: ADAM23 downregulation resulted in increased infiltration, reduced tumor growth, and improved overall survival in astrocytomas. Additionally, we show that ADAM23 deficiency induces γ-secretase (GS) complex activity, contributing to the production and deposition of the Amyloid-ß and release of NICD. Finally, GS ablation in ADAM23-low astrocytomas induced a significant inhibitory effect on the invasive programs. Conclusions: Our findings reveal a role for ADAM23 in regulating the balance between cell proliferation and invasiveness in astrocytoma cells, proposing GS inhibition as a therapeutic option in ADAM23 low-expressing astrocytomas.

4.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375827

ABSTRACT

Alzheimer's Disease (AD) is a neurodegenerative condition characterized by progressive memory loss and other affected cognitive functions. Pharmacological therapy of AD relies on inhibitors of the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), offering only a palliative effect and being incapable of stopping or reversing the neurodegenerative process. However, recent studies have shown that inhibiting the enzyme ß-secretase 1 (BACE-1) may be able to stop neurodegeneration, making it a promising target. Considering these three enzymatic targets, it becomes feasible to apply computational techniques to guide the identification and planning of molecules capable of binding to all of them. After virtually screening 2119 molecules from a library, 13 hybrids were built and further screened by triple pharmacophoric model, molecular docking, and molecular dynamics (t = 200 ns). The selected hybrid G meets all stereo-electronic requirements to bind to AChE, BChE, and BACE-1 and offers a promising structure for future synthesis, enzymatic testing, and validation.

5.
Int J Mol Sci ; 24(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37175873

ABSTRACT

The ß-secretase-1 enzyme (BACE-1) performs a key role in the production of beta-Amyloid protein (Aß), which is associated with the development of Alzheimer's disease (AD). The inhibition of BACE-1 has been an important pharmacological strategy in the treatment of this neurodegenerative disease. This study aims to identify new potential candidates for the treatment of Alzheimer's with the help of in silico studies, such as molecular docking and ADME prediction, from a broad list of candidates provided by the DrugBank database. From this analysis, 1145 drugs capable of interacting with the enzyme with a higher coupling energy than Verubecestat were obtained, subsequently only 83 presented higher coupling energy than EJ7. Applying the oral route of administration as inclusion criteria, only 41 candidates met this requirement; however, 6 of them are associated with diagnostic tests and not treatment, so 33 candidates were obtained. Finally, five candidates were identified as possible BACE-1 inhibitors drugs: Fluphenazine, Naratriptan, Bazedoxifene, Frovatriptan, and Raloxifene. These candidates exhibit pharmacophore-specific features, including the indole or thioindole group, and interactions with key amino acids in BACE-1. Overall, this study provides insights into the potential use of in silico methods for drug repurposing and identification of new candidates for the treatment of Alzheimer's disease, especially those targeting BACE-1.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Pharmaceutical Preparations , Molecular Docking Simulation , Aspartic Acid Endopeptidases/metabolism , Amyloid beta-Peptides/metabolism
6.
Food Chem (Oxf) ; 6: 100155, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-36582744

ABSTRACT

Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.

7.
ACS Chem Neurosci ; 14(2): 261-269, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36562727

ABSTRACT

γ-Secretase (GS) is an intramembrane aspartyl protease that participates in the sequential cleavage of C99 to generate different isoforms of the amyloid-ß (Aß) peptides that are associated with the development of Alzheimer's disease. Due to its importance in the proteolytic processing of C99 by GS, we performed pH replica exchange molecular dynamics (pH-REMD) simulations of GS in its apo and substrate-bound forms to sample the protonation states of the catalytic dyad. We found that the catalytic dyad is deprotonated at physiological pH in our apo form, but the presence of the substrate at the active site displaces its monoprotonated state toward physiological pH. Our results show that Asp257 acts as the general base and Asp385 as the general acid during the cleavage mechanism. We identified different amino acids such as Lys265, Arg269, and the PAL motif interacting with the catalytic dyad and promoting changes in its acid-base behavior. Finally, we also found a significant pKa shift of Glu280 related to the internalization of TM6-CT in the GS-apo form. Our study provides critical mechanistic insight into the GS mechanism and the basis for future research on the genesis of Aß peptides and the development of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Humans , Amyloid Precursor Protein Secretases/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/chemistry , Catalysis , Molecular Dynamics Simulation , Amyloid beta-Protein Precursor/metabolism
8.
Cent Nerv Syst Agents Med Chem ; 22(2): 139-150, 2022.
Article in English | MEDLINE | ID: mdl-36104859

ABSTRACT

BACKGROUND: Alzheimer's disease is a progressive neurodegenerative process with multifactorial characteristics. This disease follows the natural aging process, affecting mainly people over 65 years. Pharmacotherapeutic treatment currently combats symptoms related to cognitive function. Several targets have begun to attract the interest of the scientific community to develop new drug candidates which have better pharmacokinetic and lower toxicity parameters. OBJECTIVE: The present study aims to design new candidates for acetylcholinesterase/ß-secretase (AChE/BACE1) multitarget inhibitor drugs. METHODS: 17 natural products were selected from the literature with anticholinesterase activity and 1 synthetic molecule with inhibitory activity for BACE1. Subsequently, the molecular docking study was performed, followed by the derivation of the pharmacophoric pattern and prediction of pharmacokinetic and toxicological properties. Finally, the hybrid prototype was designed. RESULTS: All selected molecules showed interactions with their respective target enzymes. Derivation of the pharmacophoric pattern from molecules that interacted with the AChE enzyme resulted in 3 pharmacophoric regions: an aromatic ring, an electron-acceptor region and a hydrophobic region. The molecules showed good pharmacokinetic and toxicological results, showing no warnings of mutagenicity and/or carcinogenicity. After the hybridization process, three hybrid molecules were obtained, which showed inhibitory activity for both targets. CONCLUSION: It is concluded that research in the field of medicinal chemistry is advancing towards the discovery of new drug candidates that bring a better quality of life to patients with AD.


Subject(s)
Acetylcholinesterase , Amyloid Precursor Protein Secretases , Amyloid Precursor Protein Secretases/chemistry , Aspartic Acid Endopeptidases/chemistry , Humans , Molecular Docking Simulation , Quality of Life
9.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216240

ABSTRACT

Nerve growth factor (NGF) and its high-affinity receptor TRKA are overexpressed in epithelial ovarian cancer (EOC) displaying a crucial role in the disease progression. Otherwise, NGF interacts with its low-affinity receptor P75, activating pro-apoptotic pathways. In neurons, P75 could be cleaved by metalloproteinases (α and γ-secretases), leading to a decrease in P75 signaling. Therefore, this study aimed to evaluate whether the shedding of P75 occurs in EOC cells and whether NGF/TRKA could promote the cleavage of the P75 receptor. The immunodetection of the α-secretase, ADAM17, TRKA, P75, and P75 fragments was assessed by immunohisto/cytochemistry and Western blot in biopsies and ovarian cell lines. The TRKA and secretases' inhibition was performed using specific inhibitors. The results show that P75 immunodetection decreased during EOC progression and was negatively correlated with the presence of TRKA in EOC biopsies. NGF/TRKA increases ADAM17 levels and the fragments of P75 in ovarian cells. This effect is abolished when cells are previously treated with ADAM17, γ-secretase, and TRKA inhibitors. These results indicate that NGF/TRKA promotes the shedding of P75, involving the activation of secretases such as ADAM17. Since ADAM17 has been proposed as a screening marker for early detection of EOC, our results contribute to understanding better the role of ADAM17 and NGF/TRKA in EOC pathogenesis, which includes the NGF/TRKA-mediated cleavage of P75.


Subject(s)
ADAM17 Protein/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Nerve Growth Factor/metabolism , Ovarian Neoplasms/metabolism , Ovary/metabolism , Receptor, trkA/metabolism , Transcription Factors/metabolism , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Line , Cell Line, Tumor , Female , Humans , Middle Aged , Neurons/metabolism , Ovarian Neoplasms/pathology , Ovary/pathology , Signal Transduction/physiology
10.
Microorganisms ; 9(8)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34442829

ABSTRACT

Nicastrin (NICT) is a transmembrane protein physically associated with the polytypical aspartyl protease presenilin that plays a vital role in the correct localization and stabilization of presenilin to the membrane-bound γ-secretase complex. This complex is involved in the regulation of a wide range of cellular events, including cell signaling and the regulation of endocytosed membrane proteins for their trafficking and protein processing. Methods: In Trypanosoma cruzi, the causal agent of the Chagas disease, a NICT-like protein (Tc/NICT) was identified with a short C-terminus orthologous to the human protein, a large ectodomain (ECD) with numerous glycosylation sites and a single-core transmembrane domain containing a putative TM-domain (457GSVGA461) important for the γ-secretase complex activity. Results: Using the Spot-synthesis strategy with Chagasic patient sera, five extracellular epitopes were identified and synthetic forms were used to generate rabbit anti-Tc/NICT polyclonal serum that recognized a ~72-kDa molecule in immunoblots of T. cruzi epimastigote extracts. Confocal microscopy suggests that Tc/NICT is localized in the flagellar pocket, which is consistent with data from our previous studies with a T. cruzi presenilin-like protein. Phylogenetically, Tc/NICT was localized within a subgroup with the T. rangeli protein that is clearly detached from the other Trypanosomatidae, such as T. brucei. These results, together with a comparative analysis of the selected peptide sequence regions between the T. cruzi and mammalian proteins, suggest a divergence from the human NICT that might be relevant to Chagas disease pathology. As a whole, our data show that a NICT-like protein is expressed in the infective and replicative stages of T. cruzi and may be considered further evidence for a γ-secretase complex in trypanosomatids.

11.
Front Chem ; 9: 708374, 2021.
Article in English | MEDLINE | ID: mdl-34307303

ABSTRACT

We have developed a dual enzymatic system assay involving liquid chromatography-mass spectrometry (LC-MS) to screen AChE and BACE1 ligands. A fused silica capillary (30 cm × 0.1 mm i.d. × 0.362 mm e.d.) was used as solid support. The co-immobilization procedure encompassed two steps and random immobilization. The resulting huAChE+BACE1-ICER/MS was characterized by using acetylcholine (ACh) and JMV2236 as substrates. The best conditions for the dual enzymatic system assay were evaluated and compared to the conditions of the individual enzymatic system assays. Analysis was performed in series for each enzyme. The kinetic parameters (KMapp) and inhibition assays were evaluated. To validate the system, galantamine and a ß-secretase inhibitor were employed as standard inhibitors, which confirmed that the developed screening assay was able to identify reference ligands and to provide quantitative parameters. The combination of these two enzymes in a single on-line system allowed possible multi-target inhibitors to be screened and identified. The innovative huAChE+BACE1-ICER/MS dual enzymatic system reported herein proved to be a reliable tool to identify and to characterize hit ligands for AChE and BACE1 in an enzymatic competitive environment. This innovative system assay involved lower costs; measured the product from enzymatic hydrolysis directly by MS; enabled immediate recovery of the enzymatic activity; showed specificity, selectivity, and sensitivity; and mimicked the cellular process.

12.
ACS Chem Neurosci ; 12(15): 2765-2775, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34291906

ABSTRACT

γ-Secretase (GS) is one of the most attractive molecular targets for the treatment of Alzheimer's disease (AD). Its key role in the final step of amyloid-ß peptides generation and its relationship in the cascade of events for disease development have caught the attention of many pharmaceutical groups. Over the past years, different inhibitors and modulators have been evaluated as promising therapeutics against AD. However, despite the great chemical diversity of the reported compounds, a global classification and visual representation of the chemical space for GS inhibitors and modulators remain unavailable. In the present work, we carried out a two-dimensional (2D) chemical space analysis from different classes and subclasses of GS inhibitors and modulators based on their structural similarity. Along with the novel structural information available for GS complexes, our analysis opens the possibility to identify compounds with high molecular similarity, critical to finding new chemical structures through the optimization of existing compounds and relating them with a potential binding site.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides , Binding Sites , Enzyme Inhibitors/pharmacology , Humans
13.
J Alzheimers Dis ; 81(1): 1-17, 2021.
Article in English | MEDLINE | ID: mdl-33749645

ABSTRACT

Alzheimer's disease (AD) is associated with marked atrophy of the cerebral cortex and accumulation of amyloid plaques and neurofibrillary tangles. Amyloid plaques are formed by oligomers of amyloid-ß (Aß) in the brain, with a length of 42 and 40 amino acids. α-secretase cleaves amyloid-ß protein precursor (AßPP) producing the membrane-bound fragment CTFα and the soluble fragment sAßPPα with neuroprotective activity; ß-secretase produces membrane-bound fragment CTFß and a soluble fragment sAßPPß. After α-secretase cleavage of AßPP, γ-secretase cleaves CTFα to produce the cytoplasmic fragment AICD and P3 in the non-amyloidogenic pathway. CTFß is cleaved by γ-secretase producing AICD as well as Aß in amyloidogenic pathways. In the last years, the study of natural products and synthetic compounds, such as α-secretase activity enhancers, ß-secretase inhibitors (BACE-1), and γ-secretase activity modulators, have been the focus of pharmaceuticals and researchers. Drugs were improved regarding solubility, blood-brain barrier penetration, selectivity, and potency decreasing Aß42. In this regard, BACE-1 inhibitors, such as Atabecestat, NB-360, Umibecestat, PF-06751979 Verubecestat, LY2886721, Lanabecestat, LY2811376 and Elenbecestat, were submitted to phase I-III clinical trials. However, inhibition of Aß production did not recover cognitive functions or reverse disease progress. Novel strategies are being developed, aiming at a partial reduction of Aß production, such as the development of γ-secretase modulators or α-secretase activity enhancers. Such therapeutic tools shall focus on slowing down or minimizing the progression of neuronal damage. Here, we summarize structures and activities of the latest compounds designed for AD treatment, with remarkable in vitro, in vivo, and clinical phase activities.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Neuroprotective Agents/therapeutic use , Animals , Humans
14.
Molecules ; 25(21)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33137907

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease with no cure nowadays; there is no treatment either to prevent or to stop its progression. In vitro studies suggested that tert-butyl-(4-hydroxy-3-((3-(2-methylpiperidin-yl)propyl)carbamoyl)phenyl) carbamate named the M4 compound can act as both ß-secretase and an acetylcholinesterase inhibitor, preventing the amyloid beta peptide (Aß) aggregation and the formation of fibrils (fAß) from Aß1-42. This work first aimed to assess in in vitro studies to see whether the death of astrocyte cells promoted by Aß1-42 could be prevented. Second, our work investigated the ability of the M4 compound to inhibit amyloidogenesis using an in vivo model after scopolamine administration. The results showed that M4 possesses a moderate protective effect in astrocytes against Aß1-42 due to a reduction in the TNF-α and free radicals observed in cell cultures. In the in vivo studies, however, no significant effect of M4 was observed in comparison with a galantamine model employed in rats, in which case this outcome was attributed to the bioavailability of M4 in the brain of the rats.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/metabolism , Astrocytes/metabolism , Carbamates , Neuroprotective Agents , Peptide Fragments/metabolism , Scopolamine/adverse effects , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/prevention & control , Animals , Astrocytes/pathology , Carbamates/chemistry , Carbamates/pharmacology , Disease Models, Animal , Humans , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Rats , Scopolamine/pharmacology
15.
Mol Neurobiol ; 57(2): 1159-1169, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31701437

ABSTRACT

Inflammatory cytokines are related to impaired learning and memory processes in the central nervous system, contributing to the cognitive dysfunction present in sepsis survivors. In sepsis, brain of survivors presented increased deposition of amyloid-beta (Aß) peptide and this was associated with cognitive impairment. However, it is not known if the upregulation of secretase pathway is involved the deposition of Aß peptide and consequent development of cognitive impairment in survivors. The aim of the study is to evaluate the effects of secretase inhibitors on behavioral, Aß accumulation, and neuroinflammatory parameters in rats submitted to sepsis. Sepsis was induced by cecal ligation and perforation in Wistar rats, and the activity of alpha-, beta-, and gamma-secretases was determined in the hippocampus and prefrontal at different times. Additionally, in a different cohort of animal's epigallocatechin gallate, a beta-secretase inhibitor or a gamma-secretase inhibitor was administrated once a day for three consecutive days. Fifteen or 30 days after sepsis induction, Aß content, TNF-α, IL-1ß, and IL-6 and cognitive performance were determined. There was no increase in alpha-secretase activity. Both beta- and gamma-secretase activities increased, mainly late after sepsis. The inhibition of beta- or gamma-secretases improved cognitive performance 10 days after sepsis induction, and beta-secretase inhibition improved cognitive performance up to 30 days after sepsis induction. Furthermore, beta-secretase inhibition decreased IL-1ß and Aß brain levels. It was demonstrated that during sepsis development there was an increase in the amyloidogenic route, and the inhibition of this pathway promoted attenuation of neuroinflammation, Aß peptide content, and improvement of cognitive impairment.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Cognitive Dysfunction/metabolism , Encephalitis/metabolism , Sepsis/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Male , Rats, Wistar , Sepsis/complications
16.
ACS Chem Neurosci ; 10(6): 2931-2938, 2019 06 19.
Article in English | MEDLINE | ID: mdl-30979338

ABSTRACT

Anterior pharynx-defective 1A (APH-1A) is a seven transmembrane component of γ-secretase (GS), an aspartyl protease enzyme involved in the production of toxic amyloid-ß peptides in Alzheimer's disease patients. Cryo-electron microscopy structures of the enzyme complex revealed a central cavity in its APH-1A component, similar to water-containing cavities in G-protein coupled receptors (GPCRs). In this work, we performed molecular dynamics and umbrella sampling simulations to understand the role of the APH-1A cavity in the GS complex. Our results suggest that APH-1A is able to store water molecules in its inner cavity and transport some of them between cell spaces. Additionally, APH-1A allows the influx of extracellular cations into a central hydrophilic cavity but cannot transport them into the intracellular space. Overall, this study seeks to describe an alternative APH-1A function in GS besides its complex stabilization role and provide novel approaches to understand the functioning of the GS enzyme.


Subject(s)
Amyloid Precursor Protein Secretases/chemistry , Endopeptidases/chemistry , Membrane Proteins/chemistry , Humans , Molecular Dynamics Simulation , Water
17.
ChemMedChem ; 14(10): 1005-1010, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30925201

ABSTRACT

DAPT is a potent γ-secretase (GS) inhibitor that blocks the production of short amyloid-ß (Aß) peptides. Aggregation and oligomerization of Aß peptides have been associated with the development and progression of Alzheimer's disease. A recent cryo-electron microscopy density map disclosed DAPT binding at the GS active site. In this study, we employed the density map data to assign a possible binding pose of DAPT to characterize its dynamic behavior through different molecular dynamics simulation approaches. Our simulations showed a high preference of DAPT for the intramembrane region of the protein and that its entry site is located between TM2 and TM3 of PS1. DAPT interaction with the active site led to a decreased flexibility of key PS1 regions related to the recognition and internalization of GS substrates. Moreover, our study showed that the proximity of DAPT to the catalytic aspartic acids should be able to modify its protonation states, preventing the enzyme from reaching its active form. These results provide valuable information toward understanding the molecular mechanism of a GS inhibitor for the development of novel Alzheimer's disease treatments.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Diamines/chemistry , Enzyme Inhibitors/chemistry , Thiazoles/chemistry , Amino Acid Sequence , Amyloid beta-Peptides/chemistry , Aspartic Acid/chemistry , Catalytic Domain , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Thermodynamics
18.
Curr Med Chem ; 25(26): 3141-3159, 2018.
Article in English | MEDLINE | ID: mdl-30191777

ABSTRACT

Dementia is characterized by the impairment of cognition and behavior of people over 65 years. Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the world, as approximately 47 million people are affected by this disease and the tendency is that this number will increase to 62% by 2030. Two microscopic features assist in the characterization of the disease, the amyloid plaques and neurofibrillary agglomerates. All these factors are responsible for the slow and gradual deterioration of memory that affect language, personality or cognitive control. For the AD diagnosis, neuropsychological tests are performed in different spheres of cognitive functions but since not all cognitive functions may be affected, cerebrospinal fluid biomarkers are used along with these tests. To date, cholinesterase inhibitors are used as treatment, they are the only drugs that have shown significant improvements in the cognitive functions of AD patients. Despite the proven effectiveness of cholinesterase inhibitors, an AD carrier, even while being treated, is continually subjected to progressive degeneration of the neuronal tissue. For this reason, other biochemical pathways associated with the pathophysiology of AD have been explored as alternatives to the treatment of this condition such as inhibition of ß-secretase and glycogen synthase kinase-3ß. The present study aims to conduct a review of the epidemiology, pathophysiology, symptoms, diagnosis and treatment of Alzheimer's disease, emphasizing the research and development of new therapeutic approaches.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors/pharmacology , Alzheimer Disease/diagnosis , Alzheimer Disease/drug therapy , Alzheimer Disease/physiopathology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Animals , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/metabolism , Humans
19.
Biochimie ; 147: 130-135, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29410204

ABSTRACT

γ-secretase is an intra-membrane aspartyl protease involved in the production of amyloid-ß peptides. Aberrant cleavage of the 99-residue C-terminal fragment of the amyloid precursor protein leads to the formation of a 42-amino-acid isoform (Aß42). Further oligomerization and aggregation of this isoform is implicated in the onset and progression of Alzheimer's disease. Recent elucidation of γ-secretase by cryo-electron microscopy techniques have opened a new horizon in the structural and dynamic characterization of the enzyme. Currently, only a few molecular dynamics studies have been carried out to explore the mechanism of substrate recognition and entry, or the transition between active and inactive states of the catalytic subunit. Herein, we briefly review the computational approaches and their most relevant findings. The general picture of the current GS simulation studies will open new questions to understand the behavior of the enzyme dynamics and explain the modulation mechanisms for the treatment of Alzheimer's disease.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Models, Molecular , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Humans , Peptide Fragments/metabolism , Protein Transport
20.
Proteomics ; 18(3-4)2018 02.
Article in English | MEDLINE | ID: mdl-29280566

ABSTRACT

A wide variety of cellular processes and signaling events are regulated by the proteolytic enzyme γ-secretase. Notch-1 is one of the substrates of γ-secretase and its role in the regulation of muscle differentiation has been well described. Importantly, besides Notch-1, a number of proteins have been identified to undergo proteolysis by γ-secretase. To date, the specific role of γ-secretase during embryonic skeletal muscle differentiation has not been studied. Therefore, we address this question through the analysis of in vitro grown chick myogenic cells during the formation of multinucleated myotubes. The γ-secretase inhibitor DAPT (N-N[-(3,5-Difluorophenacetyl-l-alanyl)]-S-328 phenylglycine-t-butyl-ester) induces muscle hypertrophy. Knockdown of Notch-1 using siRNA specific to chick shows no significant effect in myotube size, suggesting that γ-secretase-dependent effects on muscle hypertrophy in chick myogenic cells are Notch-1-independent. We also investigate the effects of γ-secretase inhibition in the whole proteomic profile of chick myogenic cells. We identified 276 differentially expressed proteins from Label-free proteomic approach. Data overview of interaction network obtained from STRING show that after γ-secretase inhibition cells exhibited imbalance in protein metabolism, cytoskeleton/adhesion, and Sonic Hedgehog signaling. The collection of these results provides new insights into the role of γ-secretase in skeletal muscle hypertrophy.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Avian Proteins/metabolism , Diamines/toxicity , Hypertrophy/veterinary , Muscle Proteins/metabolism , Muscular Diseases/veterinary , Receptors, Notch/metabolism , Thiazoles/toxicity , Animals , Cells, Cultured , Chick Embryo , Hypertrophy/chemically induced , Hypertrophy/physiopathology , Muscular Diseases/chemically induced , Muscular Diseases/physiopathology , Protein Interaction Maps , Proteomics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL