Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.655
Filter
1.
BMC Plant Biol ; 24(1): 745, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098917

ABSTRACT

BACKGROUND: Abiotic stress, such as salinity, affects the photosynthetic apparatus of plants. It is reported that the use of selenium nanoparticles (Se NPs), and biochemical compounds such as chitosan (CS) increase the tolerance of plants to stress conditions. Therefore, this study aimed to elucidate the potential of Se NPs, CS, and their composite (CS + Se NPs) in improving the photosynthetic apparatus of C. sinensis under salt stress in greenhouse conditions. The grafted seedlings of C. sinensis cv. Valencia after adapting to the greenhouse condition, were imposed with 0, 50, and 100 mM NaCl. After two weeks, the plants were foliar sprayed with distilled water (control), CS (0.1% w/v), Se NPs (20 mg L- 1), and CS + Se NPs (10 and 20 mg L- 1). Three months after treatment, the levels of photosynthetic pigments, leaf gas exchange, and chlorophyll fluorescence in the treated plants were evaluated. RESULTS: Under salinity stress, total chlorophyll, carotenoid, and SPAD values decreased by 31%, 48%, and 28% respectively, and Fv/Fm also decreased compared to the control, while the ratio of absorption flux (ABS), dissipated energy flux (DI0) and maximal trapping rate of PSII (TR0) to RC (a measure of PSII apparent antenna size) were increased. Under moderate (50 mM NaCl) and intense (100 mM NaCl) salinity stress, the application of CS + Se NPs significantly increased the levels of photosynthetic pigments and the Fv/Fm value compared to plants treated with distilled water. CONCLUSIONS: It may be inferred that foliar treatment with CS + Se NPs can sustain the photosynthetic ability of C. sinensis under salinity stress and minimize its deleterious effects on photosynthesis.


Subject(s)
Chitosan , Citrus sinensis , Nanocomposites , Photosynthesis , Salt Stress , Selenium , Photosynthesis/drug effects , Salt Stress/drug effects , Citrus sinensis/drug effects , Citrus sinensis/physiology , Chlorophyll/metabolism , Plant Leaves/drug effects , Plant Leaves/physiology
2.
Glob Chang Biol ; 30(8): e17446, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39109391

ABSTRACT

Tree-mycorrhizal associations are associated with patterns in nitrogen (N) availability and soil organic matter storage; however, we still lack a mechanistic understanding of what tree and fungal traits drive these patterns and how they will respond to global changes in soil N availability. To address this knowledge gap, we investigated how arbuscular mycorrhizal (AM)- and ectomycorrhizal (EcM)-associated seedlings alter rhizodeposition in response to increased seedling inorganic N acquisition. We grew four species each of EcM and AM seedlings from forests of the eastern United States in a continuously 13C-labeled atmosphere within an environmentally controlled chamber and subjected to three levels of 15N-labeled fertilizer. We traced seedling 15N uptake from, and 13C-labeled inputs (net rhizodeposition) into, root-excluded or -included soil over a 5-month growing season. N uptake by seedlings was positively related to rhizodeposition for EcM- but not AM-associated seedlings in root-included soils. Despite this contrast in rhizodeposition, there was no difference in soil C storage between mycorrhizal types over the course of the experiment. Instead root-inclusive soils lost C, while root-exclusive soils gained C. Our findings suggest that mycorrhizal associations mediate tree belowground C investment in response to inorganic N availability, but these differences do not affect C storage. Continued soil warming and N deposition under global change will increase soil inorganic N availability and our seedling results indicate this could lead to greater belowground C investment by EcM-associated trees. This potential for less efficient N uptake by EcM-trees could contribute to AM-tree success and a shift toward more AM-dominated temperate forests.


Subject(s)
Carbon , Forests , Mycorrhizae , Nitrogen , Seedlings , Soil , Mycorrhizae/physiology , Seedlings/microbiology , Seedlings/growth & development , Seedlings/metabolism , Nitrogen/metabolism , Soil/chemistry , Carbon/metabolism , Plant Roots/microbiology , Plant Roots/metabolism , Trees/microbiology , Trees/growth & development , Soil Microbiology
3.
Sci Rep ; 14(1): 17810, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090163

ABSTRACT

Elymus nutans Griseb. (E. nutans), a pioneer plant for the restoration of high quality pasture and vegetation, is widely used to establish artificial grasslands and ecologically restore arid and salinized soils. To investigate the effects of drought stress and salt stress on the physiology and endogenous hormones of E. nutans seedlings, this experiment configured the same environmental water potential (0 (CK), - 0.04, - 0.14, - 0.29, - 0.49, - 0.73, and - 1.02 MPa) of PEG-6000 and NaCl stress to investigate the effects of drought stress and salt stress, respectively, on E. nutans seedlings under the same environmental water potential. The results showed that although the physiological indices and endogenous hormones of the E. nutans seedlings responded differently to drought stress and salt stress under the same environmental water potential, the physiological indices of E. nutans shoots and roots were comprehensively evaluated using the genus function method, and the physiological indices of the E. nutans seedlings under the same environmental water potential exhibited better salt tolerance than drought tolerance. The changes in endogenous hormones of the E. nutans seedlings under drought stress were analyzed to find that treatment with gibberellic acid (GA3), gibberellin A7 (GA7), 6-benzyladenine (6-BA), 6-(y,y-dimethylallylaminopurine) (2.IP), trans-zeatin (TZ), kinetin (KT), dihydrozeatin (DHZ), indole acetic acid (IAA), and 2,6-dichloroisonicotininc acid (INA) was more effective than those under drought stress. By analyzing the amplitude of changes in the endogenous hormones in E. nutans seedlings, the amplitude of changes in the contents of GA3, GA7, 6-BA, 2.IP, TZ, KT, DHZ, IAA, isopentenyl adenosine (IPA), indole-3-butyric acid (IBA), naphthalene acetic acid (NAA), and abscisic acid was larger in drought stress compared with salt stress, which could be because the endogenous hormones are important for the drought tolerance of E. nutans itself. The amplitude of the changes in the contents of DHZ, TZR, salicylic acid, and jasmonic acid was larger in salt stress compared with drought stress. Changes in the content of melatonin were larger in salt stress compared with drought stress, which could indicate that endogenous hormones and substances are important for the salt tolerance of E. nutans itself.


Subject(s)
Droughts , Plant Growth Regulators , Salt Stress , Seedlings , Seedlings/physiology , Seedlings/drug effects , Seedlings/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Stress, Physiological , Plant Roots/physiology , Plant Roots/drug effects , Plant Roots/metabolism , Salt Tolerance , Indoleacetic Acids/metabolism , Poaceae/physiology , Poaceae/drug effects , Poaceae/metabolism
4.
Plant Cell Environ ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39188105

ABSTRACT

The impact of nitrogen (N) and phosphorus (P) on the physiological and biochemical processes crucial for tree seedling growth is substantial. Although the study of plant hydraulic traits in response to N and P is growing, comprehensive research on their combined effects remains limited. Malus sieversii, a key ancestral species of modern apples and a dominant species in Xinjiang's Tianshan wild fruit forest, is witnessing a decline due to climate change, pests and diseases, compounded by challenges in seedling regeneration. Addressing this, a 4-year study was conducted to determine the optimal fertilisation method for it. The experiment explored varying levels of N (N10, N20 and N40) and P (P2, P4 and P8), and their combined effects (N20Px: N20P2, N20P4, N20P8; NxP4: N10P4, N20P4 and N40P4), assessing their impact on gas exchange, hydraulic traits, and the interplay among functional traits in Tianshan Mountains' M. sieversii seedlings. Our study revealed that All N-inclusive fertilisers slightly promoted the net photosynthetic rate. N10 significantly increasing leaf hydraulic conductivity. All P-inclusive fertilisers adversely affected hydraulic conductivity. P8, N20P4 and N20P8 notably increased seedlings' vulnerability to embolism. Seedlings can adaptively adjust multiple functional traits in response to nutrient changes. The research suggests N10 and N20 as the most effective fertilisation treatments for M. sieversii seedlings in this region, while fertilisation involving phosphorus is less suitable. This study contributes valuable insights into the specific nutrient needs of it, vital for conservation and cultivation efforts in the Tianshan region.

5.
Ecol Evol ; 14(8): e70051, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39114161

ABSTRACT

Sand rice (Agriophyllum squarrosum), widely distributed in Central Arid Asia and prevalent in the sand dunes of northern China, presents a promising potential as a climate-resilient crop. The plasticity of hypocotyl growth is the key trait for sand rice to cope with wind erosion and sand burial, ensure seedling emergence, and determine plant architecture. In this study, we assessed the overall hypocotyl phenotype of six sand rice elite lines, which were collected from different regions of northern China, and selected by our group over past decade through common garden trials. Significant phenotypic variations were observed in thousand-seed weight (TSW), seedling emergence percentage, hypocotyl length and diameter, and seedling fresh weight among the lines. The elite line Aerxiang (AEX) exhibited excellent agronomic performance with superior and synchronous emergence, and high survival percentage, distinguishing itself as a prime candidate for further large-scale cultivation. Contrastingly, the lines from the arid regions showed markedly lower performance. Partial Least Squares Path Modeling (PLSPM) was used to assess the impact of seed provenance climate factors, including annual mean temperature (AMT) and annual mean precipitation (AMP), on trait variability among lines. The findings indicate a significant correlation between climate factors and hypocotyl length, highlighting the intricate adaptation of sand rice to local climate. The comprehensive understanding of the mechanisms behind phenotypic variations offers valuable insights for sand rice de novo domestication and innovative germplasm resources, and lays the foundation for ecological restoration in sandy areas.

6.
J Exp Bot ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115948

ABSTRACT

Several classes of transcription factors have been investigated in light signaling pathways that bind to the Light Responsive Elements (LREs) present in the promoters of light regulatory genes for transcriptional regulation. Some of these transcription factors have been shown to be binding to numerous promoters through genome-wide ChIP-on-chip (ChIP-chip) studies. Furthermore, through the integration of ChIP-seq and RNA-seq techniques, it has been demonstrated that a transcription factor modifies the expression of numerous genes with which it interacts. However, the mode of action of these transcription factors and their dependency on other regulators in the pathway has just started to be unraveled. In this review article, we focus on a particular class of transcription factors, ZBF (Z-box Binding Factor), and their associated partners within the same or other classes of transcription factors and regulatory proteins during photomorphogenesis. Moreover, we have further made an attempt to summarize the cross talk of these transcription factors with jasmonic acid, abscisic acid and salicylic acid mediated defense signaling pathways. This review offers an in-depth insight into the manner in which ZBFs and their interactors reshape cellular functions and plant behavior. The underlying principles not only contribute to a comprehensive understanding but also establish a framework for analyzing the interplay between early developmental events and hormone signaling, a regulation orchestrated by the ZBF family.

7.
Food Chem ; 461: 140833, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39151349

ABSTRACT

Extracellular vesicles (EVs) derived from Thai rat-tailed radish (Raphanus sativus L. var. caudatus Alef) microgreens were previously reported as novel bioactive bioparticles against cancer. This study aimed to investigate the metabolic disruption associated with the antiproliferative effect against HepG2 liver cancer cells, a representative of metabolizing cells and tissue. In this study, the neutral red uptake assay was performed to screen for the antiproliferative effect and determine the cytotoxic concentrations of EVs against HepG2 cells. An untargeted approach to cellular metabolomics was conducted using liquid chromatography coupled with the high-resolution mass spectrometry system with multivariate and univariate analyses to determine the metabolic changes of HepG2 liver cancer cells after EV treatment. EVs showed an antiproliferative effect in HepG2 cells with a half-maximal inhibitory concentration (IC50) of 685.5 ± 26.4 and 139.7 ± 4.2 µg/ml at 24 and 48 h, respectively. In the metabolomics study, 163 metabolites were annotated, with 61 significantly altered metabolites. Among these significant metabolites, 18 were related to glycerophospholipid metabolism. Phosphatidylcholine-the important lipid building blocks for cell membranes, lipid mediators for cell proliferation, and immunosuppressive signaling-was mainly decreased by EV treatment. The alteration of cellular phospholipids in cancer was discussed. This finding suggested the possible mechanism of anticancer action of EVs by disrupting phospholipid metabolism and survival signaling in cancer cells. Further studies should be made to confirm EVs' potential as single and combination therapy in vivo to reduce cancer resistance. This may close the gap between in vitro study and clinical setting.

8.
J Pineal Res ; 76(5): e13004, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39145574

ABSTRACT

Both seed germination and subsequent seedling establishment are key checkpoints during the life cycle of seed plants, yet flooding stress markedly inhibits both processes, leading to economic losses from agricultural production. Here, we report that melatonin (MT) seed priming treatment enhances the performance of seeds from several crops, including soybean, wheat, maize, and alfalfa, under flooding stress. Transcriptome analysis revealed that MT priming promotes seed germination and seedling establishment associated with changes in abscisic acid (ABA), gibberellin (GA), and reactive oxygen species (ROS) biosynthesis and signaling pathways. Real-time quantitative RT-PCR (qRT-PCR) analysis confirmed that MT priming increases the expression levels of GA biosynthesis genes, ABA catabolism genes, and ROS biosynthesis genes while decreasing the expression of positive ABA regulatory genes. Further, measurements of ABA and GA concentrations are consistent with these trends. Following MT priming, quantification of ROS metabolism-related enzyme activities and the concentrations of H2O2 and superoxide anions (O2 -) after MT priming were consistent with the results of transcriptome analysis and qRT-PCR. Finally, exogenous application of GA, fluridone (an ABA biosynthesis inhibitor), or H2O2 partially rescued the poor germination of non-primed seeds under flooding stress. Collectively, this study uncovers the application and molecular mechanisms underlying MT priming in modulating crop seed vigor under flooding stress.


Subject(s)
Abscisic Acid , Floods , Germination , Gibberellins , Melatonin , Reactive Oxygen Species , Seedlings , Seeds , Melatonin/pharmacology , Melatonin/metabolism , Germination/drug effects , Abscisic Acid/metabolism , Gibberellins/metabolism , Reactive Oxygen Species/metabolism , Seedlings/metabolism , Seedlings/drug effects , Seedlings/growth & development , Seedlings/genetics , Seeds/drug effects , Seeds/metabolism , Seeds/growth & development , Seeds/genetics , Stress, Physiological , Crops, Agricultural/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/genetics , Gene Expression Regulation, Plant/drug effects
9.
Plants (Basel) ; 13(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39124146

ABSTRACT

Argania spinosa is among the most important species of the Moroccan forest in terms of ecological, environmental, and socio-economic aspects. However, it faces a delicate balance between regeneration and degradation in its natural habitat. Hence, the efforts to preserve and regenerate argan forests are crucial for biodiversity, soil quality, and local livelihoods, yet they face challenges like overgrazing and climate change. Sustainable management practices, including reforestation and community engagement, are vital for mitigating degradation. Similarly, exploiting the argan tree's rhizosphere can enhance soil quality by leveraging its rich microbial diversity. This approach not only improves crop growth but also maintains ecosystem balance, ultimately benefiting both agriculture and the environment. This enrichment can be achieved by different factors: mycorrhizae, plant extracts, algae extracts, and plant growth-promoting rhizobacteria (PGPR). The benefits provided by PGPR may include increased nutrient availability, phytohormone production, shoot, root development, protection against several plant pathogens, and disease reduction. In this study, the effect of rhizobacteria isolated from the Agran rhizosphere was evaluated on germination percentage and radicle length for Argania spinosa in vitro tests, growth, collar diameter, and branching number under greenhouse conditions. One hundred and twenty (120) bacteria were isolated from the argan rhizosphere and evaluated for their capacity for phosphate solubilization and indole acetic acid production. The results showed that 52 isolates could solubilize phosphorus, with the diameters of the solubilization halos varying from 0.56 ± 0.14 to 2.9 ± 0.08 cm. Among 52 isolates, 25 were found to be positive for indole acetic acid production. These 25 isolates were first tested on maize growth to select the most performant ones. The results showed that 14 isolates from 25 tested stimulated maize growth significantly, and 3 of them by 28% (CN005, CN006, and CN009) compared to the control. Eight isolates (CN005, CN006, CN004, CN007, CN008, CN009, CN010, and CN011) that showed plant growth of more than 19% were selected to evaluate their effect on argan germination rate and radicle length and were subjected to DNA extraction and conventional Sanger sequencing. The 8 selected isolates were identified as: Brevundimonas naejangsanensis sp2, Alcaligenes faecalis, Brevundimonas naejangsanensis sp3, Brevundimonas naejangsanensis sp4, Leucobacter aridicollis sp1, Leucobacter aridicollis sp2, Brevundimonas naejangsanensis sp1, and Staphylococcus saprophyticus. The results showed that Leucobacter aridicollis sp2 significantly increased the germination rate by 95.83%, and the radicle length with a value of 2.71 cm compared to the control (1.60 cm), followed by Brevundimonas naejangsanensis sp3 and Leucobacter aridicollis sp1 (2.42 cm and 2.11 cm, respectively). Under greenhouse conditions, the results showed that the height growth increased significantly for Leucobacter aridicollis sp1 (42.07%) and Leucobacter aridicollis sp2 (39.99%). The isolates Brevundimonas naejangsanensis sp3 and Leucobacter aridicollis sp1 increased the gain of collar diameter by 41.56 and 41.21%, respectively, followed by Leucobacter aridicollis sp2 and Staphyloccocus saprophyticus (38.68 and 22.79%). Leucobacter aridicollis sp1 increased the ramification number per plant to 12 compared to the control, which had 6 ramifications per plant. The use of these isolates represents a viable alternative in sustainable agriculture by improving the germination rate and root development of the argan tree, as well as its development, while increasing the availability of nutrients in the soil and consequently improving fertilization.

10.
Plants (Basel) ; 13(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39124267

ABSTRACT

The recovery of soil properties and the proper growth of natural tree regeneration are key elements for maintaining forest productivity after selective logging operations. This study was conducted on the soil properties and natural growth of two pioneer seedling species of alder and maple which were on skid trails in the mixed beech forests of northern Iran. To examine the long-term effects, we randomly selected six skid trails, with two replicates established for each of three time periods since last use (10, 20, and 30 years ago). Random plots 4 m × 10 m in size, three plots on each skid trail and six plots on areas without soil compaction (control), were selected. Measurements included the physical and chemical properties of the soil and the growth, and the architectural and qualitative characteristics of the seedlings. The results showed that all the soil properties of the 10- and 20-year-old skid trails were significantly different from the control area (except for the soil moisture in the 20-year-old skid trail). The 30-year-old skid trail showed values of other soil properties which were not significantly different from the control area, except for the amounts of organic matter and soil nitrogen, which was less than the control. The skid trails had a negative effect on all of the growth, qualitative, and architectural indices of seedlings. The characteristics of seedlings were related to soil characteristics and had the highest correlation with the soil penetration resistance (R-value from -0.41 to -0.63 for stem growth, p < 0.05; -0.57 to -0.90 for root growth, p < 0.01; and -0.76 to -0.86 for biomass, p < 0.01). The correlation coefficient between soil penetration resistance and the Dickson quality index of alder and maple seedlings was, respectively, -0.74 and -0.72, p < 0.01. The negative effect of soil compaction on root growth (-27.69% for alder seedlings and -28.08% for maple seedlings) was greater than on stem growth (-24.11% for alder seedlings and -16.27% for maple seedlings). The amount of growth, qualitative, and architectural indices of alder seedlings were higher than that of maple seedlings. Although alder is a better choice as compared to maple seedling in the initial year, the results of our study show that it is recommended to plant both alder and maple on skid trails after logging operations.

11.
Methods Mol Biol ; 2841: 157-164, 2024.
Article in English | MEDLINE | ID: mdl-39115774

ABSTRACT

Agrobacterium-mediated transient expression is a flexible and efficient technique for introducing genes into plants, allowing for rapid and temporary gene expression. Agroinfiltration of Arabidopsis seedlings is a newly developed Agrobacterium-based transient expression system. The expression of target genes and the localization of relevant proteins can be observed within 3 days using this method. In this chapter, we present the detailed protocol for transient transformation in Arabidopsis thaliana seedlings utilizing vacuum infiltration of Agrobacterium. This procedure enables rapid and temporary gene expression by introducing exogenous DNA into Arabidopsis seedlings, particularly in easily accessible tissues such as cotyledons. This protocol provides a detailed description of experimental procedures, including Arabidopsis seedlings cultivation, the preparation of Agrobacterium suspensions, and subsequent steps leading to confocal microscope observation. Through this protocol, researchers can efficiently investigate gene function and subcellular localization in Arabidopsis cotyledons within 8 days in total.


Subject(s)
Arabidopsis , Seedlings , Arabidopsis/genetics , Arabidopsis/metabolism , Seedlings/genetics , Seedlings/metabolism , Seedlings/growth & development , Vacuum , Cotyledon/genetics , Cotyledon/metabolism , Transformation, Genetic , Gene Expression , Plants, Genetically Modified/genetics , Agrobacterium/genetics , Gene Expression Regulation, Plant , Microscopy, Confocal
12.
Sci Total Environ ; 951: 175640, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39168322

ABSTRACT

Silicon within Si-rich biochars (sichar) plays a crucial role in immobilizing heavy metals and providing slow-releasing bioavailable silicon for silicophilic plants. However, the impact of heating rate on the silicon properties and carbon­silicon interactions in sichars remains unclear. In this study, rice husk was used as a silicon-rich biomass to prepare sichars at different heating rates (10, 30 and 60 °C per minute, and ultra-fast-pyrolysis), then experiments such as silicon concentration measurement, Raman and XRD characterization were conducted. The results showed that a faster heating rate reduced the carbon content during pyrolysis while promoted the formation of amorphous silica, resulting in a threefold increase in dissolved silicon in sichars prepared at 400 °C. Additionally, we observed the formation of a meta-stable SiO2 polymorph (tridymite) in rice husk-derived biochars under fast heating, differing from the previously observed quartz generated at slow heating rates. Regarding the CSi relationship, a faster heating rate facilitated the removal of the surface carbon layer, exposing the underlying silicon layer. This led to more soluble silicon species and less encapsulated silicon, resulting in a continuous release and cumulative silicon dissolution amount 1.2 times and 1.6-1.9 times higher, respectively, than those in slow heating rate-derived sichars. Consequently, this enhanced silicon uptake in rice seedlings. Our findings indicate that beyond pyrolysis temperature, the heating rate significantly affects the silicon species, silicon dissolution behavior, and carbon­silicon relationships of biochar, ultimately determines the properties and applications of sichars.

13.
FEMS Microbiol Ecol ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174482

ABSTRACT

Plant-associated microorganisms can negatively influence plant growth, which makes them potential biocontrol agents for weeds. Two Gammaproteobacteria, Serratia plymuthica and Pseudomonas brassicacearum, isolated from roots of Jacobaea vulgaris, an invasive weed, negatively affect its root growth. We examined whether the effects of S. plymuthica and P. brassicacearum on J. vulgaris through root inoculation are concentration-dependent and investigated if these effects were mediated by metabolites in bacterial suspensions. We also tested whether the two bacteria negatively affected seed germination and seedling growth through volatile emissions. Lastly, we investigated the host specificity of these two bacteria on nine other plant species. Both bacteria significantly reduced J. vulgaris root growth after root inoculation, with S. plymuthica showing a concentration-dependent pattern in vitro. The cell-free supernatants of both bacteria did not affect J. vulgaris root growth. Both bacteria inhibited J. vulgaris seed germination and seedling growth via volatiles, displaying distinct volatile profiles. However, these negative effects were not specific to J. vulgaris. Both bacteria negatively affect J. vulgaris through root inoculation via the activity of bacterial cells, while also producing volatiles that hinder J. vulgaris germination and seedling growth. However, their negative effects extend to other plant species, limiting their potential for weed control.

14.
Front Plant Sci ; 15: 1427086, 2024.
Article in English | MEDLINE | ID: mdl-39145187

ABSTRACT

Introduction: Environmental conditions play a prime role in the growth and development of plant species, exerting a significant influence on their reproductive capacity. Soybean is sensitive to high temperatures during flowering and seed developmental stages. Little is known about the combined environmental effect of temperature and CO2 on seed yield and quality and its future generation. Methods: A study was conducted to examine the effect of temperature (22/14°C (low), 30/22°C (optimum), and 38/30°C (high)), and CO2 (420 ppm (ambient; aCO2) and 720 ppm (elevated; eCO2)) on seed yield, quality, and transgenerational seedling vigor traits of soybean cultivars (DS25-1 and DS31-243) using Soil-Plant-Atmospheric-Research facility. Results: A significant temperature effect was recorded among yield and quality attributes. At high-temperature, the 100-seed weights of DS25-1 and DS31-243 declined by 40% and 24%, respectively, over the optimum temperature at aCO2. The harvest index of varieties reduced by 70% when exposed to high temperature under both aCO2 and eCO2, compared to the optimum temperature at aCO2. The seed oil (- 2%) and protein (8%) content altered when developed under high temperature under aCO2. Maximum sucrose (7.5%) and stachyose (3.8%) accumulation in seeds were observed when developed under low temperatures and eCO2. When the growing temperature increased from optimum to high, the seed oleic acids increased (63%), while linoleic and linolenic acids decreased (- 28% and - 43%, respectively). Significant temperature and CO2 effects were observed in progenies with the highest maximum seedling emergence (80%), lesser time to 50% emergence (5.5 days), and higher seedling vigor from parents grown at low-temperature treatment under eCO2. Discussion: Exposure of plants to 38/30°C was detrimental to soybean seed yield, and eCO2 levels did not compensate for this yield loss. The high temperature during seed developmental stages altered the chemical composition of the seed, leading to an increased content of monounsaturated fatty acids. The findings suggest that parental stress can significantly impact the development of offspring, indicating that epigenetic regulation or memory repose may be at play.

15.
Sensors (Basel) ; 24(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39001041

ABSTRACT

Hyperspectral imaging was used to predict the total polyphenol content in low-temperature stressed tomato seedlings for the development of a multispectral image sensor. The spectral data with a full width at half maximum (FWHM) of 5 nm were merged to obtain FWHMs of 10 nm, 25 nm, and 50 nm using a commercialized bandpass filter. Using the permutation importance method and regression coefficients, we developed the least absolute shrinkage and selection operator (Lasso) regression models by setting the band number to ≥11, ≤10, and ≤5 for each FWHM. The regression model using 56 bands with an FWHM of 5 nm resulted in an R2 of 0.71, an RMSE of 3.99 mg/g, and an RE of 9.04%, whereas the model developed using the spectral data of only 5 bands with a FWHM of 25 nm (at 519.5 nm, 620.1 nm, 660.3 nm, 719.8 nm, and 980.3 nm) provided an R2 of 0.62, an RMSE of 4.54 mg/g, and an RE of 10.3%. These results show that a multispectral image sensor can be developed to predict the total polyphenol content of tomato seedlings subjected to low-temperature stress, paving the way for energy saving and low-temperature stress damage prevention in vegetable seedling production.


Subject(s)
Hyperspectral Imaging , Polyphenols , Seedlings , Solanum lycopersicum , Solanum lycopersicum/chemistry , Solanum lycopersicum/growth & development , Polyphenols/analysis , Seedlings/chemistry , Hyperspectral Imaging/methods , Cold Temperature
16.
Front Plant Sci ; 15: 1336639, 2024.
Article in English | MEDLINE | ID: mdl-38993939

ABSTRACT

Better crop stand establishment, a function of rapid and uniform seedling emergence, depends on the activities of germination-related enzymes, which is problematic when there is insufficient soil moisture. Different ways are in practice for counteracting this problem, including seed priming with different chemicals, which are considered helpful in obtaining better crop stand establishment to some extent through improved seed germination and seedling emergence. In this growth room experiment, caffeine was used as a seed priming agent to improve germination under moisture scarcity. Polyethylene glycol-8000 (18%) was added to Hoagland's nutrient solution to create drought stress (-0.65 MPa). The experiment was arranged in a completely randomized design (CRD), having four replications of each treatment. A newly developed wheat genotype SB-1 was used for the experimentation. Different doses of caffeine, i.e., 4 ppm, 8 ppm, 12 ppm, and 16 ppm, including no soaking and water soaking, were used as seed priming treatments. Water deficit caused oxidative stress and adversely affected the seed germination, seedling vigor, activities of germination enzymes, photosynthetic pigments, and antioxidative defense mechanism in roots and shoots of seedlings. Caffeine seed priming ameliorated the negative effects of water deficit on seed germination and seedling vigor, which was attributed to the reduction in lipid peroxidation and improvement in the activities of germination-related enzymes like glucosidase, amylase, and protease. Conclusively, seed priming with 12 ppm caffeine outperformed the other treatments and hence is recommended for better crop stand establishment under conditions of soil moisture deficit.

17.
Heliyon ; 10(13): e34152, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39071552

ABSTRACT

Excess soil salinity is a major stress factor that inhibits plant growth, development, and production. Among the growth stages, seed germination is particularly susceptible to salt stress. Okra, a nutraceutical vegetable, has a low germination percentage. Literature has revealed genetic diversity in okra, which can be studied to develop salt-tolerant varieties. This study examined the salt tolerance of 13 okra varieties using germination tests and then tested five varieties in pot experiments with different NaCl levels (75, 100, and 125 mM NaCl). Results showed that salt levels affected all varieties, with differential variations in stress response. Salt stress reduced agronomic, and physiochemical traits in the studied varieties. In variety "MALAV-27", the highest salt concentration significantly reduced the shoot length (68.12 %), root length (65.11 %), shoot fresh weight (78.73 %), root fresh weight (68.32 %), shoot dry weight (75.60 %), and root dry weight (75.81 %), along with different physiochemical traits. Variety "NAYAB-F1" performed the best, and maintained the highest shoot length (57.12 %), root length (58.72 %), shoot fresh weight (68.26 %), and root fresh weight (58.34 %), shoot dry weight (69.23 %), root dry weight (62.50 %), and numerous physiochemical traits such as sugar (0.74 µg/g), proline (0.51 µmol/g), and chlorophyll 'a' (7.97 mg/g), chlorophyll 'b' (9.56 mg/g). The study recommended 'NAYAB-F1', 'Arka anamika', and 'Shehzadi' as salt-tolerant varieties suitable for selection in salt-tolerant okra breeding programs.

18.
BMC Plant Biol ; 24(1): 714, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060979

ABSTRACT

BACKGROUND: Festuca kryloviana is a significant native grass species in the Qinghai Lake region, and its low emergence rate is a primary factor limiting the successful establishment of cultivated grasslands. The region's arid and low-rainfall climate characteristics result in reduced soil moisture content at the surface. Despite the recognized impact of water availability on plant growth, the specific role of moisture in seedling development remains not fully elucidated. This study aims to investigate the germination rate and seedling growth velocity of F. kryloviana seeds under varying moisture conditions, and to integrate physiological and transcriptomic analyses of seedlings under these conditions to reveal the mechanisms by which water influences seedling development. RESULTS: The emergence rate of F. kryloviana seedlings exhibited an initial increase followed by a decrease with increasing moisture content. The highest emergence rate, reaching 75%, was observed under 20% soil moisture conditions. By the eighth day of the experiment, the lengths of the plumules and radicles under the optimal emergence rate (full water, FW) were 21.82% and 10.87% longer, respectively, than those under closely matching the soil moisture content during the background survey (stress water, SW). The differential development of seedlings under varying moisture regimes is attributed to sugar metabolism within the seeds and the accumulation of abscisic acid (ABA). At FW conditions, enhanced sugar metabolism, which generates more energy for seedling development, is facilitated by higher activities of α-amylase, sucrose synthase, and trehalose-6-phosphate synthase compared to SW conditions. This is reflected at the transcriptomic level with upregulated expression of the α-amylase (AMY2) gene and trehalose-6-phosphate synthase (TPS6), while genes associated with ABA signaling and transduction are downregulated. Additionally, under FW conditions, the expression of genes related to the chloroplast thylakoid photosystems, such as photosystem II (PSII) and photosystem I (PSI), is upregulated, enhancing the seedlings' light-capturing ability and photosynthetic efficiency, thereby improving their autotrophic capacity. Furthermore, FW treatment enhances the expression of the non-enzymatic antioxidant system, promoting metabolism within the seeds. In contrast, SW treatment increases the activity of the enzymatic antioxidant system, including peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), to cope with water stress. CONCLUSIONS: Our experiment systematically evaluated the impact of moisture conditions on the growth and development of F. kryloviana seedlings. Physiological and transcriptomic data collectively indicate that adequate water (20%) supply enhances seedling growth and development by reducing ABA levels and increasing α-amylase activity within seeds, thereby boosting sugar metabolism and promoting the growth of seedling, which in turn leads to an improved emergence rate. Considering water management in future cultivation practices may be a crucial strategy for enhancing the successful establishment of F. kryloviana in grassland ecosystems.


Subject(s)
Festuca , Seedlings , Water , Seedlings/growth & development , Seedlings/genetics , Seedlings/metabolism , Festuca/genetics , Festuca/growth & development , Festuca/metabolism , Water/metabolism , Transcriptome , Germination , Gene Expression Regulation, Plant , Gene Expression Profiling , Seeds/growth & development , Seeds/genetics , Seeds/metabolism
19.
Animals (Basel) ; 14(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39061590

ABSTRACT

The cultivation of the Chinese mitten crab (Eriocheir sinensis) is an important component of China's aquaculture industry and also a field of concern worldwide. It focuses on the selection of high-quality, disease-free juvenile crabs. However, the early maturity rate of more than 18.2% and the mortality rate of more than 60% make it difficult to select suitable juveniles for adult culture. The juveniles exhibit subtle distinguishing features, and the methods for differentiating between sexes vary significantly; without training from professional breeders, it is challenging for laypersons to identify and select the appropriate juveniles. Therefore, we propose a task-aligned detection algorithm for identifying one-year-old precocious Chinese mitten crabs, named R-TNET. Initially, the required images were obtained by capturing key frames, and then they were annotated and preprocessed by professionals to build a training dataset. Subsequently, the ResNeXt network was selected as the backbone feature extraction network, with Convolutional Block Attention Modules (CBAMs) and a Deformable Convolution Network (DCN) embedded in its residual blocks to enhance its capability to extract complex features. Adaptive spatial feature fusion (ASFF) was then integrated into the feature fusion network to preserve the detailed features of small targets such as one-year-old precocious Chinese mitten crab juveniles. Finally, based on the detection head proposed by task-aligned one-stage object detection, the parameters of its anchor alignment metric were adjusted to detect, locate, and classify the crab juveniles. The experimental results showed that this method achieves a mean average precision (mAP) of 88.78% and an F1-score of 97.89%. This exceeded the best-performing mainstream object detection algorithm, YOLOv7, by 4.17% in mAP and 1.77% in the F1-score. Ultimately, in practical application scenarios, the algorithm effectively identified one-year-old precocious Chinese mitten crabs, providing technical support for the automated selection of high-quality crab juveniles in the cultivation process, thereby promoting the rapid development of aquaculture and agricultural intelligence in China.

20.
Sci Rep ; 14(1): 17266, 2024 07 27.
Article in English | MEDLINE | ID: mdl-39068275

ABSTRACT

To address the low efficiency and high labor demands of manual Codonopsis pilosula cultivation, as well as the limitations of existing flat-type transplanting machines that create trenches of inconsistent depth hindering root growth and seedling emergence, a C. pilosula film-covered outcrop tilted transplanting machine was developed. Based on theoretical analysis of the prototype's key components and agronomic requirements for oblique C. pilosula transplanting, the structure and working parameters of the rotary tiller soil throwing device, soil lifting device, track-type soil conveying device, seedling throwing device, and film covering device were determined. The core components' working principles were analyzed, and the soil throwing process of the rotary tiller device was simulated using the discrete element method (DEM). A calculation domain was established, and the results showed that the average mass of the rotary tiller device was 49.44 kg, while the required soil lifting amount for the scraper-type soil lifting device was 21.84 kg, meeting the soil throwing requirements. Field experiments in 10 test areas demonstrated an average qualified rate of 89.50% for planting depth, 84.00% for planting posture, 90% for exposed plant spacing, 4.51 cm for plant spacing, and 8.67% coefficient of variation for planting spacing. These results meet industry standards for planting depth and planting spacing, confirming the machine's effectiveness in achieving high-quality tilted transplanting of C. pilosula seedlings.


Subject(s)
Codonopsis , Soil , Codonopsis/growth & development , Soil/chemistry , Agriculture/methods , Equipment Design , Plant Roots/growth & development , Seedlings/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL