Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
J Appl Clin Med Phys ; 25(7): e14317, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38439583

ABSTRACT

PURPOSE: Patient setup errors have been a primary concern impacting the dose delivery accuracy in radiation therapy. A robust treatment plan might mitigate the effects of patient setup errors. In this reported study, we aimed to evaluate the impact of translational and rotational errors on the robustness of linac-based, single-isocenter, coplanar, and non-coplanar volumetric modulated arc therapy treatment plans for multiple brain metastases. METHODS: Fifteen patients were retrospectively selected for this study with a combined total of 49 gross tumor volumes (GTVs). Single-isocenter coplanar and non-coplanar plans were generated first with a prescribed dose of 40 Gy in 5 fractions or 42 Gy in 7 fractions to cover 95% of planning target volume (PTV). Next, four setup errors (+1  and +2 mm translation, and +1° and +2° rotation) were applied individually to generate modified plans. Different plan quality evaluation metrics were compared between coplanar and non-coplanar plans. 3D gamma analysis (3%/2 mm) was performed to compare the modified plans (+2 mm and +2° only) and the original plans. Paired t-test was conducted for statistical analysis. RESULTS: After applying setup errors, variations of all plan evaluation metrics were similar (p > 0.05). The worst case for V100% to GTV was 92.07% ± 6.13% in the case of +2 mm translational error. 3D gamma pass rates were > 90% for both coplanar (+2 mm and +2°) and the +2 mm non-coplanar groups but was 87.40% ± 6.89% for the +2° non-coplanar group. CONCLUSION: Translational errors have a greater impact on PTV and GTV dose coverage for both planning methods. Rotational errors have a greater negative impact on gamma pass rates of non-coplanar plans. Plan evaluation metrics after applying setup errors showed that both coplanar and non-coplanar plans were robust and clinically acceptable.


Subject(s)
Brain Neoplasms , Organs at Risk , Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy Setup Errors , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Setup Errors/prevention & control , Retrospective Studies , Particle Accelerators/instrumentation , Organs at Risk/radiation effects , Prognosis , Patient Positioning
2.
Radiother Oncol ; 193: 110120, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311029

ABSTRACT

PURPOSE: Children who require radiation therapy (RT) should ideally be treated awake, without anaesthesia, if possible. Audiovisual distraction is a known method to facilitate awake treatment, but its effectiveness at keeping children from moving during treatment is not known. The aim of this study was to evaluate intrafraction movement of children receiving RT while awake. METHODS: In this prospective study, we measured the intrafraction movement of children undergoing treatment with fractionated RT, using pre- and post-RT cone beam CT (CBCT) with image matching on bony anatomy. Study CBCTs were acquired at first fraction, weekly during RT, and at last fraction. The primary endpoint was the magnitude of vector change between the pre- and post-RT scans. Our hypothesis was that 90 % of CBCT acquisitions would have minimal movement, defined as <3 mm for head-and-neck (HN) treatments and <5 mm for non-HN treatments. RESULTS: A total of 65 children were enrolled and had evaluable data across 302 treatments with CBCT acquisitions. Median age was 11 years (range, 2-18; 1st and 3rd quartiles 7 and 14 years, respectively). Minimal movement was observed in 99.4 % of HN treatments and 97.2 % of non-HN treatments. The study hypothesis of >90 % of evaluations having minimal movement was met. Children who were age >11 years moved less at initial evaluation but tended to move more as a course of radiation progressed, as compared to children who were younger. CONCLUSION: Children receiving RT with audiovisual distraction while awake had small magnitudes of observed intrafraction movement, with minimal movement in >97 % of observed RT fractions. This study validates methods of anaesthesia avoidance using audiovisual distraction for selected children.


Subject(s)
Anesthesia , Radiotherapy, Image-Guided , Humans , Child , Prospective Studies , Movement , Cone-Beam Computed Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods
3.
Int J Radiat Biol ; 100(2): 248-255, 2024.
Article in English | MEDLINE | ID: mdl-37747796

ABSTRACT

BACKGROUND: The relationship among body mass index (BMI), setup error and radiation pneumonitis is not clearly illustrated. OBJECTIVE: The present study aimed to investigate the role of BMI in non-small cell lung cancer (NSCLC) patients' radiation treatment, focusing on its relationship with setup error of patient positioning, the dosimetric parameters of intensity-modulated radiation therapy (IMRT) and the incidence of radiation pneumonitis. METHODS: This prospective observational study included 523 cases of NSCLC patients during 2020-2022. Patients were divided into different groups by different BMI. The setup error was obtained by cone beam CT (CBCT) at three positions, lateral (LAT), longitudinal (LNG) and vertical (VRT). IMRT dosimetric parameters of V5, V20, and mean dose were collected. RESULTS: Patients with BMI ≥28 kg/m2 showed significantly higher absolute values of LAT, LNG and VRT, higher V5, V20, mean dose, as well as higher total incidence of radiation pneumonitis and grade III radiation pneumonitis compared with patients with BMI <24 kg/m2 or 24-28 kg/m2. Spearman's analysis demonstrated that the absolute values of LAT, LNG and VRT were positively correlated with BMI, and positive correlation existed among BMI, dosimetric parameters and setup errors. ROC curves showed that LAT in setup errors and V5 in dosimetric parameters had the best diagnostic value for prediction of radiation pneumonitis. Only BMI, LAT, V5 and V20 were the independent risk factors for radiation pneumonitis. CONCLUSIONS: Setup error caused by higher BMI might be associated with the dosimetric parameters, as well as the incidence of radiation pneumonitis in NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiation Pneumonitis , Radiotherapy, Intensity-Modulated , Humans , Carcinoma, Non-Small-Cell Lung/complications , Carcinoma, Non-Small-Cell Lung/radiotherapy , Radiation Pneumonitis/epidemiology , Radiation Pneumonitis/etiology , Radiotherapy, Intensity-Modulated/adverse effects , Body Mass Index , Lung Neoplasms/complications , Lung Neoplasms/radiotherapy , Incidence , Radiotherapy Dosage , Retrospective Studies
4.
Phys Imaging Radiat Oncol ; 27: 100456, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37720465

ABSTRACT

Background and purpose: Radiotherapy (RT) treatment planning is as a standard based on a computed tomography (CT) scan obtained at the planning stage (pCT), while most of the decisions whether to treat by RT are based on diagnostic CT scans (dCT). Bone metastases (BM) are the most common palliative RT target. The objective of this study was to investigate if a palliative RT treatment plan of BMs could be made based on a dCT with sufficient accuracy and safety, without sacrificing any treatment quality. Materials and methods: A retrospective study with 60 BMs of 8 anatomical sites was performed. RT planning was performed using intensity-modulated radiation therapy/volumetric modulated arc therapy techniques in dCT and transferred to pCT. The dose of clinical target volumes (CTVs), D(CTVV95%, V50%), were compared between plans for dCT and pCT. Patient setup was investigated in cone-beam CT scans. Results: The differences of D(CTVV95%, V50%) between dCT and pCT plans were the lowest in the pelvis (1.0%, 1.1%), lumbar spine (0.6%, 0.7%) and thoracic spine (0.7%, 2.1%), while the differences were higher in cervical spine (3.7%, 1.9%), long bones (2.3%, 0.8%), and costae (1.6%, 1.4%). The patient set-up was acceptable for 100% of the pelvic and lumbar, for 92% of thoracic spine cases, and for <80% of cases in other sites. Conclusion: This study showed the feasibility of using dCT images in palliative RT planning of BMs in thoracic, lumbar spine and pelvic sites, indicating the potential suitability of this strategy for clinical use.

5.
Technol Cancer Res Treat ; 22: 15330338231168763, 2023.
Article in English | MEDLINE | ID: mdl-37050884

ABSTRACT

Objective: To compare the 6-dimensional errors of different immobilization devices and body regions based on 3-dimensional cone beam computed tomography for image-guided radiotherapy and to further quantitatively evaluate the impact of rotational corrections on translational shifts and dose distribution based on anthropomorphic phantoms. Materials and Methods: Two hundred ninety patients with cone beam computed tomographies from 3835 fractions were retrospectively analyzed for brain, head & neck, chest, abdomen, pelvis, and breast cases. A phantom experiment was conducted to investigate the impact of rotational errors on translational shifts using cone beam computed tomography and the registration system. For the dosimetry study, pitch rotations were simulated by adjusting the breast bracket by ±2.5°. Roll and yaw rotations were simulated by rotating the gantry and couch in the planning system by ±3.0°, respectively. The original plan for the breast region was designed in the computed tomography image space without rotation. With the same planning parameters, the original plan was transplanted into the image space with different rotations for dose recalculation. The effect of these errors on the breast target and organs at risk was assessed by dose-volume histograms. Results: Most of the mean rotational errors in the breast region were >1°. A single uncorrected yaw of 3° caused a change of 2.9 mm in longitudinal translation. A phantom study for the breast region demonstrated that when the pitch rotations were -2.5° and 2.5° and roll and yaw were both 3°, the reductions in the planning target volumes-V50 Gy were 20.07% and 29.58% of the original values, respectively. When the pitch rotation was +2.5°, the left lung V5 Gy and heart Dmean were 7.49% and 165.76 Gy larger, respectively, than the original values. Conclusions: Uncorrected rotations may cause changes in the values and directions of translational shifts. Rotational corrections may improve the patient setup and dose distribution accuracy.


Subject(s)
Radiotherapy, Image-Guided , Humans , Radiotherapy, Image-Guided/methods , Radiotherapy Planning, Computer-Assisted/methods , Retrospective Studies , Cone-Beam Computed Tomography , Tomography, X-Ray Computed/methods , Radiotherapy Setup Errors/prevention & control
6.
Technol Cancer Res Treat ; 22: 15330338231169601, 2023.
Article in English | MEDLINE | ID: mdl-37078143

ABSTRACT

BACKGROUND: To analyze the relationship between the rotational and residual setup errors and the dose deviation on nasopharyngeal carcinoma (NPC) treated by helical tomotherapy (HT). METHODS: From 25 July 2017 to 20 August 2019, 16 treated NPC patients were enrolled in the study. These patients were scanned with full target range megavoltage computed tomography (MVCT) every other day. Adaptive radiotherapy function application software MIM7.1.3 were used to accumulate the actual dose. The dose deviation with the initial plan dose of the patients' target and organs at risk (OAR) were compared, and the correlation between the dose change and the setup errors (rotational setup errors and neck residual setup error) was analyzed. RESULTS: Translational setup errors increased farther away from the head. Statistically significant difference among 3 groups was achieved in the directions of left-right (P < .001) and anteroposterior (P < .001) by analysis of variance test. Compared with the initial plan dose, the actual accumulated dose of the target area decreased with the actual exposure dose of the OAR increased. However, most of the dosimetric parameters differed by less than 5%. No correlation was found between dose deviation values and the translational setup errors of target. However, sagittal rotational setup errors (pitch) had a positive relationship (P < .05) with the avearge dose of PTVnd (L) (r = 0.885), PTVnd(R) (r = 0.547) PTV1(r = 0.633) and PTV2(r = 0.584). Transverse rotational setup errors (roll) had a positive relationship (P < .05) with the avearge dose of PTVnd(R) (r = 0.593), PTV1(r = 0.505) and PTV2(r = 0.662). CONCLUSIONS: Dose deviation between the actual accumulated and initial plan is not negligible, but most indicators difference is less than 5%, NPC patients treated by HT with MVCT correction setup errors every other day did not need adaptive radiotherapy model unless got rapid tumor shrinkage or weight loss. Moreover, to minimize the dose deviation, more attention should be paid to the reduction of pitch, roll, and residual error of cervical vertebrae during body positioning.


Subject(s)
Nasopharyngeal Neoplasms , Radiotherapy, Conformal , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Nasopharyngeal Carcinoma/radiotherapy , Radiotherapy, Conformal/methods , Radiotherapy Dosage , Radiotherapy Setup Errors/prevention & control , Nasopharyngeal Neoplasms/radiotherapy
7.
Front Oncol ; 13: 1030599, 2023.
Article in English | MEDLINE | ID: mdl-36816975

ABSTRACT

Objective: To explore the corrective effect of 6 degree of freedom couch on rotation errors in intensity modulated radiotherapy (IMRT) for postoperative rectal cancer patients, further to probe into the clinical application value of 6 degree of freedom couch in radiotherapy. Methods: From January 1, 2020 to December 1, 2020, 30 patients with rectal cancer receiving postoperative intensity modulated radiotherapy in The First Hospital of Hebei Medical University were included in this retrospective study. The setup error values in all direction of patients before and after 6 degree of freedom correction were collected during each radiotherapy session. Results: In this study, a total of 382 data before and after the correction of 6 degree of freedom couch were collected. It was found that the setup errors in the Y direction gradually increased, was maximal in the third week, and then became smaller, and the setup errors in the other directions increased with the extension of radiotherapy time and reached the maximum at the 5th week. In the translation direction, the setup errors value in Z direction occurred more frequently than that in X and Y directions between the range of 0.21-0.80 cm. In the rotation direction, the setup errors value in rotation X direction occurred more frequently than that in rotation Y and Z directions between the range of 0.21°-2.99°. In addition, after the correction of the 6 degree of freedom couch in real time, the setup errors in patients were significantly reduced in all directions (P < 0.05). Conclusion: In summary, it was recommended to clinically use 6 degree of freedom couch combined with IMRT for real-time correction of placement errors in patients with rectal cancer undergoing radiotherapy. At the same time, it was necessary to observe the tumor size and body weight changes of patients on the 5th week. If necessary, radiotherapy positioning and planning should be performed in time.

8.
Clin Transl Radiat Oncol ; 39: 100582, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36699195

ABSTRACT

Purpose: Magnetic resonance image-guided radiotherapy for intracranial indications is a promising advance; however, uncertainties remain for both target localization after translation-only MR setup and intrafraction motion. This investigation quantified these uncertainties and developed a population-based planning target volume (PTV) model to explore target and organ-at-risk (OAR) volumetric coverage tradeoffs. Methods: Sixty-six patients, 49 with a primary brain tumor and 17 with a post-surgical resection cavity, treated on a 1.5T-based MR-linac across 1329 fractions were included. At each fraction, patients were setup by translation-only fusion of the online T1 MRI to the planning image. Each fusion was independently repeated offline accounting for rotations. The six degree-of-freedom difference between fusions was applied to transform the planning CTV at each fraction (CTVfx). A PTV model parameterized by volumetric CTVfx coverage, proportion of fractions, and proportion of patients was developed. Intrafraction motion was quantified in a 412 fraction subset as the fusion difference between post- and pre-irradiation T1 MRIs. Results: For the left-right/anterior-posterior/superior-inferior axes, mean ± SD of the rotational fusion differences were 0.1 ± 0.8/0.1 ± 0.8/-0.2 ± 0.9°. Covering 98 % of the CTVfx in 95 % of fractions in 95 % of patients required a 3 mm PTV margin. Margin reduction decreased PTV-OAR overlap; for example, the proportion of optic chiasm overlapped by the PTV was reduced up to 23.5 % by margin reduction from 4 mm to 3 mm. Conclusions: An evidence-based PTV model was developed for brain cancer patients treated on the MR-linac. Informed by this model, we have clinically adopted a 3 mm PTV margin for conventionally fractionated intracranial patients.

9.
Cancer Research and Clinic ; (6): 568-572, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-996276

ABSTRACT

Objective:To investigate the role of cervical core muscle group exercise and massage in the change of cervical spine curvature during radiotherapy for head and neck tumors and the effect on set-up errors.Methods:A total of 40 patients with head and neck tumours receiving radiotherapy in the First Affiliated Hospital of Air Force Military Medical University from March 2020 to July 2021 were prospectively selected, and all of them underwent different degrees of changes in cervical spine curvature during radiotherapy. The cervical core muscle exercise and manual massage were used to do treatment intervention on the change in the cervical spine curvature. Changes in cervical spine curvature at the time of the curvature change of the cervical spine and at 1 d, 3 d and 5 d after the intervention were observed by using cone beam CT, and then data were recorded in 3 dimensions. The set-up error when cervical spine curvature changed was compared with that after the muscle group exercise and manipulation, and Pearson was used to analyze the linear correlation of set-up errors in each direction.Results:There were 23 males and 17 females, with a median age of 41 years (26-62 years). The significant improvement of cervical curvature at 1 d, 3 d and 5 d after the intervention could be found in 2 cases (5.0%), 20 cases (50.0%) and 39 cases (97.5%). Using the cervical 4 vertebrae as the matching standard, the set-up errors at the time of change in cervical spine curvature and at 1 d, 3 d and 5 d after treatment were (1.3±0.9) mm, (1.2±0.8) mm, (1.3±0.7) mm and (1.3±0.7) mm in the left-right direction respectively; (2.0±0.7) mm, (1.7±0.8) mm, (1.8±0.7) mm and (1.9±0.8) mm in the head-foot direction respectively; (4.9±0.7) mm, (4.6±0.7) mm, (3.4±0.7) mm, (1.7±0.6) mm in the anterior-posterior direction respectively. The set-up error in the anterior-posterior directions at 3 d and 5 d after treatment intervention was lower than that at the time of change in cervical spine curvature and at 1 d after treatment intervention (all P < 0.01), and that at 5 d after treatment intervention was lower than that at 3 d after treatment intervention ( P < 0.01). There were no statistically significant differences between the left-right direction and head-foot direction at each time point (all P > 0.05). There was no correlation between left-right direction and head-foot direction ( r = 0.049, P = 0.540), between left-right direction and anterior-posterior direction ( r = 0.041, P = 0.607), and between head-foot direction and anterior-posterior direction ( r = 0.003, P = 0.931) in terms of set-up errors. Conclusions:Core cervical muscle group training and massage could improve the change in cervical spine curvature, increase the repeatability of the set-up, which provides a favourable guarantee for accurate treatment.

10.
Cancer Research and Clinic ; (6): 271-277, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-996225

ABSTRACT

Objective:To evaluate the effect of image-guided with cone-beam computed tomography (CBCT) based on volumetric modulated arc therapy (VMAT)-flattening filter free (FFF) on the setup errors of stereotactic body radiotherapy (SBRT) in patients with spinal metastatic tumors.Methods:The clinical data of 15 patients with spinal metastatic tumors who underwent SBRT in Jilin Cancer Hospital from August 2020 to January 2022 were retrospectively analyzed. The radiotherapy dose of bone metastasis was 32 Gy per 4 times and CBCT scanning was performed before and after radiotherapy. Every patient received radiotherapy 4 times; all 15 patients underwent SBRT 60 times in total and 120 CBCT volume images were finally obtained and analyzed. The systematic error (Σ) and random error (σ) were calculated at different correction threshold levels. The translational setup error and rotational setup error at the left-right (X axis), head-foot (Y axis) and front-back (Z axis) directions before and after radiotherapy were compared, which were expressed as Σ ± σ.Results:The pre-SBRT and post-SBRT translational setup errors were (0.14±0.27) cm and (0.07±0.19) cm, respectively ( P<0.001) in the X direction, (-0.05±0.33) cm and (0.00±0.19) cm, respectively ( P = 0.001) in the Y direction, (-0.13±0.19) cm and (-0.02±0.14) cm, respectively ( P = 0.012) in the Z direction. The pre-SBRT and post-SBRT rotational setup errors were (-0.31±0.76)° and (-0.09±0.34)°, respectively ( P < 0.001) in the X direction, (-0.13±0.88)° and (-0.07±0.36) °, respectively ( P < 0.001) in the Y direction, (0.10±0.51)° and (0.16±0.38)°, respectively ( P < 0.001) in the Z direction. Conclusions:CBCT correction could reduce Σ and σof the translational setup and rotational setup, increase the accuracy of SBRT based on VMAT-FFF for patients with spinal metastatic tumors.

11.
J Xray Sci Technol ; 30(4): 641-655, 2022.
Article in English | MEDLINE | ID: mdl-35367978

ABSTRACT

OBJECTIVE: To investigate clinical utility of a new immobilization method in image-guided intensity-modulated radiotherapy (IMRT) for breast cancer patients after radical mastectomy. MATERIALS AND METHODS: Forty patients with breast cancer who underwent radical mastectomy and postoperative IMRT were prospectively enrolled. The patients were randomly and equally divided into two groups using both a carbon-fiber support board and a hollowed-out cervicothoracic thermoplastic mask (Group A) and using only the board (Group B). An iSCOUT image-guided system was used for acquiring and correcting pretreatment setup errors for each treatment fraction. Initial setup errors and residual errors were obtained by aligning iSCOUT images with digitally reconstructed radiograph (DRR) images generated from planning CT. Totally 600 initial and residual errors were compared and analyzed between two groups, and the planning target volume (PTV) margins before and after the image-guided correction were calculated. RESULTS: The initial setup errors of Group A and Group B were (3.14±3.07), (2.21±1.92), (2.45±1.92) mm and (3.14±2.97), (2.94±3.35), (2.80±2.47) mm in the left-right (LAT), superior-inferior (LONG), anterior-posterior (VERT) directions, respectively. The initial errors in Group A were smaller than those in Group B in the LONG direction (P < 0.05). No significant difference was found in the distribution of three initial error ranges (≤3 mm, 3-5 mm and > 5 mm) in each of the three translational directions for the two groups (P > 0.05). The residual errors of Group A and Group B were (1.74±1.03), (1.62±0.92), (1.66±0.91) mm and (1.70±0.97), (1.68±1.18), (1.58±0.98) mm in the three translational directions, respectively. No significant difference was found in the residual errors between two groups (P > 0.05). With the image-guided correction, PTV margins were reduced from 8.01, 5.44, 5.45 mm to 3.54, 2.99, 2.89 mm in three translational directions of Group A, respectively, and from 8.14, 10.89, 6.29 mm to 2.67, 3.64, 2.74 mm in those of Group B, respectively. CONCLUSION: The use of hollowed-out cervicothoracic thermoplastic masks combined with a carbon-fiber support board showed better inter-fraction immobilization than the single use of the board in reducing longitudinal setup errors for breast cancer patients after radical mastectomy during IMRT treatment course, which has potential to reduce setup errors and improve the pretreatment immobilization accuracy for breast cancer IMRT after radical mastectomy.


Subject(s)
Breast Neoplasms , Radiotherapy, Intensity-Modulated , Carbon , Cone-Beam Computed Tomography , Female , Humans , Mastectomy , Mastectomy, Radical , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
12.
J Appl Clin Med Phys ; 23(5): e13578, 2022 May.
Article in English | MEDLINE | ID: mdl-35293667

ABSTRACT

PURPOSE: We compared the setup errors determined by an optical imaging system (OSIS) in women who received breast-conserving surgery (BCS) followed by whole-breast radiotherapy (WBRT) with those from cone-beam computed tomography (CBCT) carried out routinely. METHODS: We compared 130 setup errors in 10 patients undergoing WBRT following BCS by analyzing the translational and rotational couch shifts via CBCT and OSIS. Patients were treated with intensity-modulated radiotherapy (IMRT). The patient outline extracted from the planning reference Computed tomography (CT) was used as the reference for OSIS and CBCT alignment during treatment. We detected the setup uncertainty using CBCT and OSIS at the first five fractionations of RT and then twice a week. RESULTS: The absolute translational setup error (mean ± Standard deviation (SD)) in x (lateral), y (longitudinal), and z (vertical) axes detected by the OSIS was 0.14 ± 0.18, 0.15 ± 0.14, and 0.13 ± 0.13 cm, respectively. The rotational setup error (mean ± SD) in Rx (pitch), Ry (roll), and Rz (yaw) axes was 0.77 ± 0.54, 0.76 ± 0.61, and 1.23 ± 0.95, respectively. Significant difference is observed only in one direction (Rx, p = 0.03) in the paired setup errors obtaining from OSIS and CBCT, without significant differences in five directions. CONCLUSION: OSIS is a repeatable and reliable system that can be used to detect misalignments with accuracy, which is capable of supplementing CBCT for WBRT after BCS. We believe that an OSIS may be easier to use, quicker, and reduce overall dose as this method of patient alignment does not require ionizing radiation.


Subject(s)
Radiotherapy, Image-Guided , Radiotherapy, Intensity-Modulated , Cone-Beam Computed Tomography/methods , Female , Humans , Lasers , Mastectomy, Segmental , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Setup Errors/prevention & control , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods
13.
Cancer Research and Clinic ; (6): 848-852, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-958948

ABSTRACT

Objective:To explore the setup errors of vacuum pad combined with breast bracket in linear accelerator intensity-modulated radiotherapy for breast cancer.Methods:The clinical data of 72 patients who received linear accelerator intensity-modulated radiotherapy after breast conserving surgery in Hai'an Hospital of Traditional Chinese Medicine from July 2017 to March 2022 were retrospectively analyzed. According to the radiotherapy fixation schemes, they were divided into vacuum pad group (24 patients), breast bracket group (27 patients) and vacuum pad combined with breast bracket group (21 patients). Cone-beam CT was used to analyze the setup errors of the fixation, and the mean value of the overall errors and the standard deviation of the system errors were calculated. The relative factors affecting the fixed setup errors were analyzed.Results:There were statistical differences among vacuum pad group, breast bracket group and vacuum pad combined with breast bracket group in the level of forward and backward (Z) direction translation error (2.11±0.41, 2.67±0.26 and 1.79±0.21) and Z direction rotation error (1.14±0.24, 1.05±0.21 and 0.91±0.22) ( F values were 45.86 and 6.21, both P < 0.05). The level of Z direction translation error in vacuum pad group was higher than that in vacuum pad combined with breast bracket group, and the difference was statistically significant ( t = 12.37, P = 0.001). The level of Z direction rotation error in breast bracket group was higher than that in vacuum pad combined with breast bracket group, and the difference was statistically significant ( t = 3.41, P = 0.001). In the breast bracket group, the planning target volume (PTV) extension boundary values in the left and right (X), up and down (Y), and Z directions were 2.02, 2.09 and 1.97; the PTV release boundary values in X, Y and Z directions of the vacuum pad group were 1.81, 2.07 and 2.25; the external boundary values of PTV in X, Y and Z directions of the vacuum pad combined with breast bracket group were 1.13, 1.51 and 1.49. The result of multifactor analysis showed that body mass index (BMI) ( OR = 4.208, 95% CI 1.438-12.312) and breast volume ( OR = 4.023, 95% CI 1.375-11.769) were the independent influencing factors of fixed setup errors (both P < 0.05). Conclusions:The application of vacuum pad combined with breast bracket in the fixed setup of linear accelerator intensity-modulated radiotherapy of breast cancer is helpful to reduce the fixed setup errors, but at the same time, the fixed setup errors is affected by the patient's BMI, breast volume and other factors.

14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-956830

ABSTRACT

Objective:To propose a markless patient setup workflow based on the optical surface monitoring system (AlignRT) and open-face mask immobilization for whole-course head tumor radiotherapy, assess the setup time and repositioning frequency of the proposed workflow, and conduct a comparative analysis of the differences, correlation, and consistency of the setup errors of the AlignRT and cone beam CT (CBCT) systems.Methods:A retrospective analysis was conducted for the data on the errors of 132 fractionated setup based on open-face mask immobilization of 33 head tumor patients. AlignRT-guided markless patient setup workflow was applied throughout the radiotherapy. Meanwhile, the body structures automatically generated by the treatment planning system were used as body references. The 6-degree-of-freedom (6DoF) setup errors (lateral, vertical, longitudinal, rotation, pitch, roll, and yaw directions), setup time, and repositioning frequency of the AlignRT and CBCT systems were recorded and analyzed. The Wilcoxon and Spearman analyses were used to statistically assess the differences and correlation of the setup errors of the two systems. Moreover, the Bland-Altman analysis was employed to evaluate the consistency of the two systems.Results:The 6DoF setup errors of CBCT were within the clinical tolerance (linear motions: -0.30 to 0.30 cm; rotational motions: -2.0° to 2.0°). The setup time and repositioning frequency of CBCT were (98 ± 31) s and 1.51% (2/132), respectively. There was no significant difference in setup errors between the two systems except those in x-axis ( Z = -3.11, P= 0.002), y-axis ( Z = -7.40, P<0.001), and Pitch ( Z= -4.48, P<0.001). There was a significant positive correlation between the setup errors along lateral ( rs = 0.47, P<0.001) and vertical ( rs = 0.29, P = 0.001) directions, rotation (Rtn; rs = 0.47, P<0.001), pitch (Pitch; rs = 0.28, P = 0.001) and roll (Roll; rs = 0.45, P<0.001) of the two systems. The 95% limits of agreement (95% LoA) of 6DoF setup errors were -0.12 to 0.09 cm, -0.07 to 0.17 cm, -0.19 to 0.20 cm, -1.0° to 0.9 °, -1.0° to 1.5°, and -0.9° to 1.0°, respectively. The 95% confidence interval (95% CI) of 95% LoA was -0.14 to 0.11 cm, -0.09 to 0.19 cm, -0.23 to 0.23 cm, -1.2° to 1.1°, -1.2° to 1.7°, and-1.0° to 1.1°, respectively, all of which were within the permissible error ranges. The 6DoF setup error difference of 3.41% (27/792< 5%) was beyond the 95% LoA. The maximum absolute differences of 6DoF setup errors within the 95% LoA were 0.12, 0.16, 0.19 cm, 0.9°, 1.5°, and 1.0°, respectively. Conclusions:The proposed markless setup workflow based on AlignRT combined with open-face mask immobilization for whole-course head tumor radiotherapy exhibits reasonable agreement and consistency with the patient setup using CBCT, with acceptable clinical efficiency. It can be applied to the first radiotherapy and the real-time monitoring of therapy to improve the safety and thus is of value in clinical applications.

15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-956818

ABSTRACT

Objective:To compare and analyze the differences in the setup accuracy of different immobilization method in breast cancer radiotherapy after breast-conserving surgery.Methods:A retrospective study was conducted on 60 patients who received radiotherapy after breast-conserving surgery from January to August, 2021. These patients were divided into two groups. One group consisted of 30 cases who were immobilized using a modified body thermoplastic membrane combined with a multifunction body board during the breast cancer radiotherapy and was called the modified body thermoplastic membrane group. The other group comprised 30 cases immobilized using a vacuum cushion during breast cancer radiotherapy and was referred to as the vacuum cushion group. The setup errors, 3D vector errors, the proportion of errors of > 5 mm, and the dosimetric differences in the planning target volume (PTV) and the clinical target volume (CTV) before and after simulated treatment bed moving (including the PTV_ V100, PTV_ V95, and CTV_ V95 before simulated treatment bed moving and the PTV_ V100 S, PTV_ V95 S, and CTV_ V95 S after simulated treatment bed moving) were compared between two groups. Moreover, for the modified body thermoplastic membrane group, the changes in the average setup errors at different radiotherapy stages were also analyzed. Results:A total of 369 cone-beam CT scans were conducted for 60 patients, including 195 CT scans for the modified body thermoplastic membrane group and 174 CT scans for the vacuum cushion group. The setup errors in the x, y, and z directions (right-left, anterior-posterior, and superior-inferior, respectively) of the modified body thermoplastic membrane group were (2.59±1.98) mm, (2.38±2.04) mm, and (1.45±1.16) mm, respectively, while those of the other group were (2.24±1.63) mm, (2.78±2.17) mm, and (2.70±1.88) mm, respectively. The 3D vector errors of both groups were (4.32±2.28) mm and (5.13±2.14) mm, respectively. Therefore, the setup error in direction z and the 3D vector error of the modified body thermoplastic membrane group were less than those of the vacuum cushion group ( t = -7.77, -3.41, P<0.05). Moreover, the proportion of setup errors of > 5 mm in the x direction of the vacuum cushion group was lower than that of the modified body thermoplastic membrane group ( χ2 = 7.13, P<0.05), while such proportion in the z direction of the modified body thermoplastic membrane group was lower than that of the vacuum cushion group ( χ2= 5.90, P<0.05). After the simulated treatment bed moving, the PTV_ V100 S of the modified body thermoplastic membrane group was better than that of the vacuum cushion group ( t = 2.47, P < 0.05). Furthermore, for the modified body thermoplastic membrane group, the setup errors in the x direction in the first week were higher than those in the 2-3 weeks and 4-5 weeks ( P<0.05). Conclusions:The modified body thermoplastic membrane combined with a multifunction body board yield better immobilization effects than a vacuum cushion. However, it produces high setup errors in the x direction in the first week of the radiotherapy, to which special attention should be paid.

16.
Rev. cienc. med. Pinar Rio ; 25(5): e5209, 2021. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1351913

ABSTRACT

RESUMEN Introducción: las radiaciones con fines terapéuticos han revolucionado la medicina y en especial, las tecnologías de radiación para el tratamiento del cáncer. Objetivo: determinar el margen de error de la configuración y el movimiento de órganos en la determinación de la posición del Clinical Target Volumen basadas en la tomografía computarizada de haz cónico de kilovoltaje en el tratamiento al cáncer de próstata, así como cuantificar el movimiento de los órganos durante la terapia conformal de la próstata obtenida un margen para la próstata. Métodos: investigación experimental; se asumió el método radioterápico de la adaptación día a día. Se seleccionaron los pacientes registrados de enero a abril del 2017 de Oncología Radioterápica del Hospital Universitario de la Universidad de Verona en Italia, con adenocarcinoma de próstata en estadios T1 a T4; fueron tratados mediante terapia de arco volumétrico modulado. Resultados: se utilizó la fórmula de Van Herk para encontrar el margen de la próstata, se observó que en la dirección cráneo caudal y lateral existen dispersiones pequeñas, y en la anteroposterior el grado de dispersión es más grande, lo que se relacionó con el llenado rectal, movimiento de la vejiga y peristalsis del paciente. Se encontró que los márgenes requeridos para la próstata entre CTV y PTV serían en la dirección cráneo caudal 3,3 mm, lateral 3,7 mm y anteroposterior 4,4mm. Conclusiones: la tomografía computarizada de haz cónico es una herramienta precisa para la guía de imágenes, proporciona un medio equivalente de corrección de la configuración para pacientes de próstata.


ABSTRACT Introduction: radiations with therapeutic aims have revolutionized medicine, particularly radiation technologies for the treatment of cancer. Objective: to determine the margin of errors of the configuration and the movement of organs in determining the position of Clinical Target Volume using kilovoltage cone-beam computed tomography in the treatment of prostate cancer, as well as to quantify the movement of organs during the planned therapy of prostate obtained by a margin for the prostate. Methods: an experimental research, the radio-therapeutic method on a day-to day basis was taken on. Patients registered from January to April 2017 on Cancer Radiotherapy from the University Hospital of Verona University in Italy, with prostate adenocarcinoma stages T1 to T4; and who were treated using volumetric modulated arch therapy. Results: making use of Van Herk's formula to position the margin of prostate, it was observed that in the craniocaudal and lateral direction there are small scatterings, and in the anteroposterior direction the degree of scattering is greater, being related to rectal filling, bladder movement and peristalsis of the patient. Finding the required margins for the prostate between CTV and PTV would be in the craniocaudal direction 3,3 mm, lateral 3,7 mm and anteroposterior 4,4 mm. Conclusions: cone-beam computed tomography is a precise tool to guide the images; it provides an equivalent approach of correction of the configuration for prostate cancer patients.

17.
Biomed Phys Eng Express ; 7(3)2021 04 28.
Article in English | MEDLINE | ID: mdl-33862601

ABSTRACT

Introduction. The present study aims to investigate the dosimetric and radiobiological impact of patient setup errors (PSE) on the target and organs at risk (OAR) of the cervix carcinoma stage IIB patients treated with volumetric-modulated arc therapy (VMAT) delivery technique using plan uncertainty parameters module of Varian Eclipse treatment planning system and in-house developed DVH Analyzer program.Materials and Methods. A total of 976 VMAT plans were generated to simulate the PSE in the base plan that varies from -10 mm to 10 mm in a step size of 1 mm in x- (lateral), y- (craniocaudal), and z- (anteroposterior) directions. The different OAR and tumor (PTV) volumes were delineated in each case. Various plan quality metrics, such as conformity index (CI) and homogeneity index (HI), as well as radiobiological quantities, such as tumor control probability (TCP) and normal tissue control probability (NTCP), were calculated from the DVH bands generated from the cohort of treatment plans associated with each patient case, using an in-house developed 'DVH Analyzer' program. The extracted parameters were statistically analyzed and compared with the base plan's dosimetric parameters having no PSE.Results. The maximum variation of (i) 2.4%, 21.5%, 0.8%, 2.5% in D2ccof bladder, rectum, small bowel and sigmoid colon respectively; (ii) 19.3% and 18.9% in Dmaxof the left and right femoral heads (iii) 16.9% in D95%of PTV (iv) 12.1% in NTCP of sigmoid colon were observed with change of PSE in all directions. TCP was found to be considerably affected for PSEs larger than 4 mm in x+, y+, z+directions and 7 mm in x-, y-and z-directions, respectively.Conclusion. This study presents the effect of PSE on TCP and NTCP for the cervix carcinoma cases treated with VMAT technique and also recommends daily image guidance to mitigate the effects of PSE.


Subject(s)
Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Female , Humans , Neoplasm Staging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Uncertainty , Uterine Cervical Neoplasms/radiotherapy
18.
Cancer Radiother ; 25(2): 161-168, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33454191

ABSTRACT

PURPOSE: The aims of this study were: determination of the CTV to PTV margins for prostate and pelvic lymph nodes. Investigation of the impact of registration modality (pelvic bones or prostate) on the CTV to PTV margins of pelvic lymph nodes. Investigation of the variations of bladder and rectum over the treatment course. Investigation of the impact of bladder and rectum variations on prostate position. PATIENTS AND METHODS: This study included 15 patients treated for prostate adenocarcinoma. Daily kilo voltage images and weekly CBCT scans were performed to assess prostate displacements and common and external iliac vessels motion. These data was used to calculate the CTV to PTV margins using Van Herk equation in the setting of a daily bone registration. We also compared the CTV to PTV margins of pelvic lymph nodes according to registration method; based on pelvic bone or prostate. We delineated bladder and rectum on all CBCT scans to assess their variations over treatment course at 4 anatomic levels [1.5cm above pubic bone (PB), superior edge, mid- and inferior edge of PB]. RESULTS: Using Van Herk equation, the prostate CTV to PTV margins (bone registration) were 8.03mm, 5.42mm and 8.73mm in AP, ML and SI direction with more than 97% of prostate displacements were less than 5mm. The CTV to PTV margins ranged from 3.12mm to 3.25mm for external iliac vessels and from 3.12mm to 4.18mm for common iliac vessels. Compared to registration based on prostate alignment, bone registration resulted in an important reduction of the CTV to PTV margins up to 54.3% for external iliac vessels and up to 39.6% for common iliac vessels. There was no significant variation of the mean bladder volume over the treatment course. There was a significant variation of the mean rectal volume before and after the third week of treatment. After the third week, the mean rectal volume seemed to be stable. The uni- and multivariate analysis identified the anterior wall of rectum as independent factor acting on prostate motion in AP direction at 2 levels (superior edge of, mid PB). The right rectal wall influenced the prostate motion in ML direction at inferior edge of PB. The bladder volume tends toward significance as factor acting on prostate motion in AP direction. CONCLUSIONS: We recommend CTV to PTV margins of 8mm, 6mm and 9mm in AP, ML and SI directions for prostate. And, we suggest 4mm and 5mm for external and common iliac vessels respectively. We also prefer registration based on bony landmarks to minimize bowel irradiation. More CBCT scans should be performed during the first 3weeks and especially the first week to check rectum volume.


Subject(s)
Adenocarcinoma/radiotherapy , Lymph Nodes/diagnostic imaging , Prostate/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Rectum/diagnostic imaging , Urinary Bladder/diagnostic imaging , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Algorithms , Analysis of Variance , Androgen Antagonists/therapeutic use , Humans , Iliac Artery/diagnostic imaging , Iliac Vein/diagnostic imaging , Lymph Nodes/anatomy & histology , Lymphatic Irradiation/methods , Male , Organ Motion , Organs at Risk/anatomy & histology , Organs at Risk/diagnostic imaging , Pelvic Bones/anatomy & histology , Pelvic Bones/diagnostic imaging , Pelvis , Prospective Studies , Prostate/anatomy & histology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Setup Errors , Radiotherapy, Conformal , Radiotherapy, Image-Guided , Rectum/anatomy & histology , Statistics, Nonparametric , Tomography, X-Ray Computed , Tumor Burden , Urinary Bladder/anatomy & histology
19.
J Appl Clin Med Phys ; 22(1): 251-260, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33342042

ABSTRACT

Treating multiple lung lesions synchronously via single-isocenter volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) improves treatment efficiency and patient compliance. However, aligning multiple lung tumors accurately on single pretreatment cone beam CTs (CBCTs) can be problematic. Tumors misaligned could lead to target coverage loss. To quantify this potential target coverage loss due to small, clinically realistic setup errors, a novel simulation method was developed. This method was used on 26 previously treated patients with two metastatic lung lesions. Patients were treated with 4D CT-based, highly conformal noncoplanar VMAT plans (clinical VMAT) with 6MV-flattening filter free (FFF) beam using AcurosXB dose calculation algorithm with heterogeneity corrections. A single isocenter was placed approximately between the lesions to improve patient convenience and clinic workflow. Average isocenter to tumor distance was 5.9 cm. Prescription dose was 54 Gy/50 Gy in 3/5 fractions. For comparison, a plan summation (simulated VMAT) was executed utilizing randomly simulated, clinically relevant setup errors, obtained from pretreatment setup, per treatment fraction, in Eclipse treatment planning system for each of the six degrees of freedom within ± 5.0 mm and ± 2°. Simulations yielded average deviations of 27.4% (up to 72% loss) (P < 0.001) from planned target coverage when treating multiple lung lesions using a single-isocenter plan. The largest deviations from planned coverage and desired biological effective dose (BED10, with α/ß = 10 Gy) were seen for the smallest targets (<10 cc), some of which received < 100 Gy BED10. Patient misalignment resulted in substantial decrease in conformity and increase in the gradient index, violating major characteristics of SBRT. Statistically insignificant differences were seen for normal tissue dose. Although, clinical follow-up of these patients is ongoing, the authors recommend an alternative treatment planning strategy to minimize the probability of a geometric miss when treating small lung lesions synchronously with single-isocenter VMAT SBRT plans.


Subject(s)
Radiosurgery , Radiotherapy, Intensity-Modulated , Humans , Lung , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-974377

ABSTRACT

Objective The literature study the setup errors of head and neck, thoracic, abdominal and pelvic tumors by megavoltage fan-beam CT based image guidance in TOMO-HD to provide the margin enlarging from clinic target volume (CTV) to planning target volume (PTV) in treatment planning system of TOMO-HD. Methods 103 patients with head and neck (30 patients), thoracic (42 patients), abdominal and pelvic (31 patients) carcinoma were enrolled. Megavoltage fan-beam CT based image guidance in tomotherapy-HD was used to acquire CT scan before every treatment. The left-right (X), superior-inferior (Y), anterior-posterior (Z) and rotation (Fy) setup errors of patients can be obtained from the tomography image automatically restructured by the system. Calculating the systematic error and the random error in the three dimensions and check whether the setup data accord with the normal distribution or not, then acquire the data expand in the three directions. Results According to 2593 fan-beam CT scans, the shift errors (µ ± s) in X, Y, Z and Fy (rotation) of three study group were [(−0.31 ± 2.16) mm、(1.09 ± 3.56) mm、(2.36 ± 2.27) mm, (0.29 ± 0.96)°] (head and neck tumor), [(−0.98 ± 2.95) mm、(0.45 ± 6.86) mm、(3.79 ± 2.47) mm, (0.18 ± 0.60)°] (thoracic cancer) and [(−0.86 ± 2.85) mm、(−1.59 ± 6.91) mm、(5.77 ± 2.40) mm, (0.20 ± 0.68)°](abdominal and pelvic carcinoma). The systematic errors (∑) and random errors (σ) in X, Y, Z dimensions of patients with head and neck, thoracic, abdominal and pelvic tumors were (1.06 mm and 1.84 mm), (1.93 mm and 3.43 mm), (2.41 mm and 2.71 mm), (1.10 mm and 2.56 mm), (3.79 mm and 5.46 mm), (1.38 mm and 1.99 mm) and (1.39 mm and 0.87 mm), (4.98 mm and 5.69 mm), (1.19 mm and 2.05 mm), respectively. Conclusion It is recommended as a reference for image guidance in TOMO-HD according to the frequency distribution of setup errors, for patients with head and neck, chest and abdominal and pelvic tumors, the maximum range of motion in three dimensions are (5.00, 5.00, 5.00) mm, (6.63, 17.25, 16.00) mm and (6.49, 16.24, 13.60) mm.

SELECTION OF CITATIONS
SEARCH DETAIL