Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.863
Filter
1.
Article in English | MEDLINE | ID: mdl-39155638

ABSTRACT

Hierarchical microstructures are widely recognized as one of the most effective components for enhancing the performance of flexible pressure sensors. However, the rapid and controllable fabrication of pressure sensing layers with hierarchical microstructures remains a significant challenge. In this study, we propose a method that utilizes laser-induced microscale shrinkage of shape memory polymers to enable rapid and controllable fabrication of hierarchical microstructures for high-performance pressure sensing. We systematically investigate the influence of UV laser fabrication parameters on the architecture and morphology of hierarchical microstructures. A flexible pressure sensor, equipped with optimized hierarchical microstructures, exhibits a high sensitivity larger than 15 kPa-1 and excellent linearity (R2 = 0.994) in a range from 0 to 200 kPa. It features response and recovery times of 57 and 62 ms, respectively, and maintains good stability, enduring over 5,000 cycles. The laser-induced shrinkage of shape memory polymers offers an effective method for the fabrication of hierarchical microstructures, holding great potential to boost the performance of flexible pressure sensors in applications within intelligent robotics and wearable healthcare.

2.
Macromol Rapid Commun ; : e2400346, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137311

ABSTRACT

Smart materials react to external triggers by changing size, color, mechanical properties, or permeability. The next generation of smart materials will be able to not only recognize and react to external triggers but also to their dynamics. The only existing example of such a material is heating rate-sensitive polymorphous cross-linked syndiotactic polypropylene. This study presents a new principle of a heating rate-sensitive material on the example of cross-linked and fully amorphous quenchable semi-crystalline polyethylene terephthalate (x-PET). The x-PET is stretched to high elongation above its melting temperature and constrained quenched to a fully amorphous state. Then the polymer is heated to 120-170 °C with different heating rates. Due to its heating-rate sensitivity, x-PET shrinks to different stabilized lengths dependent on the heating rate. The new length can be used to read out the heating rate and to specifically answer to this by mechanically switching a process. Detailed analytics of this process reveal that amorphous stretched x-PET is starting the retraction above Tg and simultaneously stopping it by crystallization. The different rates of these processes result in the heating rate sensitivity of x-PET.

3.
Adv Sci (Weinh) ; : e2407596, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140246

ABSTRACT

Inspired by the Mimosa plant, this study herein develops a unique dynamic shape memory polymer (SMP) network capable of transitioning from hard to pliable with heat, featuring reversible actuation, self-healing, recyclability, and degradability. This material is adept at simulating the functionalities of artificial muscles for a variety of tasks, with a remarkable specific energy density of 1.8 J g-1-≈46 times higher than that of human skeletal muscle. As an intelligent manipulator, it demonstrates remarkable proficiency in identifying and handling items at high temperatures. Its suitable rate of shape recovery around human body temperature indicates its promising utility as an implant material for addressing acute obstructions. The dynamic covalent bonding within the network structure not only provides excellent resistance to solvents but also bestows remarkable abilities for self-healing, reprocessing, and degradation. These attributes significantly boost its practicality and environmental sustainability. Anticipated to promote advancements in the sectors of biomedical devices, soft robotics, and smart actuators, this SMP network represents a forward leap in simulating artificial muscles, marking a stride toward the future of adaptive and sustainable technology.

4.
Adv Mater ; : e2408324, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39097949

ABSTRACT

Shape memory polymers (SMPs) show attractive prospects in emerging fields such as soft robots and biomedical devices. Although their typical trigger-responsive character offers the essential shape-changing controllability, having to access external stimulation is a major bottleneck toward many applications. Recently emerged autonomous SMPs exhibit unique stimuli-free shape-shifting behavior with its controllability achieved via a delayed and programmable recovery onset. Achieving multi-shape morphing in an arbitrary fashion, however, is infeasible. In this work, a molecular design that allows to spatio-temporally define the recovery onset of an autonomous shape memory hydrogel (SMH) is reported. By introducing nitrocinnamate groups onto an SMH, its crosslinking density can be adjusted by light. This affects greatly the phase separation kinetics, which is the basis for the autonomous shape memory behavior. Consequently, the recovery onset can be regulated between 0 to 85 min. With masked light, multiple recovery onsets in an arbitrarily defined pattern which correspondingly enable multi-shape morphing can be realized. This ability to achieve highly sophisticated morphing without relying on any external stimulation greatly extends the versatility of SMPs.

5.
Adv Sci (Weinh) ; : e2406193, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39099450

ABSTRACT

Developing advanced engineering polymers that combine high strength and toughness represents not only a necessary path to excellence but also a major technical challenge. Here for the first time a rigid-flexible interlocking polymer (RFIP) is reported featuring remarkable mechanical properties, consisting of flexible polyurethane (PU) and rigid polyimide (PI) chains cleverly woven together around the copper(I) ions center. By rationally weaving PI, PU chains, and copper(I) ions, RFIP exhibits ultra-high strength (twice that of unwoven polymers, 91.4 ± 3.3 MPa), toughness (448.0 ± 14.2 MJ m-3), fatigue resistance (recoverable after 10 000 cyclic stretches), and shape memory properties. Simulation results and characterization analysis together support the correlation between microstructure and macroscopic features, confirming the greater cohesive energy of the interwoven network and providing insights into strengthening toughening mechanisms. The essence of weaving on the atomic and molecular levels is fused to obtain brilliant and valuable mechanical properties, opening new perspectives in designing robust and stable polymers.

6.
Sensors (Basel) ; 24(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39124019

ABSTRACT

SMA actuators are a group of lightweight actuators that offer advantages over conventional technology and allow for simple and compact solutions to the increasing demand for electrical actuation. In particular, an increasing number of SMA torsional actuator applications have been published recently due to their ability to supply rotational motion under load, resulting in advantages such as module simplification and the reduction of overall product weight. This paper presents the conceptual design, operating principle, experimental characterization and working performance of torsional actuators applicable in active rudder in aeronautics. The proposed application comprises a pair of SMA torsion springs, which bi-directionally actuate the actuator by Joule heating and natural cooling. The experimental results confirm the functionality of the torsion springs actuated device and show the rotation angle of the developed active rudder was about 30° at a heating current of 5 A. After the design and experiment, one of their chief drawbacks is their relatively slow operating speed in rudder positioning, but this can be improved by control strategy and small modifications to the actuator mechanism described in this work.

7.
Plants (Basel) ; 13(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39124196

ABSTRACT

Hygroscopic seed-scale movement is responsible for the weather-adaptive opening and closing of pine cones and for facilitating seed dispersal under favorable environmental conditions. Although this phenomenon has long been investigated, many involved processes are still not fully understood. To gain a deeper mechanical and structural understanding of the cone and its functional units, namely the individual seed scales, we have investigated their desiccation- and wetting-induced movement processes in a series of analyses and manipulative experiments. We found, for example, that the abaxial scale surface is responsible for the evaporation of water from the closed cone and subsequent cone opening. Furthermore, we tested the capability of dry and deformed scales to restore their original shape and biomechanical properties by wetting. These results shed new light on the orchestration of scale movement in cones and the involved forces and provide information about the functional robustness and resilience of cones, leading to a better understanding of the mechanisms behind hygroscopic pine cone opening, the respective ecological framework, and, possibly, to the development of smart biomimetic actuators.

8.
Adv Mater ; : e2406672, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129666

ABSTRACT

High mobility of twin boundaries in modulated martensites of Ni-Mn-Ga-based ferromagnetic shape memory alloys holds a promise for unique magnetomechanical applications. This feature has not been fully understood so far, and in particular, it has yet not been unveiled what makes the lattice mechanics of modulated Ni-Mn-Ga specifically different from other martensitic alloys. Here, results of dedicated laser-ultrasonic measurements on hierarchically twinned five-layer modulated (10M) crystals fill this gap. Using a combination of transient grating spectroscopy and laser-based resonant ultrasound spectroscopy, it is confirmed that there is a shear elastic instability in the lattice, being significantly stronger than in any other martensitic material and also than what the first-principles calculations for Ni-Mn-Ga predict. The experimental results reveal that the instability is directly related to the lattice modulations. A lattice-scale mechanism of dynamic faulting of the modulation sequence that explains this behavior is proposed; this mechanism can explain the extraordinary mobility of twin boundaries in 10M.

9.
Soft Robot ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133138

ABSTRACT

Many organisms move directly toward light for prey hunting or navigation, which is called phototaxis. Mimicking this behavior in robots is crucially important in the energy industry and environmental exploration. However, the phototaxis robots with rigid bodies and sensors still face challenges in adapting to unstructured environments, and the soft phototaxis robots often have high requirements for light sources with limited locomotion performance. Here, we report a 3.5 g soft microrobot that can perceive the azimuth angle of light sources and exhibit rapid phototaxis locomotion autonomously enabled by three-dimensional flexible optoelectronics and compliant shape memory alloy (SMA) actuators. The optoelectronics is assembled from a planar patterned flexible circuit with miniature photodetectors, introducing the self-occlusion to light, resulting in high sensing ability (error < 3.5°) compared with the planar counterpart. The actuator produces a straightening motion driven by an SMA wire and is then returned to a curled shape by a prestretched elastomer layer. The actuator exhibits rapid actuation within 0.1 s, a significant degree of deformation (curvature change of ∼87 m-1) and a blocking force of ∼0.4 N, which is 68 times its own weight. Finally, we demonstrated the robot is capable of autonomously crawling toward a moving light source in a hybrid aquatic-terrestrial environment without human intervention. We envision that our microrobot could be widely used in autonomous light tracking applications.

10.
Int J Biol Macromol ; 278(Pt 3): 134842, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39159801

ABSTRACT

Cellulose nanocrystal is a nanomaterial that has a large specific surface area, high surface energy, and high strength. As well, it is biocompatible, environmentally friendly, nontoxic, and can be extracted from biomass resources. Because of these features, cellulose nanocrystals can be used to improve the mechanical properties of polymer matrices with a shape memory effect and as a shape memory switch. In this study, a polytrimethylene ether glycol-based thermoplastic polyurethane (TPU)/cellulose nanocrystal (CNC) composite was prepared via an in-situ polymerization process to create a self-healing polymer matrix. Also, the effect of CNC doses in low concentrations (≤2 wt%) on the different properties of the resulting bio-nanocomposite was investigated. The results showed that the introduction of CNCs affects the hydrogen bonding within the polymer matrix and provides better thermal stability in the high temperature range than pure TPU. Furthermore, the samples with 0 wt%, 0.75 wt%, 1 wt%, and 2 wt% of CNC exhibited an increasing trend in tensile strength with values of 11.71 MPa, 18.95 MPa, 17.88 MPa, and 26.18 MPa, respectively, which indicates a remarkable improvement in mechanical strength. The shape memory behavior was also notably prominent in this polymer composite, where the composite containing 2 wt% of CNC showed the fastest recovery time (240 s) at 75 °C with the highest shape retention. Moreover, their flow behavior and deformation capacity were examined through rheology tests. Besides, docking simulations were conducted in silico to assess the interaction of the TPU/CNC composite with the DNA gyrase enzyme. The interaction between CNC/TPU composite and DNA gyrase was meticulously analyzed across 10 distinct conformations, yielding docking scores ranging from -6.5 Kcal/mol to -5.3 Kcal/mol. Overall, the physico-mechanical properties of the TPU/CNC composites were substantially enhanced with the incorporation of nanofillers.

11.
Article in English | MEDLINE | ID: mdl-39178220

ABSTRACT

Developing multifunctional polymers with excellent mechanical properties, outstanding shape memory characteristics, and good self-healing properties is a formidable challenge. Inspired by the woven cross-linking strategy, a series of supramolecular polyurethane (PU) with an interwoven network structure composed of covalent and supramolecular cross-linking nodes have been successfully synthesized by introducing the ureido-pyrimidinone (UPy) motifs into the PU skeleton. The best-performing sample exhibited ultrahigh strength (∼77.2 MPa) and toughness (∼312.7 MJ m-3), along with an ideal self-healing efficiency (up to 90.8% for 6 h) and satisfactory temperature-responsive shape memory effect (shape recovery rates up to 96.9%). Furthermore, it ensured recyclability. These favorable properties are mainly ascribed to the effective dissipation of strain energy due to the disassembly and reconfiguration of supramolecular nodes (i.e., quadruple hydrogen bonds (H-bonds) between UPy units), as well as the covalent cross-linking nodes that maintain the integrity of the polymer network structure. Thus, our work provides a universal strategy that breaks through the traditional contradictions and paves the way for the commercialization of high-performance multifunctional PU elastomers.

12.
Heliyon ; 10(15): e35772, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170505

ABSTRACT

Currently, the field of structural health monitoring (SHM) is focused on investigating non-destructive evaluation techniques for the identification of damages in concrete structures. Magnetic sensing has particularly gained attention among the innovative non-destructive evaluation techniques. Recently, the embedded magnetic shape memory alloy (MSMA) wire has been introduced for the evaluation of cracks in concrete components through magnetic sensing techniques while providing reinforcement as well. However, the available research in this regard is very scarce. This study has focused on the analyses of parameters affecting the magnetic sensing capability of embedded MSMA wire for crack detection in concrete beams. The response surface methodology (RSM) and artificial neural network (ANN) models have been used to analyse the magnetic sensing parameters for the first time. The models were trained using the experimental data obtained through literature. The models aimed to predict the alteration in magnetic flux created by a concrete beam that has a 1 mm wide embedded MSMA wire after experiencing a fracture or crack. The results showed that the change in magnetic flux was affected by the position of the wire and the position of the crack with respect to the position of the magnet in the concrete beam. RSM optimisation results showed that maximum change in magnetic flux was obtained when the wire was placed at a depth of 17.5 mm from the top surface of the concrete beam, and a crack was present at an axial distance of 8.50 mm from the permanent magnet. The change in magnetic flux was 9.50 % considering the aforementioned parameters. However, the ANN prediction results showed that the optimal wire and crack position were 10 mm and 1.1 mm, respectively. The results suggested that a larger beam requires a larger diameter of MSMA wire or multiple sensors and magnets for crack detection in concrete beams.

13.
J Orthop Surg Res ; 19(1): 510, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192290

ABSTRACT

BACKGROUND: Cerclage wiring is commonly used for treating fractures; however, it has several limitations, including mechanical weakness, decreased blood circulation, and technical complexity. In this study, we developed an implant using a shape memory alloy (SMA) and tested its efficacy in treating Vancouver type B1 (VB1) periprosthetic femoral fractures (PFFs) in a canine model. METHODS: The mid-diaphyseal fracture models underwent reduction via the SMA plate (SMA group) or the cerclage cable plate (cable group) method in randomly selected pelvic limbs. An intraoperative evaluation was conducted to assess the surgical time and difficulty related to implant fitting. Clinical assessments, radiography, microcomputed tomography (micro-CT), histological analysis, positron emission tomography (PET)/CT, and galvanic corrosion analysis were conducted for 52 weeks to evaluate bone healing and blood perfusion. RESULTS: The results for bone healing and blood perfusion were not significantly different between the groups (p > 0.05). In addition, no evidence of galvanic corrosion was present in any of the implants. However, the median surgical time was 75 min (range, 53-82 min) for the SMA group and 126 min (range, 120-171 min) for the cable group, which was a statistically significant difference (p = 0.0286). CONCLUSIONS: This study assessed the ability of a newly developed shape memory alloy (SMA) to treat VB1 periprosthetic femoral fractures (PFFs) in canines for over a 52-week period and revealed outcomes comparable to those of traditional methods in terms of bone healing and mechanical stability. Despite the lower surgical complexity and potential time-saving benefits of this treatment, further research is needed to confirm its efficacy.


Subject(s)
Alloys , Feasibility Studies , Femoral Fractures , Periprosthetic Fractures , Animals , Dogs , Femoral Fractures/surgery , Femoral Fractures/diagnostic imaging , Pilot Projects , Periprosthetic Fractures/surgery , Disease Models, Animal , Fracture Fixation, Internal/methods , Fracture Healing/physiology
14.
Orthop Surg ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192382

ABSTRACT

OBJECTIVE: Arthrodesis, usage of metallic implants for internal fixation, is commonly employed as the primary treatment modality for Müller-Weiss disease (MWD). Nevertheless, the efficacy of the current methods of fixation leaves room for improvement. Inadequate fixation strength and the risk of fixation failure are both critical concerns requiring attention. This study explored the clinical effects of implementing a modified fixation technique in talonavicular arthrodesis for the treatment of MWD. METHODS: A total of 14 cases diagnosed with MWD undergoing talonavicular (TN) arthrodesis from January 2021 toMarch 2023 were included in the retrospective study. The fixation method for fusion involved the use of screws, with additional support from the shape-memory alloy (SMA) staple. Relevant clinical outcomes and complications were evaluated preoperatively and postoperatively. Paired-samples t-test was used for all data comparisons. RESULTS: Radiographic evidence confirmed solid fusion, and follow-up evaluations showed satisfactory results in all cases. The American Orthopedic Foot and Ankle Society (AOFAS) scores were elevated from 32.21 ± 4.0 (range: 22-38) preoperatively to 86.5 ± 2.7 (range: 81-90) postoperatively (p < 0.001). The visual analog scale (VAS) scores declined from 7.40 ± 0.8 (range: 6-8.5) preoperatively to 1.21 ± 1.1 (range: 0-3) postoperatively (p < 0.001). The lateral Meary's angle changed from 13.50 ± 5.2 (range: 8-24) preoperatively to 4.14 ± 2.9 (range: 1-11) degrees postoperatively (p < 0.001). The calcaneal pitch angle increased from 10.07 ± 4.0 (range: 5-19) preoperatively to 14.35 ± 4.0 (range: 8-21) degrees postoperatively (p < 0.001). The talar-first metatarsal angle decreased from 11.71 ± 3.8 (range: 8-18) preoperatively to 4.28 ± 3.1 (range: 0-9) degrees postoperatively (p < 0.001). One patient was observed to experience delayed wound healing and wound infection. No nerve damage, malunion, pseudoarthrosis, or fixation failure were observed. CONCLUSION: The results indicated that the fusion of the TN joint using a combination of screws and shape memory alloy staples, could lead to favorable clinical outcomes and significantly enhance the quality of life for patients with MWD. This technique is not only safe and effective but also straightforward to perform.

15.
Nanomaterials (Basel) ; 14(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39195411

ABSTRACT

This paper investigates the impact of halloysite nanotube (HNT) content on mechanical and shape memory properties of additively manufactured polyurethane (PU)/HNT nanocomposites. The inclusion of 8 wt% HNTs increases their tensile strength by 30.4% when compared with that of virgin PU at 44.75 MPa. Furthermore, consistently significant increases in tensile modulus, compressive strength and modulus, as well as specific energy absorption are also manifested by 47.2%, 34.0%, 125% and 72.7% relative to neat PU at 2.29 GPa, 3.88 MPa, 0.28 GPa and 0.44 kJ/kg respectively. However, increasing HNT content reduces lateral strain due to the restricted mobility of polymeric chains, leading to a decrease in negative Poisson's ratio (NPR). As such, shape recovery ratio and time of PU/HNT nanocomposites are reduced by 9 and 45% with the inclusion of 10 wt% HNTs despite an increasing shape fixity ratio up to 12% relative to those of neat PU.

16.
ACS Appl Mater Interfaces ; 16(32): 42783-42793, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39087622

ABSTRACT

Most natural supporting tissues possess both exceptional mechanical strength, a significant amount of water, and the anisotropic structure, as well as nanoscale assembly. These properties are essential for biological processes, but have been challenging to emulate in synthetic materials. In an effort to achieve simultaneous improvement of these trade-off features, a hydrogen bonding-induced self-assembly strategy was introduced to create nanoporous plastic-like polymer hydrogels. Multiple hydrogen bonding-mediated networks and nanoporous orientation structures endow transparent hydrogels with remarkable mechanical robustness. They exhibit Young's modulus of up to 223.7 MPa and a breaking strength of up to 10.3 MPa, which are superior to those of most common polymer hydrogels. The uniform porous nanostructures of hydrogen-bonded hydrogels contribute to a significantly larger specific surface area compared to conventional hydrogels. This allows for the retention of high mechanical properties in environments with a high water content of 70 wt %. A rubbery stage is observed during the heating process, which can reverse and reshape the manufacture of objects with various desired 2D or 3D shapes using techniques such as origami and kirigami. Finally, as a proof-of-concept, the outstanding mechanical properties of poly(MAA-co-AA-co-NVCL) hydrogel, combined with its high water content, make it suitable for applications such as smart temperature monitors, multilevel information anticounterfeiting, and artificial muscles.

17.
Article in English | MEDLINE | ID: mdl-39131815

ABSTRACT

In the field of tissue engineering, 3D printed shape memory polymers (SMPs) are drawing increased interest. Understanding how these 3D printed SMPs degrade is critical for their use in the clinic, as small changes in material properties can significantly change how they behave after in vivo implantation. Degradation of 3D printed acrylated poly(glycerol-dodecanedioate) (APGD) was examined via in vitro hydrolytic, enzymatic, and in vivo subcutaneous implantation assays. Three APGD manufacturing modalities were assessed to determine differences in degradation. Material extrusion samples showed significantly larger mass and volume loss at 2 months, compared to lasercut and vat photopolymerization samples, under both enzymatic and in vivo degradation. Critically, melt transition temperatures of degraded PGD increased over time in vitro, but not in vivo. Histology of tissue surrounding APGD implants showed no significant signs of inflammation compared to controls, providing a promising outlook for use of 3D printed APGD devices in the clinic.

18.
Int J Biol Macromol ; 277(Pt 2): 134207, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39089549

ABSTRACT

Fluorescent 4D printing materials, as innovative materials that combine fluorescent characteristics with 4D printing technology, have attracted widespread interest and research. In this study, green lignin-derived carbon quantum dots (CQDs) were used as the fluorescent module, and renewable poly(propylene carbonate) polyurethane (PPCU) was used for toughening. A new low-cost fluorescent polylactic acid (PLA) composite filament for 4D printing was developed using a simple melt extrusion method. The strength of the prepared composite was maintained at 32 MPa, while the elongation at break increased 8-fold (34 % increase), demonstrating excellent shape fixed ratio (∼99 %), recovery ratio (∼92 %), and rapid shape memory recovery speed. The presence of PPCU prevented fluorescence quenching of the CQDs in the PLA matrix, allowing the composite to emit bright green fluorescence under 365 nm ultraviolet light. The composite exhibited shear thinning behavior and had an ideal melt viscosity for 3D printing. The results obtained demonstrated the versatility of these easy-to-manufacture and low-cost filaments, opening up a novel and convenient method for the preparation of strong, tough, and multifunctional PLA materials, increasing their potential application value.


Subject(s)
Carbon , Lignin , Polyesters , Printing, Three-Dimensional , Quantum Dots , Quantum Dots/chemistry , Polyesters/chemistry , Lignin/chemistry , Carbon/chemistry , Fluorescence
19.
Carbohydr Polym ; 343: 122409, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174076

ABSTRACT

The study focuses on developing a bioactive shape memory sponge to address the urgent demand for short-term rapid hemostasis and long-term wound healing in noncompressible hemorrhage cases. A composite sponge was created by spontaneously generating pores and double cross-linking under mild conditions using biomimetic collagen fibril (BCF) and oxidized alginate (OA) as natural backbone, combined with an inert calcium source (Ca) from CaCO3-GDL slow gelation mechanism. The optimized BCF/OACa (5/5) sponge efficiently absorbed blood after compression and recovered to its original state within 11.2 ± 1.3 s, achieving physical hemostatic mechanism. The composite sponge accelerated physiological coagulation by promoting platelet adhesion and activation through BCF, as well as enhancing endogenous and exogenous hemostatic pathways by Ca2+. Compared to commercial PVA expanding hemostatic sponge, the composite sponge reduced bleeding volume and shortened hemostasis time in rat liver injury pick and perforation wound models. Additionally, it stimulated fibroblast migration and differentiation, thus promoting wound healing. It is biodegradable with low inflammatory response and promotes granulation tissue regeneration. In conclusion, this biocomposite sponge provides multiple hemostatic pathways and biochemical support for wound healing, is biologically safe and easy to fabricate, process and use, with significant potential for clinical translation and application.


Subject(s)
Alginates , Biomimetic Materials , Collagen , Hemorrhage , Hemostatics , Wound Healing , Alginates/chemistry , Alginates/pharmacology , Animals , Wound Healing/drug effects , Collagen/chemistry , Rats , Hemorrhage/drug therapy , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Hemostatics/pharmacology , Hemostatics/chemistry , Male , Rats, Sprague-Dawley , Hemostasis/drug effects , Oxidation-Reduction , Platelet Adhesiveness/drug effects
20.
Biomimetics (Basel) ; 9(8)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39194469

ABSTRACT

This research investigates the environmental sustainability and biomedical applications of shape memory polymers (SMPs), focusing on their integration into 4D printing technologies. The objectives include comparing the carbon footprint, embodied energy, and water consumption of SMPs with traditional materials such as metals and conventional polymers and evaluating their potential in medical implants, drug delivery systems, and tissue engineering. The methodology involves a comprehensive literature review and AI-driven data analysis to provide robust, scalable insights into the environmental and functional performance of SMPs. Thermomechanical modeling, phase transformation kinetics, and heat transfer analyses are employed to understand the behavior of SMPs under various conditions. Significant findings reveal that SMPs exhibit considerably lower environmental impacts than traditional materials, reducing greenhouse gas emissions by approximately 40%, water consumption by 30%, and embodied energy by 25%. These polymers also demonstrate superior functionality and adaptability in biomedical applications due to their ability to change shape in response to external stimuli. The study concludes that SMPs are promising sustainable alternatives for biomedical applications, offering enhanced patient outcomes and reduced environmental footprints. Integrating SMPs into 4D printing technologies is poised to revolutionize healthcare manufacturing processes and product life cycles, promoting sustainable and efficient medical practices.

SELECTION OF CITATIONS
SEARCH DETAIL