Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.262
Filter
1.
Glob Health Med ; 6(4): 244-250, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39219587

ABSTRACT

The aim of this study is to estimate eye lens exposure dose when handling radiopharmaceuticals and interacting with patients receiving radiopharmaceuticals, and to verify the usefulness of X-ray protective goggles in mitigating such radiation exposure using phantoms. To evaluate radiation exposure during the handling of radiopharmaceuticals, we employed a fluorescent glass dosimeter to measure the radiation doses associated with 99mTc, 123I, 131I, 111In, and 18F at distances of 30 cm and 60 cm, followed by calculation of the 3 mm dose equivalent rate (3DER). We then estimated the dose reduction rates for various scenarios, including the use of syringe shields and X-ray protective goggles with lead equivalences of 0.07, 0.15, 0.75, and 0.88 mmPb, as well as their combined application. X-ray protective goggles with lead equivalence of 0.75 mmPb outperformed those with 0.07 mmPb and 0.15 mmPb, for all radionuclides and at both source distances. X-ray protective goggles with 0.88 mmPb outperformed those with 0.75 mmPb during handling of 131I and 111In at a distance of 30 cm. In the remaining scenarios, X-ray protective goggles with 0.88 mmPb resulted in marginal reductions or no discernible additional effects. The overall shielding effect of X-ray protective goggles was less pronounced for 131I and 18F, but the combined use of a syringe shield with X-ray protective goggles with 0.75 or 0.88 mmPb improved the dose reduction rate for all scenarios. In simulating patient care, X-ray protective goggles with 0.88 mmPb demonstrated a dose reduction effect of approximately 50% or more. X-ray protective goggles could reduce the 3DER for the eye lens, and were more effective when combined with a syringe shield. It is valid to use a lead equivalence of 0.88 mmPb to fully harness the protective capabilities of X-ray shielding goggles when dealing with all five types of nuclides in clinical settings.

2.
Small ; : e2405950, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39224048

ABSTRACT

Ultralight graphene aerogels with high electrical conductivity and superelasticity are demanded yet difficult to produce. A versatile emulsion-based approach is demonstrate to optimize multiscale structure of lightweight, elastic, and conductive graphene aerogels. By constructing Pickering emulsion using graphene oxide (GO), poly (amic acid) (PAA), and octadeyl amine (ODA), micron-level close-pore structure is realized while thermal shrinkage mismatch between GO and PAA creates numerous nanowrinkles during thermal annealing. GO nanosheets are bridged by PAA-derived carbon, enhancing the structural integrity at molecular level. These multiscale structural features facilitate rapid electron transport and efficient load transfer, conferring graphene aerogels with intriguing mechanical and electromagnetic interference (EMI) shielding properties. The emulsion-based graphene aerogel with an ultralow density of ≈3.0 mg cm-3 integrates outstanding electrical conductivity, air-caliber thermal insulation, high EMI shielding effectiveness of 75.0 dB, and 90% strain compressibility with superb fatigue resistance. Intriguingly, thanks to the gel-like rheological behavior of the emulsion, ultralight graphene scaffolds with programmable geometries are obtained by 3D printing. This work provides a general approach for the preparation of ultralight and superelastic graphene aerogels with excellent EMI shielding properties, showing broad application prospects in various fields.

3.
Nanomicro Lett ; 16(1): 279, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225896

ABSTRACT

The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation. In addition, realizing the tunable shielding of porous shields over a wide range of wavelengths is even more challenging. In this study, the well-prepared thermoplastic polyurethane/carbon nanotubes composites were used to fabricate the novel periodic porous flexible metamaterials using fused deposition modeling 3D printing. Particularly, the investigation focuses on optimization of pore geometry, size, dislocation configuration and material thickness, thus establishing a clear correlation between structural parameters and shielding property. Both experimental and simulation results have validated the superior shielding performance of hexagon derived honeycomb structure over other designs, and proposed the failure shielding size (Df ≈λ/8 - λ/5) and critical inclined angle (θf ≈43° - 48°), which could be used as new benchmarks for tunable electromagnetic shielding. In addition, the proper regulation of the material thickness could remarkably enhance the maximum shielding capability (85 - 95 dB) and absorption coefficient A (over 0.83). The final innovative design of the porous shielding box also exhibits good shielding effectiveness across a broad frequency range (over 2.4 GHz), opening up novel pathways for individualized and diversified shielding solutions.

4.
Adv Mater ; : e2406145, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221543

ABSTRACT

Large-scale application of low-cost, high-safety and environment-compatible aqueous Zn metal batteries (ZMBs) is hindered by Zn dendrite failure and side reactions. Herein, highly reversible ZMBs are obtained by addition of trace D-pantothenate calcium additives to engineer a dual-functional interfacial layer, which is enabled by a bioinspired gating effect for excluding competitive free water near Zn surface due to the trapping and immobilization of water by hydroxyl groups, and guiding target Zn2+ transport across interface through carboxyl groups of pantothenate anions, as well as a dynamic electrostatic shielding effect around Zn protuberances from Ca2+ cations to ensure uniform Zn2+ deposition. In consequence, interfacial side reactions are perfectly inhibited owing to reduced water molecules reaching Zn surface, and the uniform and compact deposition of Zn2+ is achieved due to promoted Zn2+ transport and deposition kinetics. The ultra-stable symmetric cells with beyond 9000 h at 0.5 mA cm-2 with 0.5 mAh cm-2 and over 5000 h at 5 mA cm-2 with 1 mAh cm-2, and an average Coulombic efficiency of 99.8% at 1 mA cm-2 with 1 mAh cm-2, are amazingly realized. The regulated-electrolyte demonstrates high compatibility with verified cathodes for stable full cells. This work opens a brand-new pathway to regulate Zn/electrolyte interface to promise reversible ZMBs.

5.
Small ; : e2405400, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235363

ABSTRACT

The development of alternative conductive polymers for the well-known poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is of great significance for improving the stability in long-term using and high-temperature environments. Herein, an innovative PEDOT:S-ANF aqueous dispersion is successfully prepared by using sulfamic acid (SA) to modified aramid nanofibers (S-ANF) as an alternative dispersant for PSS and the subsequent in situ polymerization of PEDOT. Thanks to the excellent film forming ability and surface negative groups of S-ANF, the PEDOT:S-ANF films show comparable tensile strength and elongation to unmodified PEDOT:ANF. Meanwhile, PEDOT:S-ANF has a high conductivity of 27.87 S cm-1, which is more than 20 times higher than that of PEDOT:PSS. The film exhibits excellent electromagnetic interference (EMI) shielding and thermoelectric performance, with a shielding effectiveness (SE) of 31.14 dB and a power factor (PF) of 0.43 µW m-1K-2. As a substitute for PSS, S-ANF exhibits significant structural and physicochemical properties, resulting in excellent chemical and thermal stability. Even under harsh conditions such as immersing to 0.1 M HCl, 0.1 M NaOH, and 3.5% NaCl solution, or high temperature conditions, the PEDOT:S-ANF films still maintain exceptional EMI shielding performance. Therefore, this multifunctional conductive polymer exhibits enormous potential and even proves its reliability in extreme situations.

6.
ACS Nano ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231310

ABSTRACT

High-strength, lightweight, ultrathin, and flexible electromagnetic interference (EMI) shielding materials with a high shielding effectiveness (SE) are essential for modern integrated electronics. Herein, cellulose nanofibrils (CNFs) are employed to homogeneously disperse graphene nanoplates (GNPs) into an aramid nanofiber (ANF) network and silver nanowire (AgNW) network, respectively, producing high-performance nanopapers. These nanopapers, featuring nacre-mimetic microstructures and layered architectures, exhibited high tensile strength (601.11 MPa) and good toughness (103.56 MJ m-3) with a thickness of only 24.58 µm. Their specific tensile strength reaches 447.59 MPa·g-1·cm3, which is 1.74 times that of titanium alloys (257 MPa·g-1·cm3). The AgNW/GNP composite conductive layers exhibit an electrical conductivity of 12010.00 S cm-1, providing the nanopapers with great EMI shielding performance, achieving an EMI SE of 63.87 dB and an EMI SE/t of 25978.80 dB cm-1. The nanopapers also show reliable durability, retaining a tensile strength of 500.96 MPa and an EMI SE of 57.59 dB after 120,000 folding cycles. Additionally, they have a good electrical heating performance with a fast response time, low driving voltage, effective deicing capability, and reliable heating capacity in water. This work presents a strategy to develop a high-performance nanopaper, showing great potential for applications in electromagnetic compatibility, national defense, smart electronics, and human health.

7.
J Colloid Interface Sci ; 678(Pt A): 950-958, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39226835

ABSTRACT

The challenge of achieving high-performance electromagnetic interference (EMI) shielding films, which focuses on electromagnetic waves absorption while maintaining thin thickness, is a crucial endeavor in contemporary electronic device advancement. In this study, we have successfully engineered hybrid films based on MXene nanosheets and Fe3O4 nanoparticles, featuring intricate electric-magnetic dual-gradient structures. Through the collaborative influence of a unique dual-gradient structure equipped with transition and reflection layers, these hybrid films demonstrate favorable impedance matching, abundant loss mechanisms (Ohmic loss, interfacial polarization and magnetic loss), and an "absorb-reflect-reabsorb" process to achieve absorption-dominated EMI shielding capability. Compared with the single conductive gradient structure, the dual-gradient structure effectively enhances the absorption intensity per unit thickness, and thus reduces the thickness of the film. The optimized film demonstrates a remarkable EMI shielding effectiveness (SE) of 49.98 dB alongside an enhanced absorption coefficient (A) of 0.51 with a thickness of only 180 µm. The thin films with a dual-gradient structure hold promise for crafting absorption-dominated electromagnetic shielding materials, highlighting the potential for advanced electromagnetic protection solutions.

8.
Sci Rep ; 14(1): 20424, 2024 09 03.
Article in English | MEDLINE | ID: mdl-39227615

ABSTRACT

To ensure the safety of medical personnel in healthcare organizations, radiation-shielding materials like protective clothing are used to protect against low-dose radiation, such as scattered rays. The extremities, particularly the hands, are the most exposed to radiation. New materials that can be directly coated onto the skin would be more cost-effective, efficient, and convenient than gloves. We developed protective creams using eco-friendly shielding materials, including barium sulfate, bismuth oxide, and ytterbium oxide, to avoid harmful effects of heavy metals like lead, and tested their skin-protective effects. Particularly, the radiation-shielding effect of ytterbium oxide was compared with that of the other materials. As shielding material dispersion and layer thickness greatly affect the efficacy of radiation-shielding creams, we assessed dispersion in terms of the weight percentage (wt%). The effective radiation energy was reduced by 20% with a 1.0-mm increase in cream thickness. Ytterbium oxide had a higher radiation-shielding rate than the other two materials. A 28% difference in protective effect was observed with varying wt%, and the 45 wt% cream at 63.4 keV radiation achieved a 61.3% reduction rate. Higher content led to a more stable incident energy-reducing effect. In conclusion, ytterbium oxide shows potential as a radiation-shielding material for creams.


Subject(s)
Radiation Protection , Radiation Protection/methods , Radiation Protection/instrumentation , Bismuth/chemistry , Humans , Barium Sulfate/chemistry , Radiation-Protective Agents/pharmacology , Ytterbium/chemistry
9.
Chem Asian J ; : e202400670, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227900

ABSTRACT

The icosahedral Au135+ core is a recurrent building block in ligand-protected gold clusters involving an 8-cluster electron 1S21P6 electronic shell. Such a prototypical structure enables a spherical aromatic behavior as given by long-range magnetic shielding. Recently, the Au20(tBu3P)8 cluster featuring a contrasting cuboctahedral core with formally neutral gold atoms appears as a novel core architecture with the potential to be considered as another potential building block towards functional nanostructures. Here, we explore the ligand-core interaction and spherical aromatic characteristics of Au20(tBu3P)8, in order to provide a direct connection to classical icosahedral spherical aromatic compounds, now involving a cuboctahedral core structure. Such characteristics suggest rationalization of their robustness in terms of certain electron counts, enabling a shielding cone property in ligand-protected metallic clusters, which favors bridging organic and inorganic planar/spherical aromatic species towards the unification of the aromaticity concept and designing guidelines for further achievements.

10.
Macromol Rapid Commun ; : e2400527, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137308

ABSTRACT

With the widespread application of highly integrated electronic devices, the urgent development of multifunctional polymer-based composite materials with high electromagnetic interference shielding effectiveness (EMI SE) and thermal conductivity capabilities is critically essential. Herein, a graphene/carbon felt/polyimide (GCF/PI) composite is prepared through constructing 3D van der Waals heterostructure by heating carbon felt and graphene at high temperature. The GCF-3/PI composite exhibits the highest through-plane thermal conductivity with 1.31 W·m-1·K-1, when the content of carbon felt and graphene is 14.1 and 1.4 wt.%, respectively. The GCF-3/PI composite material achieves a thermal conductivity that surpasses pure PI by 4.9 times. Additionally, GCF-3/PI composite shows an outstanding EMI SE of 69.4 dB compared to 33.1 dB for CF/PI at 12 GHz. The 3D van der Waals heterostructure constructed by carbon felt and graphene sheets is conducive to the formation of continuous networks, providing fast channels for the transmission of phonons and carriers. This study provides a guidance on the impact of 3D van der Waals heterostructures on the thermal and EMI shielding properties of composites.

11.
Int J Biol Macromol ; 278(Pt 1): 134354, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098664

ABSTRACT

Traditional electromagnetic shielding materials are difficult to realize practical applications due to excessive fillers, poor mechanical properties, and difficulty in preservation, etc. Hydrogel is a biomaterial with good biocompatibility and sustainability, which not only can overcome the aforementioned issues, but its biomimetic hierarchical porous structure also enables multifunctional applications. In this paper, a honeycomb-like unidirectional porous wall structured hydrogel is prepared by a simple freeze-thaw cycle and salting out method. Polyvinyl alcohol (PVA) and chitosan (CS) form a double cross-linked network (DN) enhanced by MXene, resulting in excellent mechanical and flexibility. Due to the synergistic effects of MXene, water, Fe3O4, abundant interfaces and micrometer porous wall structure, the electromagnetic shielding performance is enhanced. EMI SE increases by 30.7 dB as the MXene concentration increases from 0 to 1.5 wt%, and EMI SE increases from 7.9 to 66.7 dB as the water content increases from 0 to 76 %. Besides this, we encapsulate the hydrogel into a simple sensor, the signal response is rapid, the response /recovery time is 50/100 ms respectively, and it exhibits good sensitivity (0.0187 kPa-1). Different signals are generated based on variations in pressure, which holds significant importance for the development of wearable flexible sensors and information encoding.

12.
Materials (Basel) ; 17(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39124411

ABSTRACT

Rapid advancements and proliferation of electronic devices in the past decades have significantly intensified electromagnetic interference (EMI) issues, driving the demand for more effective shielding materials. Herein, we introduce a novel two-layer graphene nonwoven fabric (2-gNWF) that shows excellent EMI shielding properties. The 2-gNWF fabric comprises a porous fibrous upper layer and a dense conductive film-like lower layer, specifically designed to enhance EMI shielding through the combined mechanisms of reflection, multiple internal reflections, and absorption of electromagnetic waves. The 2-gNWF exhibits a remarkable EMI shielding effectiveness (SE) of 80 dB while maintaining an impressively low density of 0.039 g/cm3, surpassing the performance of many existing graphene-based materials. The excellent EMI shielding performance of 2-gNWF is attributed to the multiple interactions of incident electromagnetic waves with its highly conductive network and porous structure, leading to efficient energy dissipation. The combination of high EMI SE and low density makes 2-gNWF ideal for applications that require lightweight yet effective shielding properties, demonstrating the significant potential for advanced EMI shielding applications.

13.
Polymers (Basel) ; 16(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125151

ABSTRACT

In this work, we studied the effect of bismuth oxide particle size and its attenuation capacity as a filler additive in epoxy resins. Six samples were prepared according to the amount of microparticles and nanoparticles in the sample and were coded as ERB-1, ERB-2, ERB-3, ERB-4, ERB-5, and ERB-6. One of the composite epoxies contained Bi2O3 microparticles at a 50:50 ratio (ERB-6) and was chosen as the control composite, and the number of microparticles (MPs) was gradually decreased and replaced by nanoparticles (NPs) to produce epoxy-containing Bi2O3 nanoparticles at a 50:50 ratio (ERB-1). The morphological and thermal characteristics of the studied composites were tested. The attenuation capability of the prepared composites, which is determined by the Bi2O3 particle size, was determined experimentally using a semiconductor detector, an HPGe-detector, and three different gamma-ray point sources (Am-241, Co-60, and Cs-137). The linear attenuation coefficient (LAC) of ERB-3, which contained 30% nanoparticles and 20% microparticles, had the highest value compared to the other composites at all the energies discussed, while the ERB-6 composite had the lowest value at all energies. The radiation-shielding efficiency (RSE) of the prepared samples was determined at all discussed energies; at 662 keV, the radiation-shielding efficiency values were 15.97%, 13.94%, and 12.55% for ERB-3, ERB-1, and ERB-6, respectively. The statistics also proved that the attenuation capacities of the samples containing a combination of nanoparticles and microparticles were much superior to those of the samples containing only microparticles or nanoparticles. A ranking of the samples based on their attenuation capacity is as follows: ERB-3 > ERB-4 > ERB-2 > ERB-1 > ERB-5 > ERB-6.

14.
Polymers (Basel) ; 16(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125156

ABSTRACT

This study involved the preparation of natural rubber-based composites incorporating varying proportions of heavy metals and rare earth oxides (Sm2O3, Ta2O5, and Bi2O3). The investigation analyzed several parameters of the samples, including mass attenuation coefficients (general, photoelectric absorption, and scattering), linear attenuation coefficients (µ), half-value layers (HVLs), tenth-value layers (TVLs), mean free paths (MFPs), and radiation protection efficiencies (RPEs), utilizing the Monte Carlo simulation software Geant4 and the WinXCom database across a gamma-ray energy spectrum of 40-150 keV. The study also compared the computational discrepancies among these measurements. Compared to rubber composites doped with single-component fillers, multi-component mixed shielding materials significantly mitigate the shielding deficiencies observed with single-component materials, thereby broadening the γ-ray energy spectrum for which the composites provide effective shielding. Subsequently, the simulation outcomes were juxtaposed with experimental data derived from a 133Ba (80 keV) γ-source. The findings reveal that the simulated results align closely with the experimental observations. When compared to the WinXCom database, the Geant4 software demonstrates superior accuracy in deriving radiation shielding parameters and notably enhances experimental efficiency.

15.
Prev Med Rep ; 45: 102827, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39114410

ABSTRACT

Objectives: In March 2023, all societal-level COVID-19 control measures were lifted by the Dutch government. This study was performed to understand the self-experienced burden of this new phase of COVID-19 on the perspectives and behaviors of severely immunocompromised individuals. Methods: This is an observational, descriptive, cross-sectional study in The Netherlands. An online survey was completed by severely immunocompromised individuals, to capture their general well-being (score from 1 = worst to 10 = best), mental and physical health, and daily and social activities during survey conduct and retrospectively for before onset of COVID-19. The survey was open for completion from May 24th until August 7nd, 2023. Results: Of the 236 respondents, 96.6 % had been vaccinated against COVID-19 and 24.6 % were shielding to avoid COVID-19 during survey conduct. The general well-being score for all respondents was 7.5 (±1.2 SD) before onset of the COVID-19 pandemic and 6.9 (±1.6 SD) during survey conduct (P<0.001). For the shielding group (n = 58), these scores were 7.6 (±1.0 SD) and 5.7 (±1.6 SD), respectively (P<0.001). Generally, for all questions about mental and physical health and daily and social activities, there was a trend towards more negative answers during survey conduct, compared with before onset of the COVID-19 pandemic, which was more pronounced for the shielding group. Conclusions: Despite absence of government-imposed societal measures, COVID-19 avoidance still had a self-experienced burden on perspectives and behaviors of immunocompromised individuals in The Netherlands, with a significantly lower general well-being during survey conduct, compared with before onset of COVID-19.

16.
Adv Sci (Weinh) ; : e2406758, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116320

ABSTRACT

Transparent electromagnetic interference (EMI) shielding is highly desired in specific visual scenes, but the challenge remains in balancing their EMI shielding effectiveness (SE) and optical transmittance. Herein, this study proposed a directionally aligned silver nanowire (AgNW) network construction strategy to address the requirement of high EMI SE and satisfactory light transmittance using a rotation spraying technique. The orientation distribution of AgNW is induced by centrifugal inertia force generated by a high-speed rotating roller, which overcomes the issue of high contact resistance in random networks and achieves high conductivity even at low AgNW network density. Thus, the obtained transparent conductive film achieved a high light transmittance of 72.9% combined with a low sheet resistance of 4.5 Ω sq-1 and a desirable EMI SE value of 35.2 dB at X band, 38.9 dB in the K-band, with the highest SE of 43.4 dB at 20.4 GHz. Simultaneously, the excellent conductivity endowed the film with outstanding Joule heating performance and defogging/deicing ability, ensuring the visual transparency of windows when shielding electromagnetic waves. Hence, this research presents a highly effective strategy for constructing an aligned AgNW network, offering a promising solution for enhancing the performance of optical-electronic devices.

17.
Small ; : e2405487, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092672

ABSTRACT

Practical utilization of zinc-iodine (Zn-I2) batteries is hindered by significant challenges, primarily stemming from the polyiodide shuttle effect on the cathode and dendrite growth on the anode. Herein, a feasible redox-active electrolyte has been introduced with tetraethylammonium iodide as an additive that simultaneously addresses the above mentioned challenges via polyiodide solidification on the cathode and the electrostatic shielding effect on the anode. The tetraethylammonium (TEA+) captures water-soluble polyiodide intermediates (I3 -, I5 -), forming a solid complex at the cathode, thereby suppressing capacity loss during charge/discharge. Furthermore, the TEA+ mitigates dendrite growth on the Zn anode via the electrostatic shielding effect, promoting uniform and compact Zn deposition at the anode. Consequently, the Zn||Zn symmetric cell demonstrates superior cycling stability during Zn plating/stripping over 4,200 h at 1 mA cm-2 and 1 mAh cm-2. The Zn||NiNC full-cell exhibits a stable capacity retention of 98.4% after 20 000 cycles (>5 months) with near-unity Coulombic efficiency at 1 A g-1. The study provides novel insights for establishing a new direction for low-cost, sustainable, and long-lifespan Zn-I2 batteries.

18.
Nanomaterials (Basel) ; 14(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39120396

ABSTRACT

The increasing reliance on electronic technologies has elevated the urgency of effective electromagnetic interference (EMI) shielding materials. This review explores the development and potential of magnetite-incorporated one-dimensional (1D) carbon nanostructure hybrids, focusing on their unique properties and synthesis methods. By combining magnetite's magnetic properties with the electrical conductivity and mechanical strength of carbon nanostructures such as carbon nanotubes (CNTs) and carbon fibers (CFs), these hybrids offer superior EMI shielding performance. Various synthesis techniques, including solvothermal synthesis, in situ growth, and electrostatic self-assembly, are discussed in detail, highlighting their impact on the structure and properties of the resulting composites. This review also addresses the challenges in achieving homogeneous dispersion of nanofillers and the environmental and economic considerations of large-scale production. The hybrid materials' multifunctionality, including enhanced mechanical strength, thermal stability, and environmental resistance, underscores their suitability for advanced applications in aerospace, electronics, and environmental protection. Future research directions focus on optimizing synthesis processes and exploring new hybrid configurations to further improve electromagnetic properties and practical applicability.

19.
Small ; : e2402938, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113331

ABSTRACT

With the rapid development of electronic industry, it's pressing to develop multifunctional electromagnetic interference (EMI) shielding materials to ensure the stable operation of electronic devices. Herein, multilayered flexible PEG@PAN/MXene (Ti3C2Tx)/PVDF@SiO2 (PMF) composite film has been constructed from the level of microstructure design via coaxial electrospinning, coating spraying, and uniaxial electrospinning strategies. Benefiting from the effective encapsulation for PEG and high conductivity of MXene coating, PEG@PAN/MXene composite film with MXene coating loading density of 0.70 mg cm-2 exhibits high thermal energy storage density of 120.77 J g-1 and great EMI shielding performance (EMI SE of 34.409 dB and SSE of 49.086 dB cm3 g-1) in X-band (8-12 GHz). Therefore, this advanced composite film can not only help electronic devices prevent the influence of electromagnetic pollution in the X-band but also play an important role in electronic device thermal management. Additionally, the deposition of nano PVDF@SiO2 fibers (289 ± 128 nm) endowed the PMF composite film with great hydrophobic properties (water contact angle of 126.5°) to ensure the stable working of hydrophilic MXene coating, thereby breaks the limitation of humid application environments. The finding paves a new way for the development of novel multifunctional EMI shielding composite films for electronic devices.

20.
Sci Rep ; 14(1): 18046, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103407

ABSTRACT

Rice straw is considered an agricultural waste harmful to the environment, which is abundant in most parts of the world. From this point, the present study is devoted to preparing new composites of two types of glue based on rice straw as a plentiful, low-cost matrix. Straw glue samples were prepared by mixing 20% wt. of rice straw with 80% wt. of animal glue (RS-An) and polyvinyl acetate (RS-PVAC) at different thicknesses of 1, 2, and 3 cm. The chemical composition of the prepared samples was identified by energy dispersive X-ray analysis and their morphology was examined using a scanning electron microscope. The mechanical test explored that RS-An and RS-PVAC respectively required a stress of 25.2 and 25.5 MPa before reaching the breaking point. γ-ray shielding performance was analyzed and determined at numerous photon energies from 0.059 to 1.408 MeV emitted from five-point γ-rays sources using NaI (Tl). Linear attenuation coefficient was calculated by obtaining the area under the peak of the energy spectrum observed from Genie 2000 software in the presence and absence of the sample. The experimental results of mass attenuation coefficient were compared with theoretical data of XCOM software with relative deviation ranging from 0.10 to 2.99%. Geant4 Monte Carlo simulation code was also employed to validate the experimental results. The relative deviation of XCOM and Geant4 outcomes was 0.09-1.77%, which indicates a good agreement between them. Other radiation shielding parameters such as half value layer (HVL), tenth value layer, and mean free path were calculated in three ways: experimentally, theoretically from the XCOM database, and by simulation using Geant4 code. Additionally, effective atomic number (Zeff), effective atomic number (Neff), equivalent atomic number (Zeq), and buildup factors were evaluated. It was confirmed that the γ-ray shielding properties were further boosted by mixing rice straw with the animal glue compared to the synthetic one.

SELECTION OF CITATIONS
SEARCH DETAIL