Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Heliyon ; 10(14): e34426, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39082027

ABSTRACT

Silica sand is an essential industrial mineral composed predominantly of quartz, formed through the weathering of rocks. In Ethiopia, silica deposits are geologically widespread, including the Lemi area in the Blue Nile Basin. This study investigates the physicochemical and mineralogical properties of silica sand from the Lemi region to determine its suitability for industrial applications. Samples from four villages in Lemi were collected, prepared, and analyzed using various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), grain size analysis, bulk density measurement, and geochemical analysis. The results indicate that Lemi silica sand is predominantly composed of medium-sized, well-sorted, sub-rounded to rounded quartz grains with high silica purity (average SiO2 content of 96.13 %). Mineralogical analysis confirms high crystallinity and a low presence of contaminants. The grain size distribution and bulk density of Lemi silica sand meet industry standards for glass, foundry, and abrasive applications. Comparative analysis shows that Lemi silica sand has comparable or superior qualities to other Ethiopian deposits, making it a promising resource for industrial use. The study estimates a total resource of approximately 6.94 billion tons of silica sand in the Lemi area, highlighting its significant economic potential.

2.
Materials (Basel) ; 17(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38894014

ABSTRACT

Permeable pavement is a technology that allows rainwater to infiltrate into the pavement. Permeable pavements not only help reduce surface runoff by allowing rainwater to infiltrate into the pavement, but also improve water quality with the filter layer that removes particulate matter pollutants. This study evaluated the particulate matter removal efficiency of bottom ash-sand mixtures as filter layers for removing fine (≤10 µm) or ultrafine (≤2.5 µm) particulate matter in the laboratory. Five filter media were tested: silica sand, bottom ash, and bottom ash-sand mixtures with 30:70, 50:50, and 70:30 ratios. The mixed filters exhibited more consistent and stable particulate matter removal efficiency over time than either the uniform sand or bottom ash filter. The 50:50 bottom ash-sand mixture demonstrated removal rates of 58.05% for 1.8 µm particles, 93.92% for 10 µm particles, and 92.45% for 60 µm particles. These findings highlight the potential of bottom ash-sand mixtures as effective filter media for removing PM10 road dust, although field validation with actual pavement systems is necessary.

3.
Materials (Basel) ; 17(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793277

ABSTRACT

To reduce drying shrinkage of AASC mortar (AASM), mixed aggregate mixed with river sand (RS) and silica sand in three sizes was used to investigate the effect of the physical properties of mixed aggregate on shrinkage reduction. A mixture of river sand (0.2-0.8 mm), S1 (2.5-5.0 mm), S2 (1.6-2.5 mm), and S3 (1.21-160 mm) had river sand-silica sand mean diameter ratios (dr) of 7.68 (S1/RS), 3.75 (S2/RS), and 3.02 (S3/RS). The compressive strength and drying shrinkage characteristics of mixed aggregates according to fineness modulus, surface area, bulk density, and pore space were investigated. It had the highest bulk density and lowest porosity at a substitution ratio of 50%, but the highest strength was measured at a substitution ratio of 50% or less. High mechanical properties were shown when the fineness modulus of the mixed aggregate was in the range of 2.25-3.75 and the surface area was in the range of 2.25-4.25 m2/kg. As the substitution rate of silica sand increased, drying shrinkage decreased. In particular, the drying shrinkage of RS + S1 mixed aggregate mixed with S1 silica sand, which had the largest particle size, was the smallest. When silica sand or river sand was used alone, the drying shrinkage of the sample manufactured only with S1, which has the largest particle size of silica sand, was the smallest among all mixes. Compared to RS, at a 5% activator concentration, drying shrinkage was reduced by approximately 40% for S1, 27% for S2, and 19% for S3. At a 10% concentration, S1 showed a reduction effect of 39%, S2 by 28%, and S3 by 13%. As a result of this study, it was confirmed that the drying shrinkage of AASM could be reduced simply by controlling the physical properties of the aggregate mixed with two types of aggregate. This is believed to have a synergistic effect in reducing drying shrinkage when combined with various reduction methods published in previous studies on AASM shrinkage reduction. However, additional research is needed to analyze the correlation and influencing factors between the strength, pore structure, and drying shrinkage of AASM using mixed aggregate.

4.
Heliyon ; 10(4): e25623, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38370199

ABSTRACT

Sandblasting waste is a by-product obtained from the ship maintenance industry which is rich in silica content. This waste has a smaller particle size compared with typical sand and contains a high prevalence of impurities, so it is categorized as toxic and hazardous materials based on Indonesian Law. Furthermore, it also has not been efficiently harnessed, with most of it being relegated to disposal in waste landfills. To solve those problems, this research aimed to reduce the waste by reuse and recycle the sandblasting waste. In this study, the Pulverized Sandblasting Waste (PSW) used as additives in concrete mortars. Prior to use as an additive in mortar, the sandblasting waste was pretreated using chemical and mechanical processes. The mechanical pre-treatment was performed by pulverization for 8 and 12 h, later called PSW8h and PSW12h, respectively. Eleven mixture proportions were designed with constant Cement and w/c ratio. The PSW was added to the mortar specimens with a percentage of 0-5% from the weight of Cement as an additive. The test performed in this study includes compressive strength, Strength Activation Index (SAI), porosity, water absorption, and flexural test. The experimental results show that adding PSW into the mortar can enhance compressive and flexural strength. Furthermore, the results indicate that mortar with PSW has significantly lower porosity and water absorption than the control mixture. Using PSW with finer particle size shows better results in mechanical and durability properties of mortar, especially in concrete compressive and flexural strength.

5.
Materials (Basel) ; 16(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37959458

ABSTRACT

The environmental impacts of cement manufacturing are becoming a real-time issue that requires attention. This paper investigates the mechanical and physical properties of mortars with finely ground sand as a substitute for cement. The experimental program consisted of three silica sands with a Blaine Specific Surface (BSS) area of 459 m2/kg, 497 m2/kg, and 543 m2/kg and four substitution ratios of 10%, 20%, 30%, and 40%. A total of 12 mixtures have been prepared and tested for comparison to the reference mortar. The pozzolanic effect of the sand was evaluated using thermogravimetric analysis (TGA). The results revealed that the fineness variation from 459 m2/kg to 543 m2/kg resulted in an increase of 20% and 30% in water absorption and compressive strength, respectively. However, increasing the substitution ratio from 10% to 40% led to a 40% decrease in mechanical strength and a 25% increase in water absorption. The statistical analysis of the results demonstrated that both factors under study influenced compressive strength and water absorption. The ANalysis of VAriance (ANOVA) confirmed that the proposed regression equations predict the experimental results. Further studies will investigate both the technical and environmental performances of cement mortars with finely ground silica sand.

6.
Environ Sci Pollut Res Int ; 30(7): 17226-17244, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36194330

ABSTRACT

Here, silica sand-supported heterojunction composite of nano zinc oxide (nZnO) and graphene oxide nanosheet (nZnO-GO@SS) was prepared, and its potential as an efficient photocatalyst for the degradation of methylene blue (MB) and Rhodamine-B (Rh-B) under sunlight was demonstrated. Transmission electron microscopy confirmed the uniform distribution of spherically shaped nZnO of average size of approximately 8 nm over graphene oxide nanosheet (GO) in the composites. Photodegradation yields of 95.3% and 97.5% for 100 ppm of MB and Rh-B dye within 150 and 220 min, respectively, were achieved under sunlight by the prepared nanocatalyst (nZnO-GO), while sand microparticle-supported nanocatalyst (nZnO-GO@SS) demonstrated faster degradation of MB and Rh-B, i.e., within 120 and 160 min, respectively. Furthermore, when the recyclability of the photocatalyst was studied, the nZnO-GO exhibited more than 80% degradation efficiency after five cycles for both the dyes and nZnO-GO@SS demonstrated 10% higher (~90%) removal capability after five cycles of reuse. Furthermore, the antibacterial assay showed complete inactivation of Escherichia coli and Staphylococcus aureus bacterial strain by nZnO-GO@SS. Hence, our proposed strategy for the removal of toxic dyes from the aquatic environment under sunlight proved that sand microparticle-supported nanocatalyst (nZnO-GO@SS) might be a superior, cost-effective, and suitable photocatalytic system for industrial applications toward toxic dye removal and decontamination from industrial wastewater.


Subject(s)
Zinc Oxide , Zinc Oxide/pharmacology , Sunlight , Silicon Dioxide , Sand , Azo Compounds , Anti-Bacterial Agents/pharmacology , Coloring Agents
7.
Materials (Basel) ; 15(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36079561

ABSTRACT

In the foundry industry, silica sands are the most commonly used type of sands for the production of sand foundry moulds using various types of binders. Their greatest disadvantage is their significant volume changes at elevated temperatures, which are associated with the formation of many foundry defects from stress, such as veining, and thus have a direct influence on the final quality of the casting. In the case of non-silica sands and synthetic sands, the volume stability is more pronounced, but this is accompanied by a higher purchase price. Therefore, a combination of silica sand and synthetic sand CERABEADS is considered in order to influence and reduce the thermal expansion. The hybrid mixtures of sands, and their most suitable ratios, were evaluated in detail using sieve analysis, log W and cumulative curve of granularity. It was found that the addition of 50% CERABEADS achieves a 32.2% reduction in dilatation but may increase the risk of higher stresses. The measurements showed a significant effect of the granulometric composition of the sand on the resulting thermal expansion, where the choice of grain size and sorting can achieve a significant reduction in dilatation with a small addition of CERABEADS.

8.
R Soc Open Sci ; 9(8): 220150, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35958090

ABSTRACT

The influence of microstructure of silica-enhanced cement on the mechanical performance of cement is difficult to describe. In this study, we used the scanning electron microscope and image processing method to investigate the relationship between the complicity of cement microstructure and compressive strength under various temperatures and curing times. Fractal dimension was applied to describe the complicity of silica-enhanced cement. The relationships among compressive strength, fractal dimension, temperature, curing time and pore structure of cement were identified. The results show that curing time directly controls the complicity of microstructure of silica-enhanced cement and compressive strength by altering the pore orientation and macropore ratio in silica-enhanced cement. The curing temperature affects the complicity of cement microstructure and compressive strength indirectly by changing the ratio of micropore and small pore. The fractal dimension of silica-enhanced cement shows good correlation with compressive strength. Pore size distribution is the most important factor that influences the complicity of cement matrix and compressive strength of silica-enhanced cement. When building up the macroscopic mechanical performance model of silica-enhanced cement, we should consider the influence of pore size distribution in cement under different curing temperatures and times on the complicity of cement microstructure.

9.
Heliyon ; 8(8): e10233, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36042729

ABSTRACT

Sand that comprises high purity silica grains, in large percent, is of the best naturally occurring grains that can be used as proppants during hydraulic fracturing processes. Proppants are used to increase formations' permeability; to increase reservoirs' productivity, or to reopen plays and utilize unconventional reservoirs. The potentiality of these grains to be used as frac proppants is determined according to certain physical, mechanical, petrographical and chemical evaluations that include particle size analysis, acid solubility, turbidity, bulk density, crush resistance and hardness, sphericity and roundness, mineral and chemical composition. This study shows the evaluation of the silica sand samples collected from Malha Formation in Wadi El Dakhal, Eastern Desert; Naqus Formation in Wadi Qena, Eastern Desert; and Bahariya Formation at Gabal El-Dist area in Bahariya Oasis, Western Desert, Egypt. The samples were examined according to frac sand international standards. The results showed the potentiality of the tested samples to be utilized as frac sand proppants. Wadi El-Dakhal and Wadi Qena studied areas possess very promising samples for frac sand production. But, the quality of Wadi El-Dakhal samples is somewhat better than that of Wadi Qena samples. The samples of Gabal El-Dist in Bahariya Oasis are relatively less to achieve the requirements; however, they can be utilized in shallow depths. The assessment testing of the studied samples revealed a good results and verifying the standard requirements, where SiO2 content is 89.1% in Wadi Qena, 99.3 % in Wadi Dakhal and 78.1% in Gebel El Dist, crush resistance at 5000 psi gives fine percent 4.71 W.Q, 6.78 W.D, and 14.11 B.O, turbidity readings raining from 100.5 to 133.25 NTU, the grain roundness are rounded to sub rounded, and grain size distribution range is 30/50 to 40/70 grading (710 um to 210 um).

10.
Materials (Basel) ; 15(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35888259

ABSTRACT

The present work aims to determine the influence of Glass Fiber-Reinforced Polymer (GFRP) laminating configuration in heat generation during the dry edge trimming process. Temperature measurement experiments were conducted on pure epoxy matrix, 15% unidirectional glass fiber reinforced epoxy, and 28% silica sand-filled GFRP specimens through eight type-K thermocouples evenly distributed along the trim plans and connected to a data acquisition system. Infrared thermographic measurements were also conducted to investigate the tool temperature evolution while processing. It was found that perpendicular fiber edge milling induces a sharp increase with peak temperature measurements reaching 119 °C, while machining parallel to fiber leads to a maximum temperature history of 41 °C, which is very close to that obtained from the pure epoxy test. It was also found that the addition of silica sand grains in the GFRP matrix reduces both tool and specimen temperature magnitudes up to 67% for 90° plies and 14% for 0° plies compared to silica sand-free composite initial values. The heat partition was calculated from the measured (electric) and estimated energies for the tool, the workpiece, and chips, respectively. It appears from predictions that the addition of silica sand grains increases the heat conductivity of the GFRP materials (with rates of 20% for 0° fiber orientation and 10% for 90° fiber direction), while it reduces that conducted to the milling tool. Scanning Electron Microscopy (SEM) inspections helped detect the dominating machining defects relative to each GFRP configuration and explained the heat generation and dissipation effects in light of peak temperature measurements.

11.
Polymers (Basel) ; 14(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35631828

ABSTRACT

Geopolymer foams are excellent materials in terms of mechanical loads and fire resistance applications. This study investigated the foaming process of geopolymers and foam stability, with a focus on the fire resistance performance when using polystyrene as the base layer. The main purpose is to define the influence of porosity on the physical properties and consequently to find applications and effectiveness of geopolymers. In this study, lightweight materials are obtained through a process called geopolymerization. Foaming was done by adding aluminum powder at the end of the geopolymer mortar preparation. The interaction between the aluminum powder and the alkaline solution (used for the binder during the mixing process) at room temperature is reactive enough to develop hydrogen-rich bubbles that increase the viscosity and promote the consolidation of geopolymers. The basic principle of thermodynamic reactions responsible for the formation of foams is characterized by hydrogen-rich gas generation, which is then trapped in the molecular structure of geopolymers. The geopolymer foams in this study are highly porous and robust materials. Moreover, the porosity distribution is very homogeneous. Experimental assessments were performed on four specimens to determine the density, porosity, mechanical strength, and thermal conductivity. The results showed that our geopolymer foams layered on polystyrene boards (with optimal thickness) have the highest fire resistance performance among others. This combination could withstand temperatures of up to 800 °C for more than 15 min without the temperature rising on the insulated side. Results of the best-performing geopolymer foam underline the technical characteristics of the material, with an average apparent density of 1 g/cm3, a volume porosity of 55%, a thermal conductivity of 0.25 W/mK, and excellent fire resistance.

12.
J Hazard Mater ; 434: 128777, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35462124

ABSTRACT

The use of surfactant foam for the remediation of diesel fuel, a Light Non-Aqueous Phase Liquid (LNAPL), was investigated in sand column experiments using X-ray Computed Tomography (CT). A preliminary series of tests were carried out on six surfactant candidates in order to measure their physical properties, including critical micelle concentrations and interfacial tensions (IFT) with the LNAPL. Batch tests for foam stability were carried out with and without added LNAPL, in order to measure the half-life of foam columns produced with each surfactant candidate. Foam flow-rate co-injection tests were carried out for each surfactant candidate in 405 cm3 sand columns contaminated with LNAPL at residual saturation. These tests revealed that a 1:1 mixture of sodium dodecyl sulfate and cocamidopropyl betaine, injected at a total volumetric flow-rate (Qfoam) of 45 mL/min, resulted in successful generation and propagation of foam within the contaminated porous medium. Finally, two sand column tests, carried out respectively under high- and low-pressure conditions, were imaged with a CT-scanner in order to compare and contrast foam morphology evolution as well as the LNAPL desaturation dynamics involved in both scenarios. The saturation profiles extracted from CT images provided valuable new insights.


Subject(s)
Soil Pollutants , Soil , Aerosols , Gasoline , Sand , Soil Pollutants/analysis , Surface-Active Agents , Tomography, X-Ray Computed
13.
Microorganisms ; 10(2)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35208930

ABSTRACT

Macroalgae-associated bacteria play an important role in their algal hosts' biological processes. They are localized on surfaces of the host thalli, as well as between and even within algal cells. To examine the differences in community structures and functions between epi- and endo- bacteria, an effective approach for maximizing epiphyte removal from delicate seaweeds while retaining endophyte fidelity must be developed. In this study, a variety of surface sterilization methods for Ulva prolifera were compared, including mechanical, chemical, and enzymatical treatments. According to the results of scanning electron microscope (SEM) and denaturing gradient gel electrophoresis (DGGE) analysis, almost complete removal of epiphytic bacteria on Ulva was obtained simply by co-vortex of seaweeds with silica sands, causing minimal disturbance to endosymbionts when compared to previous published methods. In addition, the adaptability was also confirmed in additional U. prolifera strains and Ulva species with blade-like or narrow tubular thallus shapes. This easy mechanical method would enable the analysis of community composition and host specificity for Ulva-associated epi- and endo-bacteria separately.

14.
Materials (Basel) ; 16(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36614366

ABSTRACT

In the compaction process, an uneven densification of the powder through the entire height of the die is a major problem which determines the strength properties of the final product, which vary throughout the entire volume. The aim of this investigation was to determine the distribution of the forming pressure inside the die and to visualise the differences in compaction. To determine the pressure inside the die during the compaction process, the deformation on the die surface was measured by means of strain gauges. However, in order to visualise the densification of high-silica sand during the compaction process, an X-ray tomograph was used, which permits one to visualise the interior of the die. The authors developed an analytical model of how the change in internal pressure influences the change in stresses arising on the outer surface of the die, and, as a result, the friction force. It has been observed that the highest values of pressure as well as the highest concentrations of the loose medium are found closest to the punch and decrease with distance from the punch. Moreover, based on the measurements of deformation, a dependence of the pressure distribution on the value of friction forces was observed, which prompted further analysis of this phenomenon. As a result, tests to determine the coefficient of friction between the die and the loose medium were carried out. This made it possible to describe the pressure distribution inside the die, based on the pressure applied and the height of the die.

15.
Materials (Basel) ; 14(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34300722

ABSTRACT

Furan sand is one of the most commonly used chemically bonded molding materials in foundries across the world. It consists of a furfuryl alcohol-based resin and an acid-based liquid catalyst. When the molding material comes in contact with the molten metal, it undergoes a thermal shock accompanied by a certain release of volatile gases. In order to evacuate these gases, molds and cores should have optimal gas permeability values and proper venting by design. If the volatile compounds are not appropriately evacuated, they are prone to enter the melt before the first layer of solidified metal is formed which can lead to the formation of gas-related casting defects. Standard gas permeability measurements are commercially available tools used in the industry to compare and to quality control different sands, however, they only provide reference numbers without actual units. Permeability in a standard unit, m2, provides uniformity and helps the comparison of results from difference sources. In this paper, a new method using Darcy's law (prevalent in earth sciences), was adapted to measure the gas-permeability of furan samples made of silica sand with various grain size distributions. The effect of grain size distribution on the gas-permeability of furan sand samples was studied. Gas-permeability values in m2 were then correlated with mercury-porosity measurement results to bring new light on the relation between pore size, pore volume and the permeability of molding materials.

16.
Membranes (Basel) ; 10(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081169

ABSTRACT

In this study, a method for fabricating tubular ceramic membranes via extrusion using economical and locally available bentonite-silica sand and waste palm leaves was developed as a tool for conducting the necessary task of purifying water polluted with oil and suspended solid materials produced via various industrial processes. The developed tubular ceramic membranes were found to be highly efficient at separating the pollutants from water. The properties of the fabricated membrane were evaluated via mechanical testing, pore size distribution analysis, and contact angle measurements. The water contact angle of the fabricated membrane was determined to be 55.5°, which indicates that the membrane surface is hydrophilic, and the average pore size was found to be 66 nm. The membrane was found to demonstrate excellent corrosion resistance under acidic as well as basic conditions, with weight losses of less than 1% in each case. The membrane surface was found to be negatively charged and it could strongly repulse the negatively charged fine bentonite particles and oil droplets suspended in the water, thereby enabling facile purification through backwashing. The obtained ceramic membranes with desirable hydrophilic properties can thus serve as good candidates for use in ultrafiltration processes.

17.
Materials (Basel) ; 13(12)2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32560239

ABSTRACT

The investment casting process is widely used in the aerospace industry to produce complex engine parts. The article determines the properties of quartz powders, nanosilica dioxide binders, and multilayer samples of ceramic casting molds. The properties of spherical molds obtained using an alcohol-water system derived from hydrolyzed ethyl silicate (ZKE) and LUDOX PX-30 (type Q1) were compared with those obtained in water systems derived from Remasol Plus and Remasol Premium binders (type Q2). The spherical samples are composed of seven layers made with the use of an immersion-sprinkling method. To assess the properties of the molds, X-ray microscopy (µCT), scanning electron microscopy (SEM), and gas permeability analysis over a temperature range of 20-950 °C were utilized. The binder type is proven to affect the properties of the casting mold samples. The material obtained in the water system, Q2, has advantageous properties such as a high porosity and gas permeability.

18.
Int J Biol Macromol ; 149: 1285-1293, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32044372

ABSTRACT

A silica-sand/anionized-starch composite (CMS-SS) was prepared simply. CMS-SS was used as an efficient adsorbent for removal of cationic dyes [methyl blue (MB) and crystal violet (CV)] and metal ions [cupper(II), Cu(II)] from water in respective single and binary systems. Compared with the anionized-starch without silica sand, CMS-SS shows evidently improved adsorption capacities, i.e. approximately 653.31 ± 27.30, 1246.40 ± 34.10, and 383.08 ± 13.50 mg·g-1, for MB, CV, and Cu(II), respectively, ascribed to the additional carboxyl groups. The isotherms and kinetics study indicated that the Langmuir model and the pseudo-second-order model were more suitable. The adsorption process is thus a homogeneous monolayer chemisorption. The adsorptions of these three pollutants are spontaneous and exothermal processes driven by increasing entropy. The adsorption behaviors of CMS-SS have high pH dependence, and electrostatic attraction play an important role in adsorption. Dyes showed higher affinity to CMS-SS than metal ions causing a preferential adsorption of dye over Cu(II) in their aqueous mixture. This adsorbent after saturated adsorption could be rapidly separated from water due to its enlarged density after embedded silica sand; moreover, those rapidly recovered adsorbents were tried to use as new adsorbents for removal of an anionic dye from water due to the complete changes in their surface structures after saturated adsorption.


Subject(s)
Coloring Agents/isolation & purification , Copper/isolation & purification , Sand/chemistry , Silicon Dioxide/chemistry , Starch/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Gentian Violet/isolation & purification , Hydrogen-Ion Concentration , Kinetics , Methylene Blue/isolation & purification , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Temperature , Thermogravimetry , X-Ray Diffraction
19.
Water Environ Res ; 91(11): 1509-1517, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31099948

ABSTRACT

In this research, the layer-by-layer coating of silica sand surface with monolayer of graphene oxide (GO) immobilized on magnetite nanoparticles (Fe3 O4 MNPs) sublayer was investigated as a novel, low-cost, effective, and green nanocomposite material for adsorption of phenol and 2,4-dichloro-phenol (DCP). Several characterization techniques such as FTIR spectroscopy, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) were used to confirm the successful synthesis of Fe3 O4 MNPs@GO on silica. The efficiency of Fe3 O4 MNPs@GO-coated silica (SiO2 ) for the removal of the target phenolic compounds from water samples was evaluated. The maximum removal of phenol (52%) and DCP (73%) was observed using 1.0 g adsorbent, initial concentration of 12.5 mg/dm3 (for phenol) and 15 mg/dm3 (for DCP), sample volume of 10 ml (for phenol) and 15 ml (for DCP), contact time of 20 min (for phenol) and 10 min (for DCP), and pH = 5. The adsorption isotherm models of Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich as well as kinetic and intraparticle diffusion models were also examined. Eventually, SiO2 /Fe3 O4 MNPs@GO was regenerated five times for removal of examined contaminants and their removal efficiency from the water inlet of a water treatment plant was assessed. PRACTITIONER POINTS: Immobilizing monolayer of GO nanosheets on silica sands surface for the first time has been achieved. GO monolayer anchors on silica sands through Fe3 O4 nanoparticles as sublayer without using very expensive tris(hydroxymethyl) aminomethane agent. Modified silica sands are introduced as a novel and economic pollutants adsorbent, which can be used in filter sands of water treatment industry. The SiO2 /Fe3 O4 MNPs@GO significantly reduces the amount of phenol and 2,4-dichloro-phenol (DCP) as model organic pollutants from water samples.


Subject(s)
Graphite , Adsorption , Chlorophenols , Oxides , Phenol , Phenols , Silicon Dioxide
20.
J Hazard Mater ; 373: 313-320, 2019 07 05.
Article in English | MEDLINE | ID: mdl-30925391

ABSTRACT

As a regulated pollutant, fluorine compounds affect the health of millions of people all over the world. Their removal using a fluidized bed reactor (FBR) through crystallization process is a new method. Instead of chemical precipitation, which produces large amounts of sludge-containing wastewater hard to recover and treat. In this work, FBR was applied to a typical rare-earth smelting wastewater containing fluorine. Influence of different seed materials, seed size, and seed amounts on the fluorine removal and calcium fluoride recovery in the FBR were studied. When silica sand was used as the seed crystal and the amounts reached 30g, the concentration of fluorine in the actual wastewater decreased to 8.2 mg L-1 or lower. The removal efficiency of fluorine and recovery ratio of calcium fluoride were obtained as 93.79% and 89.45%, respectively. The particle size of recovered calcium fluoride was about 1.5mm. The results show that FBR with silica sand as seed crystal is a feasible and economical method for removing fluorine and recovering calcium fluoride from rare-earth industrial wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL