Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
J Diabetes Metab Disord ; 23(1): 1081-1091, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932833

ABSTRACT

Purpose: Considering inhibition of pre-adipocyte cells differentiation in adipose tissue fibrosis, we aimed to explore whether Sirt1 and Hif-1α in pre-adipocytes have a significant effect on fibrotic gene expression. Methods: 3T3-L1 pre-adipocytes were transfected with SIRT1-specific siRNA, confirmed by real-time polymerase chain reaction (RT-PCR) and western blotting. Additionally, cells were treated with varying concentrations of resveratrol and sirtinol as the activator and inhibitor of Sirt1, respectively. Involvement of Hif-1α was evaluated by treatment with echinomycin. Subsequently, we assessed the gene and protein expressions related to fibrosis in the extracellular matrix of adipose tissue, including collagen VI (Col VI), lysyl oxidase (Lox), matrix metalloproteinase-2 (Mmp-2), Mmp-9, and osteopontin (Opn) in pre-adipocytes through RT-PCR and western blot. Results: The current study demonstrated that Sirt1 knockdown and reduced enzyme activity significantly increased the expression of Col VI, Lox, Mmp-2, Mmp-9, and Opn genes in the treated 3T3-L1 cells compared to the control group. Interestingly, resveratrol significantly decreased the gene expression related to the fibrosis pathway. Inhibition of Hif-1α by echinomycin led to a significant reduction in Col VI, Mmp-2, and Mmp-9 gene expression in the treated group compared to the control. Conclusion: This study highlights that down-regulation of Sirt1 might be a predisposing factor in the emergence of adipose tissue fibrosis by enhancing the expression of extracellular matrix (ECM) components. Activation of Sirt1, similar to suppressing of Hif-1α in pre-adipocytes may be a beneficial approach for attenuating fibrotic gene expression. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-024-01389-4.

2.
Neurosci Lett ; 826: 137712, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38447888

ABSTRACT

Glaucoma is a kind of neurodegenerative disorder characterized by irreversible loss of retinal ganglion cells (RGCs) and permanent visual impairment. It is reported that resveratrol (RES) is a promising drug for neurodegenerative diseases. However, the detailed molecular mechanisms underlying its protective potential have not yet been fully elucidated. The present study sought to investigate whether resveratrol could protect RGCs and retinal function triggered by acute ocular hypertension injury through the SIRT1/NF-κB pathway. An experimental glaucoma model was generated in C57BL/6J mice. Resveratrol was intraperitoneally injected for 5 days. Sirtinol was injected intravitreally on the day of retinal AOH injury. RGC survival was determined using immunostaining. TUNEL staining was conducted to evaluate retinal cell apoptosis. ERG was used to evaluate visual function. The proteins Brn3a, SIRT1, NF-κB, IL-6, Bax, Bcl2, and Cleaved Caspase3 were determined using western blot. The expression and localisation of SIRT1 and NF-κB in the retina were detected by immunofluorescence. Our data indicated that resveratrol treatment significantly increased Brn3a-labelled RGCs and reduced RGC apoptosis caused by AOH injury. Resveratrol administration also remarkably decreased NF-κB, IL-6, Bax, and Cleaved Caspase3 proteins and increased SIRT1 and Bcl2 proteins. Furthermore, resveratrol treatment obviously inhibited the reduction in ERG caused by AOH injury. Importantly, simultaneous administration of resveratrol and sirtinol abrogated the protective effect of resveratrol, decreased NF-κB protein expression, and increased SIRT1 protein levels. These results suggest that resveratrol administration significantly mitigates retinal AOH-induced RGCs loss and retinal dysfunction, and that this neuroprotective effect is partially regulated through the SIRT1/NF-κB pathway.


Subject(s)
Benzamides , Glaucoma , Naphthols , Ocular Hypertension , Mice , Animals , Resveratrol/pharmacology , Resveratrol/therapeutic use , NF-kappa B/metabolism , Sirtuin 1/metabolism , bcl-2-Associated X Protein , Interleukin-6 , Mice, Inbred C57BL , Ocular Hypertension/drug therapy , Glaucoma/drug therapy
3.
Bioorg Med Chem Lett ; 97: 129544, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37939864

ABSTRACT

Human neutrophil elastase (HNE) overexpression has a crucial role in most acute inflammation and alpha1-antitrypsin deficiency syndromes observed in humans, triggering neutrophil invasion and activation of macrophage inflammatory and proteolytic effects, leading to tissue damage. Manipulating HNE level homeostasis could potentially help treat neutrophilic inflammation. Previous studies have shown that sirtinol (1) has a specific influence on HNE and potently attenuates acute lung injury and hepatic injury mediated by lipopolysaccharide or trauma hemorrhage. Therefore, 1 was chosen as the model structure to obtain more potent anti-HNE agents. In the present study, we synthesized a series of sirtinol analogues and determined their inhibitory effects on HNE. Structure-activity relationship (SAR) studies showed that swapping the imine and methyl groups of the sirtinol scaffold with diazene and carboxyl groups, respectively, enhances the HNE inhibiting potency. Compound 29 exhibited the highest potency in the SAR study and showed dual inhibitory effects on HNE and proteinase 3 with IC50 values of 4.91 and 20.69 µM, respectively. Furthermore, 29 was confirmed to have dual impacts on inhibiting O2•- generation and elastase release in cell-based assays with IC50 values of 0.90 and 1.86 µM, respectively. These findings suggest that 29 is a promising candidate for developing HNE inhibitors in the treatment of neutrophilic inflammatory diseases.


Subject(s)
Benzamides , Inflammation , Humans , Structure-Activity Relationship , Proteinase Inhibitory Proteins, Secretory/pharmacology
4.
Int Immunopharmacol ; 119: 110148, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37044036

ABSTRACT

BACKGROUND: Breast cancer is usually associated with metastatic features, poor prognosis, and high mortality. The epithelial-mesenchymal transition (EMT) process has been implicated in the initiation and metastasis of breast cancer. OBJECTIVE: The study aimed to investigate the possible role of montelukast (Mont), the cysteinyl leukotriene receptor (CystLT1R) antagonist, in mitigating EMT in triple-negative breast cancer (TNBC) (in vitro study) and solid Ehrlich carcinoma (SEC) bearing mice (in vivo study) as well as to clarify the underlying molecular mechanisms in the presence and absence of sirtuin-1 inhibitor (sirtinol; Sirt). METHODS: TNBC MDA-MB-231 cells were treated with either 5 µM Mont or 25 µM Sirt or both for 48 h. Alternatively, SEC cells were inoculated in mice to induce breast cancer. After 12 days, the mice were divided into four groups: Untreated SEC group (vehicle), Sirt group (1 mg/kg), Mont group (10 mg/kg), and cotreatment Sirt/Mont group. The mice groups received the assigned treatment for the consequent 16 days. RESULTS: Mont and/or Sirt decreased cell proliferation, migration and suppressed EMT in both in vitro and in vivo experiments. All treatments downregulated sirtuin-1 and vimentin expression but upregulated E-cadherin expression. Furthermore, all treatments retarded angiogenesis as evidenced by decreased VEGF expression. These findings were associated with suppressing active protein kinase B (p-AKT). CONCLUSION: Cotreatment with Sirt and Mont proved more effective anti-tumor activity in TNBC cell line and in SEC bearing mice than either treatment alone, which could be attributed to the inhibition of sirtuin-1 and AKT- activated pathways, with the subsequent inhibition of EMT.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Epithelial-Mesenchymal Transition , Sirtuin 1/metabolism , Signal Transduction , Cell Proliferation , Cell Line, Tumor , Cell Movement
5.
Metab Brain Dis ; 37(6): 1969-1976, 2022 08.
Article in English | MEDLINE | ID: mdl-35554791

ABSTRACT

NAD+-dependent histone deacetylases (sirtuins 1-7) have been shown to be involved in various pathophysiological conditions including their involvement in cardiovascular, cancerous, neurodegenerative, immune dysregulation and inflammatory conditions. This study investigates the inflammomodulatory potential of resveratrol (RES), a sirtuin activator and sirtinol (SIR), a sirtuin inhibitor in lipopolysaccharide (LPS)-induced model of sickness behaviour in mice. Male Swiss albino mice were divided into five groups (n = 6) consisting of saline (SAL), LPS, RES, SIR, and fluoxetine (FLU) respectively, each group except LPS was prepared by intraperitoneally (i.p.) administration of SAL (10 mL/kg), RES (50 mg/kg), SIR (2 mg/kg) and FLU (10 mg/kg). Thirty minutes after the treatments, all the groups, except SAL were administered LPS (2 mg/kg, i.p.). The behavioural assays including, open field test, forced swim test, and tail suspension tests were conducted 1 h after LPS challenge. LPS administration significantly reduced the locomotor activity along with inducing a state of high immobility and that was prevented by pretreatment with RES and SIR. Further, various proinflammatory cytokines (TNF-α, IL-6, and IL-1ß), and oxidative stress markers (MDA and GSH) were found to be significantly elevated in the brain homogenates after LPS treatment. SIR pretreatment abrogated the LPS-induced neuroinflammatory and oxidative stress changes, whereas RES was only effective in reducing the oxidative stress and TNF-α levels. The results of this study speculate that the role of SIRT modulators in neuroinflammatory conditions could vary with their dose, regimen and chemical properties. Further studies with detailed molecular and pharmacokinetic profiling will be needed to explore their therapeutic potentials.


Subject(s)
Antioxidants , Enzyme Inhibitors , Illness Behavior , Oxidative Stress , Resveratrol , Sirtuins , Animals , Antioxidants/pharmacology , Enzyme Inhibitors/pharmacology , Fluoxetine/pharmacology , Illness Behavior/drug effects , Illness Behavior/physiology , Lipopolysaccharides , Male , Mice , Oxidative Stress/drug effects , Resveratrol/pharmacology , Sirtuins/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
6.
Korean J Parasitol ; 60(1): 1-6, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35247948

ABSTRACT

The encystation of Acanthamoeba leads to the development of metabolically inactive and dormant cysts from vegetative trophozoites under unfavorable conditions. These cysts are highly resistant to anti-Acanthamoeba drugs and biocides. Therefore, the inhibition of encystation would be more effective in treating Acanthamoeba infection. In our previous study, a sirtuin family protein-Acanthamoeba silent-information regulator 2-like protein (AcSir2)-was identified, and its expression was discovered to be critical for Acanthamoeba castellanii proliferation and encystation. In this study, to develop Acanthamoeba sirtuin inhibitors, we examine the effects of sirtinol, a sirtuin inhibitor, on trophozoite growth and encystation. Sirtinol inhibited A. castellanii trophozoites proliferation (IC50=61.24 µM). The encystation rate of cells treated with sirtinol significantly decreased to 39.8% (200 µM sirtinol) after 24 hr of incubation compared to controls. In AcSir2-overexpressing cells, the transcriptional level of cyst-specific cysteine protease (CSCP), an Acanthamoeba cysteine protease involved in the encysting process, was 11.6- and 88.6-fold higher at 48 and 72 hr after induction of encystation compared to control. However, sirtinol suppresses CSCP transcription, resulting that the undegraded organelles and large molecules remained in sirtinol-treated cells during encystation. These results indicated that sirtinol sufficiently inhibited trophozoite proliferation and encystation, and can be used to treat Acanthamoeba infections.


Subject(s)
Acanthamoeba castellanii , Sirtuins , Animals , Benzamides , Cell Proliferation , Naphthols , Sirtuins/genetics , Sirtuins/metabolism , Trophozoites/metabolism
7.
Int J Mol Sci ; 23(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35163511

ABSTRACT

Sirtuins (SIRTs), which are nicotinamide adenine dinucleotide-dependent class III histone deacetylases, regulate cell division, survival, and senescence. Although sirtinol, a synthetic SIRT inhibitor, is known to exhibit antitumor effects, its mechanism of action is not well understood. Therefore, we aimed to assess the anticancer effects and underlying mechanism of MHY2245, a derivative of sirtinol, in HCT116 human colorectal cancer cells in vitro. Treatment with MHY2245 decreased SIRT1 activity and caused DNA damage, leading to the upregulation of p53 acetylation, and increased levels of p53, phosphorylation of H2A histone family member X, ataxia telangiectasia and Rad3-related kinase, checkpoint kinase 1 (Chk1), and Chk2. The level of the breast cancer type 1 susceptibility protein was also found to decrease. MHY2245 induced G2/M phase cell cycle arrest via the downregulation of cyclin B1, cell division cycle protein 2 (Cdc2), and Cdc25c. Further, MHY2245 induced HCT116 cell death via apoptosis, which was accompanied by internucleosomal DNA fragmentation, decreased B-cell lymphoma 2 (Bcl-2) levels, increased Bcl-2-asscociated X protein levels, cleavage of poly(ADP-ribose) polymerase, and activation of caspases -3, -8, and -9. Overall, MHY2245 induces cell cycle arrest, triggers apoptosis through caspase activation, and exhibits DNA damage response-associated anticancer effects.


Subject(s)
Cell Cycle Checkpoints/drug effects , Colorectal Neoplasms/metabolism , Naphthalenes/pharmacology , Sirtuins/antagonists & inhibitors , Apoptosis , Benzamides/chemistry , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Down-Regulation , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , HT29 Cells , Humans , Naphthalenes/chemistry , Naphthols/chemistry
8.
J Neural Transm (Vienna) ; 128(5): 631-644, 2021 05.
Article in English | MEDLINE | ID: mdl-33821324

ABSTRACT

Neuroinflammation is associated with the development of depression. Deacetylases SIRT1 and SIRT2 are reported to exert neuroprotective effects in aging, neurogenesis, neurodegeneration and neuroinflammation. Therefore, this study aimed to investigate the effects of SIRT1 and SIRT2 modulators on LPS-induced neuroinflammation and neurodegeneration in vitro. To achieve this, HAPI rat microglial cells were pre-treated with the SIRT1 activator resveratrol (0.1-20 µM), the selective SIRT1 inhibitor EX527 (0.1; 1 µM), the dual SIRT1/SIRT2 inhibitor sirtinol (0.1-20 µM) and the SIRT2 inhibitor AGK2 (0.1; 1 µM), prior to exposure with LPS (5 ng/mL) for 20 h. The reference antidepressant drug fluoxetine and the nonsteroidal anti-inflammatory drug ibuprofen were also evaluated in the same paradigm, both at 1 µM. Resveratrol and sirtinol inhibited TNF-α production to a greater degree than either fluoxetine or ibuprofen. Resveratrol, sirtinol, EX527 and AGK2 significantly reduced PGE2 production by up to 100% in microglia. Then, the supernatant was transferred to treat SH-SY5Y cells for 24 h. In all cases, SIRT modulator pretreatment significantly protected undifferentiated SH-SY5Y human neuroblastoma cells from the insult of LPS-stimulated HAPI supernatant by up to 40%. Moreover, resveratrol and sirtinol also showed significantly better neuroprotection than fluoxetine or ibuprofen by up to 83 and 69%, respectively. In differentiated SH-SY5Y cells, only sirtinol (20, 10 µM) and AGK2 (0.1 µM) pretreatment protected the cells from LPS-stimulated HAPI supernatant. This study suggests that SIRT1 and SIRT2 modulators are effective in inhibiting LPS-stimulated production of TNF-α and PGE2 in HAPI microglial cells and protecting SH-SY5Y cells from inflammation. Thus, we provide proof of concept for further investigation of the therapeutic effect of SIRT1 and SIRT2 modulators and combination with current antidepressant medication as a treatment option.


Subject(s)
Inflammation , Microglia , Sirtuin 1 , Sirtuin 2 , Animals , Cell Line, Tumor , Inflammation/chemically induced , Inflammation/drug therapy , Lipopolysaccharides/toxicity , Microglia/drug effects , Rats , Sirtuin 1/drug effects , Sirtuin 2/drug effects
9.
J Cell Mol Med ; 25(8): 3856-3869, 2021 04.
Article in English | MEDLINE | ID: mdl-33650791

ABSTRACT

Adrenocortical cancer (ACC) is a rare tumour with unfavourable prognosis, lacking an effective treatment. This tumour is characterized by IGF-II (insulin-like growth factor II) overproduction, aromatase and ERα (oestrogen receptor alpha) up-regulation. Previous reports suggest that ERα expression can be regulated by sirt1 (sirtuin 1), a nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylases that modulates activity of several substrates involved in cellular stress, metabolism, proliferation, senescence, protein degradation and apoptosis. Nevertheless, sirt1 can act as a tumour suppressor or oncogenic protein. In this study, we found that in H295R and SW13 cell lines, sirt1 expression is inhibited by sirtinol, a potent inhibitor of sirt1 activity. In addition, sirtinol is able to decrease ACC cell proliferation, colony and spheroids formation and to activate the intrinsic apoptotic mechanism. Particularly, we observed that sirtinol interferes with E2/ERα and IGF1R (insulin growth factor 1 receptor) pathways by decreasing receptors expression. Sirt1 involvement was confirmed by using a specific sirt1 siRNA. More importantly, we observed that sirtinol can synergize with mitotane, a selective adrenolitic drug, in inhibiting adrenocortical cancer cell growth. Collectively, our data reveal an oncogenic role for sirt1 in ACC and its targeting could implement treatment options for this type of cancer.


Subject(s)
Adrenal Cortex Neoplasms/pathology , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , RNA, Small Interfering/genetics , Sirtuin 1/metabolism , Adrenal Cortex Neoplasms/genetics , Adrenal Cortex Neoplasms/metabolism , Apoptosis , Humans , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/genetics , Tumor Cells, Cultured
10.
Neurochem Res ; 46(5): 1177-1187, 2021 May.
Article in English | MEDLINE | ID: mdl-33599956

ABSTRACT

Growing experimental evidences have suggested the reciprocal correlation between sleep deprivation and pain. Inflammation and oxidative stress are among the key pathways underlying this correlation. Therefore, the present study was aimed to assess the effect of antioxidant and anti-inflammatory compound naringenin (NGN) against chronic sleep deprivation (CSD)-induced mechanical and thermal hyperalgesia in female Swiss albino mice. In this study, mice were chronically sleep-deprived for 8 h a day for five days a week with the weekend as a free sleep period and continued for nine weeks using a modified multiple platform method. The pain behavioral tests were conducted at the end of the fourth week to assess the development of hyperalgesia followed by the administration of NGN and a combination of NGN with Sirtinol (SIR, a sirtuin1 inhibitor) till the end of the study. After nine weeks, pain behavioral tests, along with oxidative stress and inflammatory parameters in cortex and striatum, were assessed. Results indicated that CSD-induced hyperalgesia in mice accompanied by increased oxidative stress and inflammatory markers in cortex and striatum of the brain. NGN combatted the hyperalgesic response and also decreased levels of oxidative stress and inflammatory markers. Furthermore, the pharmacological effect of NGN was mitigated with SIR. Thus, the findings of the present study reveal that NGN is acting via sirtuin1 to exert its antinociceptive activity against CSD-induced hyperalgesia.


Subject(s)
Analgesics/therapeutic use , Flavanones/therapeutic use , Hyperalgesia/drug therapy , Sirtuin 1/metabolism , Animals , Body Weight/drug effects , Female , Hyperalgesia/etiology , Hyperalgesia/metabolism , Interleukin-6/metabolism , Mice , Oxidative Stress/drug effects , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Tumor Necrosis Factor-alpha/metabolism
11.
Front Plant Sci ; 12: 825810, 2021.
Article in English | MEDLINE | ID: mdl-35154217

ABSTRACT

Xylem vessels are indispensable tissues in vascular plants that transport water and minerals. The differentiation of xylem vessel cells is characterized by secondary cell wall deposition and programmed cell death. These processes are initiated by a specific set of transcription factors, called VASCULAR-RELATED NAC-DOMAIN (VND) family proteins, through the direct and/or indirectly induction of genes required for secondary cell wall deposition and programmed cell death. In this study, we explored novel regulatory factors for xylem vessel cell differentiation in Arabidopsis thaliana. We tested the effects of cellular stress inducers on VND7-induced differentiation of xylem vessel cells with the VND7-VP16-GR system, in which VND7 activity is post-translationally induced by dexamethasone application. We established that the histone deacetylase (HDAC) inhibitors trichostatin A (TSA) and sirtinol inhibited VND7-induced xylem vessel cell differentiation. The inhibitory effects of TSA and sirtinol treatment were detected only when they were added at the same time as the dexamethasone application, suggesting that TSA and sirtinol mainly influence the early stages of xylem vessel cell differentiation. Expression analysis revealed that these HDAC inhibitors downregulated VND7-downstream genes, including both direct and indirect targets of transcriptional activation. Notably, the HDAC inhibitors upregulated the transcript levels of negative regulators of xylem vessel cells, OVATE FAMILY PROTEIN1 (OFP1), OFP4, and MYB75, which are known to form a protein complex with BEL1-LIKE HOMEODOMAIN6 (BLH6) to repress gene transcription. The KDB system, another in vitro induction system of ectopic xylem vessel cells, demonstrated that TSA and sirtinol also inhibited ectopic formation of xylem vessel cells, and this inhibition was partially suppressed in knat7-1, bhl6-1, knat7-1 bhl6-1, and quintuple ofp1 ofp2 ofp3 ofp4 ofp5 mutants. Thus, the negative effects of HDAC inhibitors on xylem vessel cell differentiation are mediated, at least partly, by the abnormal upregulation of the transcriptional repressor complex OFP1/4-MYB75-KNAT7-BLH6. Collectively, our findings suggest that active regulation of histone deacetylation by HDACs is involved in xylem vessel cell differentiation via the OFP1/4-MYB75-KNAT7-BLH6 complex.

12.
Cancer Treat Res Commun ; 26: 100271, 2021.
Article in English | MEDLINE | ID: mdl-33341453

ABSTRACT

Worldwide prevalence of esophageal adenocarcinomas with high rates of mortality coupled with increased mutations in esophageal cells warrants investigation to understand deregulation of cell signaling pathways leading to cancer. To this end, the current study was undertaken to unravel the cell death signatures using the model human esophageal adenocarcinoma cell line-OE33. The strategy involved targeting the key epigenetic modulator SIRT1, a histone deacetylase by a small molecule inhibitor - sirtinol. Sirtinol induced a dose-dependent inhibition of cell viability under both normoxic and hypoxic conditions with long term impact on proliferation as shown by clonogenic assays. Signature apoptotic signaling pathways including caspase activation and decreased Bcl-2 were observed. Proteomic analysis highlighted an array of entities affected including molecules involved in replication, transcription, protein synthesis, cell division control, stress-related proteins, spliceosome components, protein processing and cell detoxification/degradation systems. Importantly, the stoichiometry of the fold changes of the affected proteins per se could govern the cell death phenotype by sirtinol. Sirtinol could also potentially curb resistant and recurrent tumors that reside in hypoxic environments. Overall, in addition to unraveling the cellular, molecular and proteomics basis of SIRT1 inhibition, the findings open up avenues for designing novel strategies against esophageal adenocarcinoma.


Subject(s)
Adenocarcinoma/genetics , Benzamides/pharmacology , Esophageal Neoplasms/genetics , Naphthols/pharmacology , Sirtuin 1/antagonists & inhibitors , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Apoptosis/drug effects , Apoptosis/genetics , Benzamides/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Drug Screening Assays, Antitumor , Epigenesis, Genetic/drug effects , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Naphthols/therapeutic use , Proteomics , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Sirtuin 1/metabolism
13.
Korean J Parasitol ; 58(1): 7-14, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32145722

ABSTRACT

Toxoplasma gondii is an intracellular protozoan parasite that infects approximately one third of the human popu- lation worldwide. Considering the toxicity and side effects of anti-toxoplasma medications, it is important to develop effec- tive drug alternatives with fewer and less severe off-target effects. In this study, we found that 4-hydroxybenzaldehyde (4- HBA) induced autophagy and the expression of NAD-dependent protein deacetylase sirtuin-1 (SIRT1) in primary murine bone marrow-derived macrophages (BMDMs). Interestingly, treatment of BMDMs with 4-HBA significantly reduced the number of macrophages infected with T. gondii and the proliferation of T. gondii in infected cells. This effect was impaired by pretreating the macrophages with 3-methyladenine or wortmannin (selective autophagy inhibitors) or with sirtinol or EX527 (SIRT1 inhibitors). Moreover, we found that pharmacological inhibition of SIRT1 prevented 4-HBA-mediated expres- sion of LC3-phosphatidylethanolamine conjugate (LC3-II) and the colocalization of T. gondii parasitophorous vacuoles with autophagosomes in BMDMs. These data suggest that 4-HBA promotes antiparasitic host responses by activating SIRT1- mediated autophagy, and 4-HBA might be a promising therapeutic alternative for the treatment of toxoplasmosis.


Subject(s)
Autophagy , Benzaldehydes/pharmacology , Macrophages/physiology , Sirtuin 1 , Toxoplasma/growth & development , Animals , Cells, Cultured , Depression, Chemical , Mice, Inbred C57BL
14.
mBio ; 10(4)2019 07 09.
Article in English | MEDLINE | ID: mdl-31289184

ABSTRACT

Arthropod-borne viruses are diverse pathogens and are often associated with human disease. These viruses span multiple genera, including flaviviruses, alphaviruses, and bunyaviruses. In a high-throughput drug screen, we found that tenovin-1 was antiviral against the flaviviruses Zika virus and dengue virus. Tenovin-1 is a sirtuin inhibitor, and here we found that inhibition of sirtuins, but not inhibition of the related histone deacetylases, is potently antiviral against diverse arboviruses. Sirtuin inhibitors block infection of arboviruses in multiple human cell types. We found that sirtuin inhibitors arrest infection downstream of entry but that they do so at an early step, preventing the accumulation of viral RNA and protein. However, sirtuin inhibitors had no impact on the replication of flaviviral replicons, suggesting a defect in the establishment of replication. Consistent with this, we found that sirtuin inhibitors impacted double-stranded RNA (dsRNA) accumulation during flaviviral infection. Since these viruses infect vector insects, we also tested whether sirtuin inhibitors impacted infection of adult flies and found that these inhibitors blocked infection; therefore, they target highly conserved facets of replication. Taken together, these results suggest that sirtuin inhibitors represent a new class of potent host-targeting antivirals.IMPORTANCE Arthropod-borne viruses are diverse pathogens and are associated with human disease. Through high-throughput drug screening, we found that sirtuin inhibitors are potently antiviral against diverse arboviruses, including flaviviruses such as West Nile virus, bunyaviruses such as Rift Valley fever virus, and alphaviruses such as chikungunya virus. Sirtuin inhibitors block infection of these viruses in multiple human cell types. Moreover, we found that sirtuin inhibitors arrest infection downstream of entry but that they do so at an early step, preventing the accumulation of viral RNA and protein. Since these viruses infect vector insects, we also tested whether sirtuin inhibitors impacted infection of adult flies and found that these inhibitors blocked infection; therefore, they target highly conserved facets of replication. Taken together, these results suggest that sirtuin inhibitors represent a new class of potent host-targeting antivirals.


Subject(s)
Acetanilides/pharmacology , Antiviral Agents/pharmacology , Arboviruses/drug effects , Diptera/virology , Host Microbial Interactions/drug effects , Sirtuins/antagonists & inhibitors , Thiourea/analogs & derivatives , Animals , Dengue Virus/drug effects , Diptera/drug effects , Drug Discovery , Female , HEK293 Cells , High-Throughput Screening Assays , Humans , Thiourea/pharmacology , Virus Replication/drug effects , Zika Virus/drug effects
15.
J Cell Sci ; 132(17)2019 09 02.
Article in English | MEDLINE | ID: mdl-31331964

ABSTRACT

In humans, ribosome biogenesis mainly occurs in nucleoli following two alternative pre-rRNA processing pathways differing in the order in which cleavages take place but not by the sites of cleavage. To uncover the role of the nucleolar NAD+-dependent deacetylase sirtuin 7 in the synthesis of ribosomal subunits, pre-rRNA processing was analyzed after sirtinol-mediated inhibition of sirtuin 7 activity or depletion of sirtuin 7 protein. We thus reveal that sirtuin 7 activity is a critical regulator of processing of 45S, 32S and 30S pre-rRNAs. Sirtuin 7 protein is primarily essential to 45S pre-rRNA cleavage at site 2, which is the first step of processing pathway 2. Furthermore, we demonstrate that sirtuin 7 physically interacts with Nop56 and the GAR domain of fibrillarin, and propose that this could interfere with fibrillarin-dependent cleavage. Sirtuin 7 depletion results in the accumulation of 5' extended forms of 32S pre-rRNA, and also influences the localization of fibrillarin. Thus, we establish a close relationship between sirtuin 7 and fibrillarin, which might determine the processing pathway used for ribosome biogenesis.


Subject(s)
RNA, Ribosomal/metabolism , Sirtuins/metabolism , Benzamides/pharmacology , Catalytic Domain , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/metabolism , HEK293 Cells , HeLa Cells , Humans , Naphthols/pharmacology , Nuclear Proteins/metabolism , Organelle Biogenesis , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Ribosomes/metabolism , Sirtuins/antagonists & inhibitors , Sirtuins/genetics
16.
Can J Physiol Pharmacol ; 97(11): 1094-1101, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31340128

ABSTRACT

Evidence has demonstrated that resveratrol preconditioning exhibits neuroprotection against cerebral ischemia-reperfusion (IR) injury. The current investigation aimed to explore whether pharmacological postconditioning, by administering resveratrol, after a sustained ischemia and prior to prolonged reperfusion abrogates cerebral IR injury. Cerebral IR-induced injury mice model was employed in this study to evaluate the neuroprotective effects of pharmacological postconditioning with resveratrol (30 mg/kg; i.p.) administered 5 min before reperfusion. We administered sirtinol, a SIRT1/2 selective inhibitor (10 mg/kg; i.p.) 10 min before ischemia (17 min) and reperfusion (24 h), to elucidate whether the neuroprotection with resveratrol postconditioning depends on SIRT1 activation. Various biochemical and behavioural parameters and histopathological changes were assessed to examine the effect of pharmacological postconditioning. Infarct size is estimated using TTC staining. It was established that resveratrol postconditioning abrogated the deleterious effects of IR injury expressed with regard to biochemical parameters of oxidative stress (TBARS, SOD, GSH), acetylcholinesterase activity, behavioural parameters (memory, motor coordination), infarct size, and histopathological changes. Sirtinol significantly reversed the effect of resveratrol postconditioning. We conclude that induced neuroprotective benefits of resveratrol postconditioning may be the consequence of SIRT1 activation and resveratrol can be considered, for further studies, as potential agent inducing pharmacological postconditioning in clinical situations.


Subject(s)
Brain Ischemia/physiopathology , Ischemic Postconditioning , Neuroprotective Agents/pharmacology , Resveratrol/pharmacology , Sirtuin 1/metabolism , Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , Enzyme Activation/drug effects , Glutathione/metabolism , Male , Memory, Short-Term/drug effects , Mice , Psychomotor Performance/drug effects , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
17.
Cell Physiol Biochem ; 50(4): 1346-1360, 2018.
Article in English | MEDLINE | ID: mdl-30355933

ABSTRACT

BACKGROUND/AIMS: Injuries of the brain and spinal cord result in the formation of glial (reactive gliosis) and fibrotic (formed by fibroblasts) scars. Recent studies have shown that the fibrotic scar was much more important for hindering regeneration after brain or spinal cord injury than the astrocytic scar. However, it has been given much less attention for effects and mechanism of fibroblasts during formation of the fibrotic scar. Resveratrol may be a potential anti-scarring agent in burn-related scarring and keloid fibroblasts. However, it is unclear whether and how resveratrol affects formation of the fibrotic scar after brain or spinal cord injury. Earlier studies have shown that the activated Shh signaling has anti-apoptosis, anti-oxidation, anti-inflammation properties. Moreover, resveratrol can activate the Shh signaling. However, it is unclear how resveratrol activates the Shh signaling. Resveratrol is a activator of Sirt1. It is unknown whether resveratrol activates the Shh signaling via Sirt1. METHODS: NIH3T3 cells, a fibroblast cell line, were used as model cells and treated with drugs. Cell viability was assessed by Cell Counting Kit 8. The expressions and activity of Shh signaling pathway proteins were evaluated by immunocytochemistry and Western blotting. Transcriptional activity of Gli-1 was detected with Dual-Luciferase Reporter Gene Assay Kit. RESULTS: Resveratrol, Sirt1 agonist STR1720 and recombinant mouse Shh protein, an activator of hedgehog signaling, enhanced the viability of NIH3T3 cells, promoted Smo to translocated to the primary cilia and Gli-1 entered into the nuclei from cytoplasm, and upregulated expressions of Shh, Ptc-1, Smo, and Gli-1 proteins, which can be reversed by Smo antagonist cyclopamine and Sirt1 antagonist Sirtinol. Additionally, resveratrol increased transcriptional activity of Gli-1. CONCLUSION: We indicate in the first time that it may be mediated by Sirt1 for resveratrol activating the Shh signaling to enhance viability of NIH3T3 cells, and Sirt1 may be a regulator for upstream of the Shh signaling pathway.This study provides a basis for further investigating effects and mechanism of resveratrol during the formation of fibrous scar after brain or spinal cord injury.


Subject(s)
Hedgehog Proteins/metabolism , Signal Transduction/drug effects , Sirtuin 1/metabolism , Stilbenes/pharmacology , Animals , Benzamides/pharmacology , Cell Survival/drug effects , Mice , NIH 3T3 Cells , Naphthols/pharmacology , Patched-1 Receptor/metabolism , Resveratrol , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/chemistry , Smoothened Receptor/antagonists & inhibitors , Smoothened Receptor/metabolism , Transcription, Genetic/drug effects , Up-Regulation/drug effects , Veratrum Alkaloids/pharmacology , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
18.
Biochem Pharmacol ; 148: 222-237, 2018 02.
Article in English | MEDLINE | ID: mdl-29309760

ABSTRACT

HO-1 (heme oxygenase-1), an antioxidant enzyme, induced by rosiglitazone (PPAR ligands) can be a potential treatment of inflammation. However, the mechanisms of rosiglitazone-induced HO-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain largely unknown. In this study, we found that upregulation of HO-1 in vitro or in vivo by rosiglitazone attenuated VCAM-1 gene expression and monocyte adhesion to HPAEpiCs challenged with lipopolysaccharide (LPS). The inhibitory effects of rosiglitazone on LPS-mediated responses were reversed by transfection with HO-1 siRNA. LPS-induced VCAM-1 expression was mediated through NF-κB activation which was attenuated by rosiglitazone via suppressing p65 activation and translocation into the nucleus. Moreover, pretreatment with the inhibitor of PKCs (H7), PKCα (Gö6976), AMPKα (Compound C), p38 MAPKα (p38i VIII), SIRT1 (Sirtinol), or PPARγ (T0070907) and transfection with siRNA of PKCα, AMPKα, p38 MAPKα, SIRT1, or PPARγ abolished the rosiglitazone-induced HO-1 expression in HPAEpiCs. Further studies indicated that rosiglitazone stimulated SIRT1 deacetylase leading to PGC1α translocation from the cytosol into the nucleus, promoting fragmentation of NCoR and phosphorylation of PPARγ. Subsequently, PPARγ was activated by phosphorylation of PKCα, AMPKα, p38 MAPKα, and SIRT1, which turned on transcription of HO-1 gene by binding to PPAR response element (PPRE) and enhancing PPARγ promoter activity. These results suggested that rosiglitazone-induced HO-1 expression is mediated through PKCα/AMPKα/p38 MAPKα/SIRT1-dependent deacetylation of Ac-PGC1α and fragmentation of NCoR/PPARγ activation in HPAEpiCs. Up-regulation of HO-1 protected against the inflammatory responses triggered by LPS, at least in part, through attenuation of NF-κB.


Subject(s)
Heme Oxygenase-1/metabolism , Inflammation/chemically induced , Lipopolysaccharides/toxicity , Lung Diseases/chemically induced , Rosiglitazone/pharmacology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Gene Expression Regulation/drug effects , Male , Mice , Mice, Inbred ICR , PPAR gamma/genetics , PPAR gamma/metabolism , Protein Kinase C-alpha/genetics , Protein Kinase C-alpha/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Up-Regulation/drug effects , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
19.
J Neuromuscul Dis ; 5(1): 59-73, 2018.
Article in English | MEDLINE | ID: mdl-29278895

ABSTRACT

BACKGROUND: Mutations in the LAMA2 gene encoding laminin-α2 cause congenital muscular dystrophy Type 1A (MDC1A), a severe recessive disease with no effective treatment. Previous studies have shown that aberrant activation of caspases and cell death through a pathway regulated by BAX and KU70 is a significant contributor to pathogenesis in laminin-α2-deficiency. OBJECTIVES: To identify mechanisms of pathogenesis in MDC1A. METHODS: We used immunocytochemical and molecular studies of human myogenic cells and mouse muscles-comparing laminin-α2-deficient vs. healthy controls-to identify mechanisms that regulate pathological activation of caspase in laminin-α2-deficiency. RESULTS: In cultures of myogenic cells from MDC1A donors, p53 accumulated in a subset of nuclei and aberrant caspase activation was inhibited by the p53 inhibitor pifithrin-alpha. Also, the p53 target BBC3 (PUMA) was upregulated in both MDC1A myogenic cells and Lama2-/- mouse muscles. In addition, studies with sirtuin inhibitors and SIRT1 overexpression showed that caspase activation in MDC1A myotubes was inversely related to sirtuin deacetylase activity. Caspase activation in laminin-α2-deficiency was, however, not associated with increased phosphorylation of p38 MAPK. CONCLUSIONS: Aberrant caspase activation in MDC1A cells was mediated both by sirtuin deacetylase activity and by p53. Interventions that inhibit aberrant caspase activation by targeting sirtuin or p53 function could potentially be useful in ameliorating MDC1A.


Subject(s)
Caspases/metabolism , Laminin/genetics , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophies/metabolism , Sirtuins/metabolism , Stem Cells/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Benzothiazoles/pharmacology , Group III Histone Deacetylases/metabolism , Humans , Laminin/metabolism , Mice , Mice, Knockout , Muscle Development , Muscle Fibers, Skeletal/drug effects , Muscular Dystrophies/genetics , Phosphorylation , Proto-Oncogene Proteins/metabolism , Sirtuin 1/metabolism , Stem Cells/drug effects , Toluene/analogs & derivatives , Toluene/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
20.
Cell Biosci ; 7: 55, 2017.
Article in English | MEDLINE | ID: mdl-29090089

ABSTRACT

BACKGROUND: Current immunosuppressive medications used after transplantation induce significant toxicity , and a new medication regimen is needed. Based on recent research, Sirt1 exerts a proinflammatory effect on the immune response. Sirtinol is a Sirt1 inhibitor, but its impact on allograft rejection and its molecular mechanisms of action have not yet been reported. RESLUTS: In this study, we examined the effect of sirtinol on prolonging allograft survival in a mouse cervical heterotopic heart transplantation model. Based on an examination of the allograft, allografts from sirtinol-treated recipients show significantly lower levels of IL-17A expression and higher levels of Foxp3 expression. In vivo, sirtinol reduces the proportion of Th17 cells and increases the proportion of Treg cells in splenocytes from recipients. In vitro, sirtinol reduces the proportion of Th17 cells and decreases the expression of IL-17A and RORγt in an isolated CD4+ T cell population. Moreover, we identified synergistic effects of sirtinol and FK506 on prolonging allograft survival, and sirtinol synergizes with FK506 to promote Foxp3 expression. CONCLUSION: Sirtinol, a Sirt1 inhibitor, may be a promising immunosuppressive drug to prevent the rejection reaction in combination with FK506.

SELECTION OF CITATIONS
SEARCH DETAIL