Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.190
Filter
1.
Angew Chem Int Ed Engl ; : e202413214, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39224055

ABSTRACT

Solid-state potassium metal batteries are promising candidates for grid-scale energy storage due to their low cost, high energy density and inherent safety. However, solid state K-ion conductors struggle with poor ionic conductivity due to the large ionic radius of K+-ions. Herein, we report precise regulation of phase heterogeneity and reciprocity of the P2/P3-symbiosis K0.62Mg0.54Sb0.46O2 solid electrolyte (SE) for boosting a high ionic conductivity of 1.6×10-4 S cm-1 at 25 °C. The bulk ionic conducting mechanism is explored by elucidating the effect of atomic stacking mode within the layered framework on K+-ion migration barriers. For ion diffusion at grain boundaries, the P2/P3 biphasic symbiosis property assists in tunning the SE microstructure, which crystallizes in rod-like particles with lengths of tens of micrometers facilitating long-distance ion transport and significantly decreasing grain boundary resistance. Potassium metal symmetric cells using the modified SE deliver excellent cycling life over 300 h at 0.1 mA cm-2 and a high critical current density of 0.68 mA cm-2. The quasi-solid-state potassium metal batteries (QSSKBs) coupled with two kinds of layered oxide cathodes demonstrate remarkable stability over 300 cycles, outperforming the liquid electrolyte counterparts. The QSSKB system provides a promising strategy for high-efficiency, safe, and durable large-scale energy storage.

2.
Adv Mater ; : e2407852, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225353

ABSTRACT

Advanced aqueous batteries are promising solutions for grid energy storage. Compared with their organic counterparts, water-based electrolytes enable fast transport kinetics, high safety, low cost, and enhanced environmental sustainability. However, the presence of protons in the electrolyte, generated by the spontaneous ionization of water, may compete with the main charge-storage mechanism, trigger unwanted side reactions, and accelerate the deterioration of the cell performance. Therefore, it is of pivotal importance to understand and master the proton activities in aqueous batteries. This Perspective comments on the following scientific questions: Why are proton activities relevant? What are proton activities? What do we know about proton activities in aqueous batteries? How do we better understand, control, and utilize proton activities?

3.
Angew Chem Int Ed Engl ; : e202317016, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240135

ABSTRACT

Regulating the composition of solid-electrolyte-interphase (SEI) is the key to construct high-energy density lithium metal batteries. Here we report a selective catalysis anionic decomposition strategy to achieve a lithium fluoride (LiF)-rich SEI for stable lithium metal batteries. To accomplish this, the tris(4-aminophenyl) amine-pyromeletic dianhydride covalent organic frameworks (TP-COF) was adopted as an interlayer on lithium metal anode. The strong donor-acceptor unit structure of TP-COF induces local charge separation, resulting in electron depletion and thus boosting its affinity to FSI-. The strong interaction between TP-COF and FSI- lowers the lowest unoccupied molecular orbital (LUMO) energy level of FSI-, accelerating the decomposition of FSI- and generating a stable LiF-rich SEI. This feature facilitates rapid Li+ transfer and suppresses dendritic Li growth. Notably, we demonstrate a 6.5 Ah LiNi0.8Co0.1Mn0.1O2|TP-COF@Li pouch cell with high energy density (473.4 Wh kg-1) and excellent cycling stability (97.4 %, 95 cycles) under lean electrolyte 1.39 g Ah-1, high areal capacity 5.7 mAh cm-2, and high current density 2.7 mA cm-2. Our selective catalysis strategy opens a promising avenue toward the practical applications of high energy-density rechargeable batteries.

4.
Small Methods ; : e2401046, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235553

ABSTRACT

In all-solid-state batteries, a solid electrolyte with high ionic conductivity is required for fast charging, uniform lithium deposition, and increased cathode capacity. Lithium argyrodite with BH4 - substitution has promising potential due to its higher ionic conductivity compared to argyrodites substituted with halides. In this study, Li5.25PS4.25(BH4)1.75, characterized by a high ionic conductivity of 13.8 mS cm-1 at 25 °C, is synthesized via wet ball-milling employing o-xylene. The investigation focused on optimizing wet ball-milling parameters such as ball size, xylene content, drying temperature, as well as the amount of BH4 - substitution in argyrodite. An all-solid-state battery prepared using Li5.25PS4.25(BH4)1.75 as the electrolyte and LiNbO3 coated NCM811 as the cathode exhibits an initial coulombic efficiency of 90.2% and maintains 93.9% of its initial capacity after 100 cycles at fast charging rate (5C). It is anticipated that the application of this wet mechanochemical synthesis will contribute further to the commercialization of all-solid-state batteries using BH4-substituted argyrodites.

5.
Nano Lett ; 24(32): 9801-9807, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39087900

ABSTRACT

Cation-doped cubic Li7La3Zr2O12 is regarded as a promising solid electrolyte for safe and energy-dense solid-state lithium batteries. However, it suffers from the formation of Li2CO3 and high electronic conductivity, which give rise to an unconformable Li/Li7La3Zr2O12 interface and lithium dendrites. Herein, composite AlF3-Li6.4La3Zr1.4Ta0.6O12 solid electrolytes were created based on thermal AlF3 decomposition and F/O displacement reactions under a high-temperature sintering process. When the AlF3 is thermally decomposed, it leaves Al2O3/AlF3 meliorating the grain boundaries and F- ions partially displacing O2- ions in the grains. Due to the higher electronegativity of F- in the grains and the grain-boundary modification, these AlF3-Li6.4La3Zr1.4Ta0.6O12 deliver optimized electronic conduction and chemical stability against the formation of Li2CO3. The Li/AlF3-Li6.4La3Zr1.4Ta0.6O12/Li cell exhibits a low interfacial resistance of ∼16 Ω cm2 and an ultrastable long-term cycling behavior for 800 h under a current density of 200 µA/cm2, leading to Li//LiCoO2 solid-state batteries with good rate performance and cycling stability.

6.
Materials (Basel) ; 17(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39124510

ABSTRACT

The increasing demand for safe and high-energy-density battery systems has led to intense research into solid electrolytes for rechargeable batteries. One of these solid electrolytes is the NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP) material. In this study, different boron compounds (10% B2O3 doped, 10% H3BO3 doped, and 5% B2O3 + 5% H3BO3 doped) were doped at total 10 wt.% into the Ti4+ sites of an LATP solid electrolyte to investigate the structural properties and ionic conductivity of solid electrolytes using the solid-state synthesis method. Characterization of the synthesized samples was conducted using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). The XRD patterns of the boron-doped LATP (LABTP) samples show that the samples have a rhombohedral phase with space group R3¯c together and low amounts of impurity phases. While all the LABTP samples exhibited similar ionic conductivity values of around 10-4 S cm-1, the LABTP2 sample doped with 10 wt.% H3BO3 demonstrated the highest ionic conductivity. These findings suggest that varying B3+ ion doping strategies in LATP can significantly advance the development of solid electrolytes for all-solid-state lithium-ion batteries.

7.
Adv Mater ; : e2407128, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129345

ABSTRACT

Compared to lithium (Li) anode, the alloy/Li-alloy anodes show more compatible with sulfide solid electrolytes (SSEs), and are promising candidates for practical SSE-based all-solid-state Li batteries (ASSLBs). In this work, a porous Li-Al alloy (LiAl-p) anode is crafted using a straightforward mechanical pressing method. Various characterizations confirm the porous nature of such anode, as well as rich oxygen species on its surface. To the best knowledge, such LiAl-p anode demonstrates the best room temperature cell performance in comparison with reported Li and alloy/Li-alloy anodes in SSE-based ASSLBs. For example, the LiAl-p symmetric cells deliver a record critical current density of 6.0 mA cm-2 and an ultralong cycling of 5000 h; the LiAl-p|LiNi0.8Co0.1Mn0.1O2 full cells achieve a high areal capacity of 11.9 mAh cm-2 and excellent durability of 1800 cycles. Further in situ and ex situ experiments reveal that the porous structure can accommodate volume changes of LiAl-p and ensure its integrity during cycling; and moreover, a robust Li inorganics-rich solid electrolyte interphase can be formed originated from the reaction between SSE and surface oxygen species of LiAl-p. This study offers inspiration for designing high-performance alloy anodes by focusing on designing special architecture to alleviate volume change and constructing stable interphase.

8.
Heliyon ; 10(15): e34806, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170484

ABSTRACT

The development of efficient and high-performance electric vehicle (EV) batteries relies on improving various components, such as the anode and cathode electrodes, separators, and electrolytes. This review paper offers an elaborate overview of different materials for these components, emphasizing their respective contributions to the improvement of EV battery performance. Carbon-based materials, metal composites, and polymer nanocomposites are explored for the anode, offering high energy density and capacity. However, they are noted to be susceptible to Li plating. Unique structures, such as Titanium niobium oxide (TiNb2O7), offer high theoretical capacity, quick Li+ intercalation, and an extended lifecycle. Meanwhile, molybdenum disulfide (MoS2), with 2D and 3D structures, exhibits high reversible specific capacity, outstanding rate performance, and cyclic stability, showing promising properties as anode material. For cathodes, lithium-iron phosphate (LFP), lithium-cobalt oxide (LCO), lithium-nickel-cobalt-aluminum oxide (NCA), lithium-nickel-manganese-cobalt oxide (NMC), and cobalt-free lithium-nickel-manganese oxide (NMO) are considered, offering specific energy and capacity advantages. For instance, LFP cathode electrodes show good thermal stability, good electrochemical performance, and long lifespan, while NMC exhibits high specific energy, relatively high capacity, and cost savings. NCA has a high specific energy, decent specific power, large capacity, and a long lifecycle. NMO shows excellent rate capability, cyclic stability, and cost-effectiveness but with limited cycle performance. Separator innovations, including polyolefin materials, nanofiber separators, graphene-based composites, and ceramic-polymer composites, are analyzed for use as separators, considering mechanical strength, porosity, wettability with the electrolyte, electrolytic absorption, cycling efficiency, and ionic conductivity. The electrolyte comprises lithium salts such as lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), and other salts dissolved in carbonate solvents. This improves energy density, capacity, and cycling stability and provides high ion mobility and resistance to decomposition. By examining the existing literature, this review also explores research on the solid electrolyte interface (SEI) and lithium plating, providing valuable insights into understanding and mitigating these critical issues. Despite the progress, limitations such as practical implementation challenges, potential cost implications, and the need for further research on scale-up feasibility and long-term durability are acknowledged. These efforts to enhance the electrochemical characteristics of key battery parameters-positive and negative electrodes, separators, and electrolytes-aim to improve capacity, specific energy density, and overall energy density. These continuous endeavours strive for faster charging of EV batteries and longer travel ranges, contributing to the ongoing evolution of EV energy storage systems. Thus, this review paper not only explores remarkable strides in EV battery technology but also underscores the imperative of addressing challenges and propelling future research for sustainable and high-performance electric vehicle energy storage systems.

9.
Angew Chem Int Ed Engl ; : e202412222, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106271

ABSTRACT

In recent years, sodium-ion batteries (SIBs) have attracted a lot of attention and are considered an ideal alternative to lithium-ion batteries (LIBs). The hard carbon (HC) anode in SIBs presents a unique challenge for studying the formation process of the solid electrolyte interphase (SEI) during initial cycling, owing to its distinctive porous structure. This study employs a combination of ultrasonic scanning techniques and differential electrochemical mass spectrometry to conduct an in-depth analysis of the two-dimensional distribution and composition of gases during the formation process. The findings reveal distinct gas evolution behaviors in SIBs compared to LIBs during formation. Notably, significant gas evolution is observed during the discharge phase of the formation cycle in SIBs, with higher discharge rates leading to increased gas evolution rates. This phenomenon is likely attributed to the adsorption of CO2 gas by the abundant pores in HC, followed by desorption during discharge. Furthermore, the study demonstrates that the addition of 5A molecular sieves, which competitively adsorb gases, effectively reduces gas adsorption on the anode during formation, thereby significantly enhancing battery performance. This research elucidates the gas adsorption and desorption behavior at the battery interface, providing new insights into the SEI formation process in SIBs.

10.
ACS Nano ; 18(34): 23320-23330, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39151093

ABSTRACT

The high interface resistance at the cathode-sulfide electrolyte interface is still a crucial drawback in an all-solid-state battery, unlike the initial expectation that the all-solid-state interface would enhance electrochemical stability by reducing side reactions at the interface. In this study, we examined the fundamental mechanism of unexpected reactions at the interface of LiNi0.8Co0.1Mn0.1O2 (NCM811) and argyrodite (Li6PS5Br0.5Cl0.5, LPSBC) sulfide solid electrolytes based on the combined method of multiscale simulations and electrochemical experiments. The high interface resistance originates from the formation of a passivating layer at the interface combined with irregular atomic and electronic structures, Li depletion, mutual element exchange, and mechanical contact loss between the oxide cathode and sulfide solid electrolyte. We also confirmed that these side reactions were suppressed by O substitutions to sulfide solid electrolyte (LPSOBC), and then the chemo-mechanical stability of the all-solid battery was enhanced by alleviating the side reactions at the interface. This study provides rational insights into the design of an interface for all-solid-state batteries.

11.
Small ; : e2404537, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39185805

ABSTRACT

Lithium metal batteries operated with high voltage cathodes are predestined for the realization of high energy storage systems, where solid polymer electrolytes offer a possibility to improve battery safety. Al2O3_PCL is introduced as promising hybrid electrolyte made from polycaprolactone (PCL) and Al2O3 nanoparticles that can be prepared in a one-pot synthesis as a random mixture of linear PCL and PCL-grafted Al2O3. Upon grafting, synergistic effects of mechanical stability and ionic conductivity are achieved. Due to the mechanical stability, manufacture of PCL-based membranes with a thickness of 50 µm is feasible, yielding an ionic conductivity of 5·10-5 S cm-1 at 60 °C. The membrane exhibits an impressive performance of Li deposition in symmetric Li||Li cells, operating for 1200 h at a constant and low overvoltage of 54 mV and a current density of 0.2 mA cm-2. NMC622 | Al2O3_PCL | Li cells are cycled at rates of up to 1 C, achieving 140 cycles at >80% state of health. The straightforward synthesis and opportunity of upscaling as well as solvent-free polymerization render the Al2O3_PCL hybrid material as rather safe, potentially sustainable and affordable alternative to conventional polymer-based electrolytes.

12.
Adv Mater ; : e2406058, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39097944

ABSTRACT

3D substrate with abundant sodiophilic active sites holds promise for implementing dendrite-free sodium metal anodes and high-performance sodium batteries. However, the heightened electrode/electrolyte side reactions stemming from high specific surface area still hinder electrode structure stability and cycling reversibility, particularly under high current densities. Herein, the solid electrolyte interface (SEI) component is regulated and detrimental side reactions are restrained through the uniform loading of Na-Sn alloy onto a porous 3D nanofiber framework (NaSn-PCNF). The strong interaction between Na-Sn alloy and PF6 - anions facilitates the dissociation of sodium salts and releases more free sodium ions for effective charge transfer. Simultaneously, the modulations of the interfacial electrolyte solvation structure and the construction of a high NaF content SEI layer stabilize the electrode/electrolyte interface. NaSn-PCNF symmetrical battery demonstrates stable cycling for over 600 h with an ultralow overpotential of 24.5 mV under harsh condition of 10 mA cm-2 and 10 mAh cm-2. Moreover, the full cells and pouch cells exhibit accelerated reaction kinetics and splendid capacity retention, providing valuable insights into the development of advanced Na substrates for high-energy sodium metal batteries.

13.
ACS Nano ; 18(35): 24128-24138, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39163544

ABSTRACT

Both uncontrolled Li dendrite growth and corrosion are major obstacles to the practical application of Li-metal batteries. Despite numerous attempts to address these challenges, effective solutions for dendrite-free reversible Li electrodeposition have remained elusive. Here, we demonstrate the horizontal Li electrodeposition on top of atomically polarized monolayer hexagonal boron nitride (hBN). Theoretical investigations revealed that the hexagonal lattice configuration and polarity of the monolayer hBN, devoid of dangling bonds, reduced the energy barrier for the surface diffusion of Li, thus facilitating reversible in-plane Li growth. Moreover, the single-atom-thick hBN deposited on a Cu current collector (monolayer hBN/Cu) facilitated the formation of an inorganic-rich, homogeneous solid electrolyte interphase layer, which enabled the uniform Li+ flux and suppressed Li corrosion. Consequently, Li-metal and anode-free full cells containing the monolayer hBN/Cu exhibited improved rate performance and cycle life. This study suggests that the monolayer hBN is a promising class of underlying seed layers to enable dendrite- and corrosion-free, horizontal Li electrodeposition for sustainable Li-metal anodes in next-generation batteries.

14.
Adv Sci (Weinh) ; 11(32): e2404245, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39189438

ABSTRACT

The realization of lithium-metal (Li) batteries faces challenges due to dendritic Li deposition causing internal short-circuit and low Coulombic efficiency. In this regard, the Li-deposition stability largely depends on the electrolyte, which reacts with Li to form a solid electrolyte interphase (SEI) with diverse physico-chemical properties, and dictates the interphasial kinetics. Therefore, optimizing the electrolyte for stability and performance remains pivotal. Hereof, glyme ethers are an emerging class of electrolytes, showing improved compatibility with metallic Li and enhanced stability in Li─Air and Li─Sulfur batteries. Yet, the criteria for selecting glyme solvents, particularly concerning Li deposition and dissolution processes, remain unclear. The SEI characteristics and Li deposition/dissolution processes are investigated in glyme-ether-based electrolytes with varying chain lengths, using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium nitrate (LiNO3) salts under high capacity and limited electrolyte conditions. Longer glymes led to more homogeneous SEI, particularly pronounced with LiNO3, minimizing surface roughness during stripping, and promoting compact Li deposits. Higher reductive stability, resulting in homogeneous interphasial properties, and slower kinetics due to high desolvation barrier and viscosity, underline stable Li growth in longer glymes. This study clarifies factors guiding the selection of glyme ether-based electrolytes in Li metal batteries, offering insights for next-generation energy storage systems.

15.
Article in English | MEDLINE | ID: mdl-39213607

ABSTRACT

Halide solid electrolytes for all-solid-state batteries have recently emerged as competitors to oxide and sulfide solid electrolytes due to their excellent electrochemical properties. This ab initio study unveils the dynamic nature of Li2Sc2/3Cl4, a rare superionic conductor among cubic spinel halide materials. Li ions in Li2Sc2/3Cl4 prefer to occupy some of the tetrahedral 8a, octahedral 16c, and octahedral 16d sites, leading to disordered Li distribution. Li ions in Li2Sc2/3Cl4 diffuse through the single-ion diffusion mechanism rather than the concerted diffusion mechanism, providing a high conductivity of 1.36 mS cm-1. Li ions at the 16d site diffuse as actively as those at the 8a/16c site, an unexpected result that runs counter to the conventional view. In Li2MgCl4, the same cubic spinel as Li2Sc2/3Cl4, Li ions at the 8a/16c site diffuse actively, but those at the 16d site are almost immobile, resulting in a very low conductivity of 5.3 × 10-4 mS cm-1. The extremely higher conductivity in Li2Sc2/3Cl4 than in Li2MgCl4 is because the concentration of Sc3+/Mg2+ cations blocking the movement of Li ions at the 16d site is lower in Li2Sc2/3Cl4 than in Li2MgCl4. Designing cubic spinel materials containing high-valence cations is proposed as a way to increase conductivity by reducing the concentration of multivalent cations that impede Li diffusion. This study sheds new light on how to control conductivity using site-dependent Li mobility in solid electrolytes.

16.
Article in English | MEDLINE | ID: mdl-39213653

ABSTRACT

The practical application of lithium metal anodes is significantly impeded by poor interfacial stability and uncontrolled dendrite growth. Herein, we introduce methyl trifluoroacetate (MTFA), a low-melting-point small molecule, as an electrolyte additive in an ether-based electrolyte. This additive facilitates the formation of an in situ composite solid electrolyte interphase (SEI) layer that is rich in LiF and features an ester-based flexible matrix. The resulting composite layer exhibits high ionic conductivity and mechanical stability, effectively regulating the lithium deposition behavior over a broad temperature range and inhibiting dendrite formation. Based on MTFA, the Li||Li symmetrical cell achieves a lifespan exceeding 5000 h at room temperature and 800 h at -20 °C, both with ultralow overpotential and exceptional cycling stability. In Li||LiFePO4 full cells with a high-area loading (10.52 mg cm-2) and an N/P ratio of 1.68, an average capacity decay of merely 0.096% per cycle is observed over 200 cycles. Even at -20 °C, the Li||LiFePO4 cell shows a CE of over 99% and maintains stable cycling performance. This work provides an innovative approach for optimizing lithium metal anode interfaces and enhancing low-temperature operation capabilities through the use of electrolyte additives.

17.
Adv Mater ; : e2411197, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39149771

ABSTRACT

Lithium-sulfur (Li-S) batteries are widely regarded as one of the most promising next-generation high-energy-density energy storage devices. However, soluble lithium polysulfides (LiPSs) corrode Li metal and deteriorate the cycling stability of Li-S batteries. Understanding the reaction mechanism between LiPSs and Li metal anode is imperative. Herein, the reaction rate and products of LiPSs with Li metal anode, the composition and structure of the as-generated solid electrolyte interphase (SEI), and the mechanism of lithium nitrate (LiNO3) additives for inhibiting the corrosion reactions are systematically unveiled. Concretely, LiPSs react with Li metal anode more rapidly than Li salt and generate a Li2S-rich SEI. The Li2S-rich SEI is highly reactive with LiPSs, which exacerbates the formation of dendritic Li and the continuous corrosion of active Li. LiNO3 functions dominantly by modulating the solvation structure of LiPSs and inherently reducing the reactivity of LiPSs, rather than the conventional understanding of LiNO3 participating in the formation of SEI. This work reveals the reaction mechanism between LiPSs and Li metal anode and inspires rational regulating of the solvation structure of LiPSs for stabilizing Li metal anode in Li-S batteries.

18.
Int J Biol Macromol ; 277(Pt 3): 134474, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39102912

ABSTRACT

Lignin as a natural biopolymer is becoming increasingly in demand due to its eco-friendly properties, while lignin-based electrolyte with high conductivity and reliable durability for applications in supercapacitors is still challenging. Herein, a facile method to prepare lignin nanoparticles (LNPs)-based solid electrolyte thin film (LF) was proposed through chemical cross-linking reaction. The fabricated LF exhibited a distinctive spongy porous structure with the ionic conductivity of 3.26 mS cm-1, demonstrating the exceptional flexibility and favorable mechanical properties. Moreover, the assembly of all-LNPs-based symmetric supercapacitor (SSC) devices was achieved using LF electrolyte and LCA electrodes for the first time, confirming the LF3 electrolyte superior to commercial cellulose separator in capacitive behaviour. This SSC device exhibited a specific capacitance of 122.7 F g-1 at 0.5 A g-1 and the maximum energy density of 17.04 W h kg-1. Furthermore, the incorporation of sodium alginate (SA) significantly enhanced the ionic conductivity of SA/LF3 electrolyte, and the resulting SSC device delivered a higher specific capacitance of 174.5 F g-1 at 0.5 A g-1 and the maximum energy and power densities of 24.24 W h kg-1 and 5023 W kg-1, respectively. This study proposes a promising approach for sustainable utilization of lignin in energy storage applications.


Subject(s)
Carbon , Electric Capacitance , Electrodes , Electrolytes , Lignin , Nanoparticles , Lignin/chemistry , Nanoparticles/chemistry , Electrolytes/chemistry , Carbon/chemistry , Electric Conductivity , Gels/chemistry , Porosity
19.
ACS Appl Mater Interfaces ; 16(35): 46879-46888, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39165085

ABSTRACT

Currently, inhomogeneous distribution of Zn2+ on the surface of the Zn anode is still the essential reason for dendrite formation and unsatisfactory stability of zinc ion batteries. Given the merits of strong interaction between Sn and Zn, as well as a low nucleation barrier during Zn deposition, the combination of metallic Sn with carbon material is expected to improve the deposition of zinc ions and inhibit the growth of zinc dendrites by guiding the homogeneous plating/stripping of zinc on the electrode surface. In this article, zincophilic Sn nanoparticles with low nucleation barriers and strong interaction with Zn2+ were embedded into 3D N-doped carbon nanofibers using a simple electrostatic spinning technique. Accordingly, when serving as an artificial coating layer for the zinc metal anode, an ultrastable Sn@NCNFs@Zn||Sn@NCNFs@Zn symmetric cell can be achieved for over 3500 h with a low nucleation overpotential of 29.1 mV. Significantly, the full cell device assembled with the as-prepared anode and MnO2 cathode exhibits desirable electrochemical behaviors. Moreover, this simple method could be extended to other metal-carbon composites, and to ensure ease in scaling up as required. Such significant approach can provide an effective strategy for the design of high-performance zinc anodes.

20.
Angew Chem Int Ed Engl ; : e202413600, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136072

ABSTRACT

Achieving high energy density has always been the goal of lithium-ion batteries (LIBs). SiOx has emerged as a compelling candidate for use as a negative electrode material due to its remarkable capacity. However, the huge volume expansion and the unstable electrode interface during (de)lithiation, hinder its further development. Herein, we report a facile strategy for the synthesis of surface fluorinated SiOx (SiOx@vG-F), and investigate their influences on battery performance. Systematic experiments investigations indicate that the reaction between Li+ and fluorine groups promotes the in-situ formation of stable LiF-rich solid electrolyte interface (SEI) on the surface of SiOx@vG-F anode, which effectively suppresses the pulverization of microsized SiOx particles during the charge and discharge cycle. As a result, the SiOx@vG-F enabled a higher capacity retention of 86.4% over 200 cycles at 1.0 C in the SiOx@vG-F||LiNi0.8Co0.1Mn0.1O2 full cell. This approach will provide insights for the advancement of alternative electrode materials in diverse energy conversion and storage systems.

SELECTION OF CITATIONS
SEARCH DETAIL