Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Publication year range
1.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35745669

ABSTRACT

The development of an efficient and convenient material to improve skin tissue regeneration is a major challenge in healthcare. Inspired by the theory of moist wound healing, portable chitooligosaccharide (COS)/sodium alginate (SA) dual-net gel films containing multiple metal ions were prepared by a casting and in-situ spray method, which can be used to significantly promote wound healing without the use of therapeutic drugs. A variety of divalent cations was introduced in this experiment to improve the advantages of each metal ion by forming metal ion chelates with COS. Moreover, the physicochemical properties and antioxidant properties of nIon2+-COS/SA gel films were systematically characterized and evaluated by in vitro experiments. The gel films showed good antibacterial activity against Gram-negative and Gram-positive bacteria. In addition, the gel films showed good cytocompatibility in cellular experiments, and the gel films with Zn2+ and Sr2+ addition significantly accelerated wound healing in whole skin defect model experiments. Therefore, this nIon2+-COS/SA gel film is an ideal candidate material for wound dressing.

2.
Polymers (Basel) ; 14(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35631828

ABSTRACT

Geopolymer foams are excellent materials in terms of mechanical loads and fire resistance applications. This study investigated the foaming process of geopolymers and foam stability, with a focus on the fire resistance performance when using polystyrene as the base layer. The main purpose is to define the influence of porosity on the physical properties and consequently to find applications and effectiveness of geopolymers. In this study, lightweight materials are obtained through a process called geopolymerization. Foaming was done by adding aluminum powder at the end of the geopolymer mortar preparation. The interaction between the aluminum powder and the alkaline solution (used for the binder during the mixing process) at room temperature is reactive enough to develop hydrogen-rich bubbles that increase the viscosity and promote the consolidation of geopolymers. The basic principle of thermodynamic reactions responsible for the formation of foams is characterized by hydrogen-rich gas generation, which is then trapped in the molecular structure of geopolymers. The geopolymer foams in this study are highly porous and robust materials. Moreover, the porosity distribution is very homogeneous. Experimental assessments were performed on four specimens to determine the density, porosity, mechanical strength, and thermal conductivity. The results showed that our geopolymer foams layered on polystyrene boards (with optimal thickness) have the highest fire resistance performance among others. This combination could withstand temperatures of up to 800 °C for more than 15 min without the temperature rising on the insulated side. Results of the best-performing geopolymer foam underline the technical characteristics of the material, with an average apparent density of 1 g/cm3, a volume porosity of 55%, a thermal conductivity of 0.25 W/mK, and excellent fire resistance.

3.
Nanomaterials (Basel) ; 12(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35564268

ABSTRACT

This paper is devoted to studying the composite material of the aluminum-alumina-carbon nanofiber (CNF) system. The paper considers in detail the process of preparation of the specified composite by ball milling, as well as the process of synthesis of a solid object (coating) by the cold spray method. The synthesized objects were studied using optical and electron microscopy, and the hardness of objects of various compositions was measured. The processes of interaction of composite particles are discussed in detail. The influence of CNF on the distribution of particles in a solid object and on the hardness of objects has been considered and discussed.

4.
Environ Pollut ; 273: 116510, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33484995

ABSTRACT

The combined use of nano-TiO2 with cementitious materials offers an environmentally-friendly way to combat the air pollution problem. However, a trade-off between a high efficiency and a robust weathering resistance has often to be made for most of the attempted nano-TiO2 incorporation methods. This paper developed a simple and effective "spraying" method to coat nano-TiO2 particles on the surface of concrete surface layers (CSL). The results showed that the NOx removal rate of the samples increased with an increase in both the concentrations of nano-TiO2 solutions and the number of times of the spraying action. And the conditions for preparation of the Spray AB (the CSL were first sprayed with the 30 g L-1 TiO2-solution 20 times, followed by mechanical compaction, and for another 20 times after the compaction) were found to be optimal in terms of NOx removal performance and weathering resistance. The Spray AB was superior to the 5% TiO2-intermixed samples with respect to photocatalytic NOx removal ability. Compared with TiO2-dip-coated samples, the Spray AB samples had better and robust weathering resistance. A case study on the factory-fabricated green Eco-blocks (produced by the laboratory-developed spray method and the conventional intermix method) was performed. Examination and comparison on their respective photocatalytic NOx removal further verified the advantages of the spray method over the intermix method.

5.
ACS Appl Mater Interfaces ; 12(16): 18813-18822, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32233452

ABSTRACT

The development of a flexible electronic skin (e-skin) highly sensitive to multimodal vibrations and a specialized sensing ability is of great interest for a plethora of applications, such as tactile sensors for robots, seismology, healthcare, and wearable electronics. Here, we present an e-skin design characterized by a bioinspired, microhexagonal structure coated with single-walled carbon nanotubes (SWCNTs) using an ultrasonic spray method. We have demonstrated the outstanding performances of the device in terms of the capability to detect both static and dynamic mechanical stimuli including pressure, shear displacement, and bending using the principles of piezoresistivity. Because of the hexagonal microcolumnar array, whose contact area changes according to the mechanical stimuli applied, the interlock-optimized geometry shows an enhanced sensitivity. This produces an improved ability to discriminate the different mechanical stimuli that might be applied. Moreover, we show that our e-skins can detect, discriminate, and monitor various intensities of different external and internal vibrations, which is a useful asset for various applications, such as seismology, smart phones, wearable human skins (voice monitoring), etc.


Subject(s)
Nanotubes, Carbon/chemistry , Ultrasonics/methods , Wearable Electronic Devices , Electronics , Equipment Design , Humans , Mechanical Phenomena , Smartphone , Voice/physiology
6.
Micromachines (Basel) ; 9(11)2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30428622

ABSTRACT

Energy harvesting is a method of converting energy from ambient environment into useful electrical energy. Due to the increasing number of sensors and personal electronics, energy harvesting technologies from various sources are gaining attention. Among energy-harvesting technologies, triboelectric nanogenerator (TENG) was introduced as a device that can effectively generate electricity from mechanical motions by contact-electrification. Particularly, liquid-solid contact TENGs, which use the liquid itself as a triboelectric material, can overcome the inevitable friction wear between two solid materials. Using a commercial aerosol hydrophobic spray, liquid-solid contact TENGs, with a superhydrophobic surface (contact angle over 160°) can be easily fabricated with only a few coating processes. To optimize the fabrication process, the open-circuit voltage of sprayed superhydrophobic surfaces was measured depending on the number of coating processes. To demonstrate the simple fabrication and applicability of this technique on random 3D surfaces, a liquid-solid contact TENG was fabricated on the brim of a cap (its complicated surface structure is due to the knitted strings). This simple sprayed-on superhydrophobic surface can be a possible solution for liquid-solid contact TENGs to be mass produced and commercialized in the future.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-594784

ABSTRACT

OBJECTIVE To explore the two application methods of medical lubricant oil to avoid the high cost and secondary contamination problems.METHODS The spray and immersion methods of lubricant oil to maintain the medical equipment were adopted and compared its bacterial reproducing status after dilution and weekly oil cost.RESULTS The spray method was better than the immersion method,The bacterial reproduction was not found by the oil spray method for over 48 h and the weekly lubricant oil dosage was 200 ml,but in the immersion method the bacterial contamination rate was 100% at the sametime in its dilnted oil and the weekly lubricant oil dogase was 800ml.CONCLUSIONS For the manual method to wash the equipment,spray method can maintain the equipment to avoid the secondary contamination problem and save the lubricant oil dosage and cost.

SELECTION OF CITATIONS
SEARCH DETAIL