Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Med Biol ; 69(19)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39241803

ABSTRACT

Objective. Previous methods for robustness evaluation rely on dose calculation for a number of uncertainty scenarios, which either fails to provide statistical meaning when the number is too small (e.g., ∼8) or becomes unfeasible in daily clinical practice when the number is sufficiently large (e.g., >100). Our proposed deep learning (DL)-based method addressed this issue by avoiding the intermediate dose calculation step and instead directly predicting the percentile dose distribution from the nominal dose distribution using a DL model. In this study, we sought to validate this DL-based statistical robustness evaluation method for efficient and accurate robustness quantification in head and neck (H&N) intensity-modulated proton therapy with diverse beam configurations and multifield optimization.Approach. A dense, dilated 3D U-net was trained to predict the 5th and 95th percentile dose distributions of uncertainty scenarios using the nominal dose and planning CT images. The data set comprised proton therapy plans for 582 H&N cancer patients. Ground truth percentile values were estimated for each patient through 600 dose recalculations, representing randomly sampled uncertainty scenarios. The comprehensive comparisons of different models were conducted for H&N cancer patients, considering those with and without a beam mask and diverse beam configurations, including varying beam angles, couch angles, and beam numbers. The performance of our model trained based on a mixture of patients with H&N and prostate cancer was also assessed in contrast with models trained based on data specific for patients with cancer at either site.Results. The DL-based model's predictions of percentile dose distributions exhibited excellent agreement with the ground truth dose distributions. The average gamma index with 2 mm/2%, consistently exceeded 97% for both 5th and 95th percentile dose volumes. Mean dose-volume histogram error analysis revealed that predictions from the combined training set yielded mean errors and standard deviations that were generally similar to those in the specific patient training data sets.Significance. Our proposed DL-based method for evaluation of the robustness of proton therapy plans provides precise, rapid predictions of percentile dose for a given confidence level regardless of the beam arrangement and cancer site. This versatility positions our model as a valuable tool for evaluating the robustness of proton therapy across various cancer sites.


Subject(s)
Deep Learning , Head and Neck Neoplasms , Proton Therapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/diagnostic imaging , Proton Therapy/methods , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Uncertainty
2.
Phys Med Biol ; 68(9)2023 04 26.
Article in English | MEDLINE | ID: mdl-37040785

ABSTRACT

Objective. Robustness evaluation is critical in particle radiotherapy due to its susceptibility to uncertainties. However, the customary method for robustness evaluation only considers a few uncertainty scenarios, which are insufficient to provide a consistent statistical interpretation. We propose an artificial intelligence-based approach that overcomes this limitation by predicting a set of percentile dose values at every voxel and allows for the evaluation of planning objectives at specific confidence levels.Approach. We built and trained a deep learning (DL) model to predict the 5th and 95th percentile dose distributions, which corresponds to the lower and upper bounds of a two-tailed 90% confidence interval (CI), respectively. Predictions were made directly from the nominal dose distribution and planning computed tomography scan. The data used to train and test the model consisted of proton plans from 543 prostate cancer patients. The ground truth percentile values were estimated for each patient using 600 dose recalculations representing randomly sampled uncertainty scenarios. For comparison, we also tested whether a common worst-case scenario (WCS) robustness evaluation (voxel-wise minimum and maximum) corresponding to a 90% CI could reproduce the ground truth 5th and 95th percentile doses.Main results. The percentile dose distributions predicted by DL yielded excellent agreements with the ground truth dose distributions, with mean dose errors below 0.15 Gy and average gamma passing rates (GPR) at 1 mm/1% above 93.9, which were substantially better than the WCS dose distributions (mean dose error above 2.2 Gy and GPR at 1 mm/1% below 54). We observed similar outcomes in a dose-volume histogram error analysis, where the DL predictions generally yielded smaller mean errors and standard deviations than the WCS evaluation doses.Significance. The proposed method produces accurate and fast predictions (∼2.5 s for one percentile dose distribution) for a given confidence level. Thus, the method has the potential to improve robustness evaluation.


Subject(s)
Deep Learning , Proton Therapy , Radiotherapy, Intensity-Modulated , Male , Humans , Proton Therapy/methods , Artificial Intelligence , Feasibility Studies , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
SELECTION OF CITATIONS
SEARCH DETAIL