Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.531
Filter
1.
Metab Eng ; 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374893

ABSTRACT

Lipid droplets (LDs) are specialized organelles that store neutral lipids to reduce the negative effects of lipotoxicity on cells. However, many neutral lipids are precursors for the synthesis of sterols and complex terpenoids, and this sequestration often greatly limits the efficient biosynthesis of sterols and complex terpenoids. In this study, taking 7-dehydrocholesterol (7-DHC) synthesis in Saccharomyces cerevisiae as an example, we revealed the blocking mechanism of LD sequestration on the efficient synthesis of metabolic products and found that LDs can sequester a significant amount of squalene, the precursor of 7-DHC, effectively preventing it from being directed toward the post-squalene pathway. Based on this, a post-squalene pathway was reconstructed on LDs, which resulted in a 28.7% increase in the 7-DHC titer, reaching 684.1 mg/L, whereas the squalene titer was reduced by approximately 97%. Subsequently, the triacylglycerol degradation pathway was weakened to release the storage space in LDs, and the esterification pathway was concurrently strengthened to guide 7-DHC storage within LDs, which further increased 7-DHC production, reaching 792.9 mg/L. Finally, by reducing the NADH/NAD+ ratio to alleviate the redox imbalance, the 7-DHC titer reached 867.6 mg/L in shake flask and 5.1 g/L in a 3-L bioreactor, which is the highest reported titer to date. In summary, this study provides new insights into the important role of LDs in sterol synthesis and offers a novel strategy for constructing cell factories for the efficient synthesis of sterol compounds.

2.
Microbiol Res ; 289: 127922, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39368255

ABSTRACT

Sterol regulatory element-binding proteins (SREBPs) are transcription factors governing various biological processes in fungi, including virulence and fungicide tolerance, by regulating ergosterol biosynthesis and homeostasis. While studied in model fungal species, their role in fungal species used for biocontrol remains elusive. This study delves into the biological and regulatory function of SREBPs in the fungal biocontrol agent (BCA) Clonostachys rosea IK726, with a specific focus on fungicide tolerance and antagonism. Clonostachys rosea genome contains two SREBP coding genes (sre1 and sre2) with distinct characteristics. Deletion of sre1 resulted in mutant strains with pleiotropic phenotypes, including reduced C. rosea growth on medium supplemented with prothioconazole and boscalid fungicides, hypoxia mimicking agent CoCl2 and cell wall stressor SDS, and altered antagonistic abilities against Botrytis cinerea and Rhizoctonia solani. However, Δsre2 strains showed no significant effect. Consistent with the gene deletion results, overexpression of sre1 in Saccharomyces cerevisiae enhanced tolerance to prothioconazole. The functional differentiation between SRE1 and SRE2 was elucidated by the yeast-two-hybridization assay, which showed an interaction between SREBP cleavage-activating protein (SCAP) and SRE1 but not between SRE2 and SCAP. Transcriptome analysis of the Δsre1 strain unveiled SRE1-mediated expression regulation of genes involved in lipid metabolism, respiration, and xenobiotic tolerance. Notably, genes coding for antimicrobial compounds chitinases and polyketide synthases were downregulated, aligning with the altered antagonism phenotype. This study uncovers the role of SREBPs in fungal BCAs, providing insights for C. rosea IK726 application into integrated pest management strategies.

4.
Plants (Basel) ; 13(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273873

ABSTRACT

Potato tubers are reproductive and storage organs, enabling their survival. Unraveling the molecular mechanisms that regulate tuberization is crucial for understanding how potatorespond to environmental stress situations and for potato breeding. Previously, we did a transcriptomic analysis of potato microtuberization without light. This showed that important cellular processes like ribosomal proteins, cell cycle, carbon metabolism, oxidative stress, fatty acids, and phytosterols (PS) biosynthesis were closely connected in a protein-protein interaction (PPI) network. Research on PS function during potato tuberization has been scarce. PS plays a critical role in regulating membrane permeability and fluidity, and they are biosynthetic precursors of brassinosteroids (BRs) in plants, which are critical in regulating gene expression, cell division, differentiation, and reproductive biology. Within a PPI network, we found a module of 15 genes involved in the PS biosynthetic process. Darkness, as expected, activated the mevalonate (MVA) pathway. There was a tight interaction between three coding gene products for HMGR3, MVD2, and FPS1, and the gene products that synthetize PS, including CAS1, SMO1, BETAHSD, CPI1, CYP51, FACKEL, HYDRA1, SMT2, SMO2, STE1, and SSR1. Quantitative real-time polymerase chain reaction (qRT-PCR) confirmed the expression analysis of ten specific genes involved in the biosynthesis of PS. This manuscript discusses the potential role of genes involved in PS biosynthesis during microtuber development.

5.
Adv Sci (Weinh) ; : e2403442, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39297413

ABSTRACT

Effective inhibition of intestinal lipid uptake is an efficient strategy for the treatment of disorders related to lipid metabolism. Sterol O-acyltransferase 2 (SOAT2) is responsible for the esterification of free cholesterol and fatty acids into cholesteryl esters. We found that intestine-specific SOAT2 knockout (Soat2I-KO) mice was capable to prevent the development of dietary induced obesity due to reduced intestinal lipid absorption. Soat2 siRNA/CS-PLGA nanoparticle system was constructed to enable intestinal delivery and inhibition of Soat2. This nanoparticle system was composed of PLGA-block-PEG and chitosan specifically delivering Soat2 siRNAs into small intestines in mice, effectively inhibit intestinal lipid uptake and resolving obesity. In revealing the underlying mechanism by which intestinal SOAT2 regulating fatty acid uptake, enhanced CD36 ubiquitination degradation was found in enterocytes upon SOAT2 inhibition. Insufficient free cholesterol esterification promoted endoplasmic reticulum stress and recruitment of E3 ligase RNF5 to activate CD36 ubiquitination in SOAT2 knockdown enterocytes. This work demonstrates a potential modulatory function of intestinal SOAT2 on lipid uptake highlighting the therapeutic effect on obesity by targeting intestinal SOAT2, exhibiting promising translational relevance in the siRNA therapeutic-based treatment for obesity.

6.
Proc Natl Acad Sci U S A ; 121(38): e2401241121, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39250661

ABSTRACT

Despite longstanding excitement and progress toward understanding liquid-liquid phase separation in natural and artificial membranes, fundamental questions have persisted about which molecules are required for this phenomenon. Except in extraordinary circumstances, the smallest number of components that has produced large-scale, liquid-liquid phase separation in bilayers has stubbornly remained at three: a sterol, a phospholipid with ordered chains, and a phospholipid with disordered chains. This requirement of three components is puzzling because only two components are required for liquid-liquid phase separation in lipid monolayers, which resemble half of a bilayer. Inspired by reports that sterols interact closely with lipids with ordered chains, we tested whether phase separation would occur in bilayers in which a sterol and lipid were replaced by a single, joined sterol-lipid. By evaluating a panel of sterol-lipids, some of which are present in bacteria, we found a minimal bilayer of only two components (PChemsPC and diPhyPC) that robustly demixes into micron-scale, liquid phases. It suggests an additional role for sterol-lipids in nature, and it reveals a membrane in which tie-lines (and, therefore, the lipid composition of each phase) are straightforward to determine and will be consistent across multiple laboratories.


Subject(s)
Lipid Bilayers , Sterols , Lipid Bilayers/chemistry , Sterols/chemistry , Phase Transition , Phosphatidylcholines/chemistry , Phospholipids/chemistry , Phase Separation
7.
Food Chem X ; 23: 101733, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39246691

ABSTRACT

To investigate the effect of freeze-thaw (FT) process on the yield and quality of tiger nut oil, tiger nuts were subjected to 0-12 cycles of FT treatment. Results indicated that FT treatment ruptured the cell structure of tiger nut, resulting in an increase in oil yield. Acid value (2.09-2.42 mg KOH/g) and peroxide value (0.40-0.42 mmol/kg) increased with the number of FT cycles, but the increments were small. Likewise, slight differences in fatty acid composition and thermal properties between control and FT-treated samples were observed. FT treatment remarkably increased the bioactive components (e.g., vitamin E, sterols, chlorophyll and carotenoids) in the oil and extended the oxidation induction time from 1.2 to 5.57 h. FT treatment altered the volatile composition of tiger nut oil, increasing the relative content of heterocycles and pyrazines such as 2-methoxy-4-vinylphenol, trimethylpyrazine and tetramethylpyrazine. It was suggested that FT treatment prior to oil extraction was beneficial to improve the oil yield and quality.

8.
Front Immunol ; 15: 1398921, 2024.
Article in English | MEDLINE | ID: mdl-39224584

ABSTRACT

Autoimmune rheumatic diseases comprise a group of immune-related disorders characterized by non-organ-specific inflammation. These diseases include systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), ankylosing spondylitis (AS), gout, among others. Typically involving the hematologic system, these diseases may also affect multiple organs and systems. The pathogenesis of autoimmune rheumatic immune diseases is complex, with diverse etiologies, all associated with immune dysfunction. The current treatment options for this type of disease are relatively limited and come with certain side effects. Therefore, the urgent challenge remains to identify novel therapeutic targets for these diseases. Sterol regulatory element-binding proteins (SREBPs) are basic helix-loop-helix-leucine zipper transcription factors that regulate the expression of genes involved in lipid and cholesterol biosynthesis. The expression and transcriptional activity of SREBPs can be modulated by extracellular stimuli such as polyunsaturated fatty acids, amino acids, glucose, and energy pathways including AKT-mTORC and AMP-activated protein kinase (AMPK). Studies have shown that SREBPs play roles in regulating lipid metabolism, cytokine production, inflammation, and the proliferation of germinal center B (GCB) cells. These functions are significant in the pathogenesis of rheumatic and immune diseases (Graphical abstract). Therefore, this paper reviews the potential mechanisms of SREBPs in the development of SLE, RA, and gout, based on an exploration of their functions.


Subject(s)
Autoimmune Diseases , Rheumatic Diseases , Sterol Regulatory Element Binding Proteins , Humans , Rheumatic Diseases/immunology , Rheumatic Diseases/etiology , Rheumatic Diseases/genetics , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/etiology , Autoimmune Diseases/genetics , Sterol Regulatory Element Binding Proteins/metabolism , Sterol Regulatory Element Binding Proteins/genetics , Lipid Metabolism , Gene Expression Regulation , Signal Transduction
9.
Biochem Biophys Res Commun ; 733: 150675, 2024 Nov 12.
Article in English | MEDLINE | ID: mdl-39284268

ABSTRACT

BACKGROUND & AIMS: Lipid metabolism disorders contribute to a range of human diseases, including liver-related pathologies. Rabbits, highly sensitive to dietary cholesterol, provide a model for understanding the development of liver disorders. Sterol regulatory element-binding protein isoform 2 (SREBP2) crucially regulates intracellular cholesterol pathways. Extra-virgin olive oil (EVOO) has shown reducing cholesterol levels and restoring liver parameters affected by HFD. The aim was to investigate the molecular impact of an HFD and supplemented with EVOO on rabbit liver cholesterol metabolism. APPROACH & RESULTS: Male rabbits were assigned to dietary cohorts, including control, acute/chronic HFD, sequential HFD with EVOO, and EVOO. Parameters such as serum lipid profiles, hepatic enzymes, body weight, and molecular analyses. After 6 months of HFD, plasma and hepatic cholesterol increased with decreased SREBP2 and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) expression. Prolonged HFD increased cholesterol levels, upregulating SREBP2 mRNA and HMGCR protein. Combining this with EVOO lowered cholesterol, increased SREBP2 mRNA, and upregulated low-density lipoprotein receptor (LDLR) expression. HFD-induced metabolic dysfunction-associated fatty liver disease was mitigated by EVOO. In conclusion, the SREBP2 system responds to dietary changes. CONCLUSIONS: In rabbits, the SREBP2 system responds to dietary changes. Acute HFD hinders cholesterol synthesis, while prolonged HFD disrupts regulation, causing SREBP2 upregulation. EVOO intake prompts LDLR upregulation, potentially enhancing cholesterol clearance and restoring hepatic alterations.


Subject(s)
Cholesterol , Diet, High-Fat , Liver , Olive Oil , Sterol Regulatory Element Binding Protein 2 , Animals , Rabbits , Olive Oil/administration & dosage , Olive Oil/pharmacology , Male , Liver/metabolism , Liver/drug effects , Diet, High-Fat/adverse effects , Cholesterol/metabolism , Cholesterol/blood , Sterol Regulatory Element Binding Protein 2/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl CoA Reductases/genetics , Receptors, LDL/metabolism , Receptors, LDL/genetics , Lipid Metabolism/drug effects
10.
Adv Exp Med Biol ; 1460: 97-129, 2024.
Article in English | MEDLINE | ID: mdl-39287850

ABSTRACT

The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride (triacylglycerol: TAG) turnover. Hypoxia in obese adipose tissue due to hypertrophic adipocytes results in excess deposition of extracellular matrix (ECM) components. Cluster of differentiation (CD) 44, as the main receptor of the extracellular matrix component regulates cell-cell and cell-matrix interactions including diet-induced insulin resistance. Excess TAGs, sterols, and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets (LDs). Once LDs are formed, they grow up because of the excessive amount of intracellular FFA stored and reach a final size. The ratio of FFA turnover/lipolysis decreases significantly with increases in the degree of obesity. Dysfunctional adipose tissue is unable to expand further to store excess dietary lipids, increased fluxes of plasma FFAs lead to ectopic fatty acid deposition and lipotoxicity. Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. Adipocyte death is a prerequisite for the transition from hypertrophic to hyperplastic obesity. Increased adipocyte number in obesity has life-long effects on white adipose tissue mass. The positive correlation between the adipose tissue volume and magnetic resonance imaging proton density fat fraction estimation is used for characterization of the obesity phenotype, as well as the risk stratification and selection of appropriate treatment strategies. In obese patients with type 2 diabetes, visceral adipocytes exposed to chronic/intermittent hyperglycemia develop a new microRNAs' (miRNAs') expression pattern. Visceral preadipocytes memorize the effect of hyperglycemia via changes in miRNAs' expression profile and contribute to the progression of diabetic phenotype. Nonsteroidal anti-inflammatory drugs, metformin, and statins can be beneficial in treating the local or systemic consequences of white adipose tissue inflammation. Rapamycin inhibits leptin-induced LD formation. Collectively, in this chapter, the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of LD interactions with the other cellular organelles are reviewed. Furthermore, clinical perspective of fat cell turnover in obesity is also debated.


Subject(s)
Adipocytes , Lipolysis , Obesity , Humans , Obesity/metabolism , Obesity/pathology , Adipocytes/metabolism , Adipocytes/pathology , Animals , Lipid Metabolism , Adipogenesis , Adipose Tissue/metabolism , Adipose Tissue/pathology , Insulin Resistance
11.
Adv Exp Med Biol ; 1460: 595-627, 2024.
Article in English | MEDLINE | ID: mdl-39287866

ABSTRACT

In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.


Subject(s)
Adipogenesis , Epigenesis, Genetic , MicroRNAs , Obesity , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity/genetics , Obesity/metabolism , Adipogenesis/genetics , Animals , Adipocytes/metabolism , Exosomes/metabolism , Exosomes/genetics , Gene Expression Regulation
12.
Adv Exp Med Biol ; 1460: 539-574, 2024.
Article in English | MEDLINE | ID: mdl-39287864

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.


Subject(s)
Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Insulin Resistance , Liver/pathology , Liver/metabolism , Disease Progression , Oxidative Stress , Severity of Illness Index , Animals
13.
J Asian Nat Prod Res ; : 1-9, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39279056

ABSTRACT

A new sterol, aspersterol E (1), a newly discovered alkaloid, asperginine A (2), and five known compounds (3-7) were obtained from the endophytic fungus Aspergillus sp. S3 of Hibiscus tiliaceus Linn. The compounds were extracted from their fermentation products using silica gel, ODS C18, and semi-preparative HPLC. The structure of each compound was determined through spectroscopic analysis. All the obtained compounds (1-7) were evaluated for their cytotoxic activity against the mouse pre-gastric cancer cell line MFC by using the MTT assay. The IC50 values of compounds 1, 2, 3, and 5 were found to be 153.43 µM, 61.25 µM, 73.19 µM, and 181.69 µM respectively.

14.
Sci Rep ; 14(1): 17998, 2024 08 03.
Article in English | MEDLINE | ID: mdl-39097621

ABSTRACT

In 1957 Abbott and Ballantine described a highly toxic activity from a dinoflagellate isolated from the English Channel in 1949 by Mary Park. From a culture maintained at Plymouth Laboratory since 1950, we have been able to isolate two toxic molecules (abbotoxin and 59-E-Chloro-abbotoxin), determine the planar structures by analysis of HRMS and 1D and 2D NMR spectra, and found them to be karlotoxin (KmTx) congeners. Both toxins kill larval zebrafish with symptoms identical to those described by Abbot and Ballantine for gobies (Gobius virescens). Using surface plasma resonance the sterol binding specificity of karlotoxins is shown to require desmethyl sterols. Our results with black lipid membranes indicate that karlotoxin forms large-conductance channels in the lipid membrane, which are characterized by large ionic conductance, poor ionic selectivity, and a complex gating behavior that exhibits strong voltage dependence and multiple gating patterns. In addition, we show that KmTx 2 pore formation is a highly targeted mechanism involving sterol-specificity. This is the first report of the functional properties of the membrane pores formed by karlotoxins and is consistent with the initial observations of Abbott and Ballantine from 1957.


Subject(s)
Dinoflagellida , Sterols , Zebrafish , Dinoflagellida/metabolism , Animals , Sterols/chemistry , Sterols/metabolism , Marine Toxins/chemistry , Marine Toxins/metabolism , Cell Membrane/metabolism
15.
J Ethnopharmacol ; 335: 118702, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39168395

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatic ischemia/reperfusion injury (HIRI) is a common occurrence during or after liver surgery, representing a major cause for postoperative complications or increased morbidity and mortality in liver diseases. Rehmanniae Radix Praeparata (RRP) is a traditional Chinese medicine frequently used and has garnered extensive attention for its therapeutic potential treating cardiovascular and hepatic ailments. Recent studies have indicated the possibility of RRP in regulating lipid accumulation and apoptosis in hepatocytes. AIM OF THE STUDY: This study aimed to investigate the specific mechanisms by which RRP may impede the progression of HIRI through the regulation of lipid metabolism. MATERIALS AND METHODS: High-performance liquid chromatography (HPLC) was used to identify the major components of RRP water extract. C57BL/6J mice were orally given RRP at doses of 2.5 g/kg, 5 g/kg, and 10 g/kg for a duration of 7 days before undergoing HIRI surgery. Furthermore, we established a lipid-loaded in vitro model by exposing hepatocytes to oleic acid and palmitic acid (OAPA). The anti-HIRI effect of RRP was determined through transcriptomics and various molecular biology experiments. RESULTS: After identifying active ingredients in RRP, we observed that RRP exerted lipid-lowering and hepatoprotective effects on HIRI mice and OAPA-treated hepatocytes. RRP activated AMP-activated protein kinase (AMPK) and inhibited mammalian target of rapamycin (mTOR), which further on the one hand, inhibited the cleavage and activation of sterol regulatory element binding protein 2 (SREBP2) by limiting the movement of SREBPs cleavage-activating protein (SCAP)-SREBP2 complex with the help of endoplasmic reticulum lipid raft-associated protein 1 (ERLIN1) and insulin-induced gene 1 (INSIG1), and on the other hand, promoted liver X receptor α (LXRα) nuclear transportation and subsequent cholesterol efflux. Meanwhile, the anti-lipotoxic effect of RRP can be partly reversed by an LXRα inhibitor but largely blocked by the application of compound C, an AMPK inhibitor. CONCLUSION: Our study elucidated that RRP served as a potential AMPK activator to alleviate HIRI by blocking SREBP2 activation and cholesterol synthesis, while also activating LXRα to facilitate cholesterol efflux. These findings shed new light on the potential therapeutic use of RRP for improving HIRI.


Subject(s)
Hepatocytes , Lipid Metabolism , Mice, Inbred C57BL , Plant Extracts , Rehmannia , Reperfusion Injury , Animals , Hepatocytes/drug effects , Hepatocytes/metabolism , Lipid Metabolism/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Male , Rehmannia/chemistry , Plant Extracts/pharmacology , Mice , Liver X Receptors/metabolism , Liver/drug effects , Liver/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , AMP-Activated Protein Kinases/metabolism , Liver Diseases/drug therapy , Liver Diseases/metabolism
16.
Mol Oncol ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119789

ABSTRACT

The mevalonate pathway plays an important role in breast cancer and other tumor types. However, many issues remain obscure as yet regarding its mechanism of regulation and action. In the present study, we report that the expression of mevalonate pathway enzymes is mediated by the RHO guanosine nucleotide exchange factors VAV2 and VAV3 in a RAC1- and sterol regulatory element-binding factor (SREBF)-dependent manner in breast cancer cells. Furthermore, in vivo tumorigenesis experiments indicated that the two most upstream steps of this metabolic pathway [3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR)] are important for primary tumorigenesis, angiogenesis, and cell survival in breast cancer cells. HMGCR, but not HMGCS1, is also important for the extravasation and subsequent fitness of breast cancer cells in the lung parenchyma. Genome-wide expression analyses revealed that HMGCR influences the expression of gene signatures linked to proliferation, metabolism, and immune responses. The HMGCR-regulated gene signature predicts long-term tumor recurrence but not metastasis in cohorts of nonsegregated and chemotherapy-resistant breast cancer patients. These results reveal a hitherto unknown, VAV-catalysis-dependent mechanism involved in the regulation of the mevalonate pathway in breast cancer cells. They also identify specific mevalonate-pathway-dependent processes that contribute to the malignant features of breast cancer cells.

17.
Chem Biodivers ; : e202401640, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087501

ABSTRACT

Rice (Oryza sativa L.) husk harbors a substantial proportion of biological metabolites, as one of the most plentiful agriculture by-products in rice milling process, rice husk remains poorly utilized. As a continuing search for potential bioactive molecules from the husk of rice, a totally of twelve conponents (1-12), including six sterol ferulates (1-6), one flavonoid (7), one dipeptide (8), and four phenylpropanoid derivatives (9-12) were obtained. All the chemical structures were elucidated based on comprehensive spectroscopic data. Wherein, compounds 1 and 2 were yield as previous undescribed metabolites, and the comprehensive NMR data for compounds 3 and 4 were first presented in its entirety. Motivated by the similarity of the structural motifs of components 1-6 to that of reported sterol ferulates, the antioxidant and anti-inflammatory effects for compounds 1-6 were evaluated in vitro. Among them, compounds 5/6 had a significant antioxidant activity compare to that of vitamin E in both DPPH and reducing power assay up to the concentration 40 µg/ml; while compounds 1 and 2 exhibited weak suppressive effect on the production of nitric oxide, with the IC50 values of 53.27 ± 1.37 µM.

18.
Nat Prod Res ; : 1-7, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39161174

ABSTRACT

Natural product offers an ocean of biologically active compounds that have diverse functionality. Thus, the present study aims for the exploration of natural product molecules for their leishmanicidal potency. Primary evaluation at 50 µM concentration revealed that out of 560 molecules, 38 compounds demonstrated a percentage killing of >50%. Next, the dose-dependent investigation showed that six active hits displayed the IC50 value ranging from 0.47 to 14.2 µM. Further, the molecular docking analysis using the alpha fold structure of Sterol C-24 methyltransferase of Leishmania donovani (LdSMT) (an enzyme absent in mammalian host) unveiled the strong binding affinity with top two hits namely shatavarin IV (-7.9 kcal/mol) and 6-methoxydihydrochelerythrine (-7.6 kcal/mol). Also, in silico studies were supported by the alterations in ergosterol content in the parasites treated with these two potent hits. In conclusion, our study suggests that the two potent hits inhibit the Leishmania parasite growth by hindering sterol biosynthesis.

19.
bioRxiv ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39091845

ABSTRACT

Sterol transport proteins (STPs) play a pivotal role in cholesterol homeostasis and therefore are essential for healthy human physiology. Despite recent advances in dissecting functions of STPs in the human cell, there is still a significant knowledge gap regarding their specific biological functions and a lack of suitable selective probes for their study. Here, we profile fluorescent steroid-based probes across ten STPs, uncovering substantial differences in their selectivity, aiding the retrospective and prospective interpretation of biological results generated with those probes. These results guided the establishment of an STP screening panel combining diverse biophysical assays, enabling the evaluation of 41 steroid-based natural products and derivatives. Combining this with a thorough structural analysis revealed the molecular basis for STP specific selectivity profiles, leading to the uncovering of several new potent and selective Aster-B inhibitors, and supporting the role of this protein in steroidogenesis.

20.
Chem Biodivers ; : e202401689, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136520

ABSTRACT

Mesophotic coral ecosystems (MCEs), located at depths ranging from 30-150 m, host some of the most diverse yet least explored marine bioresources, particularly significant for the discovery of new bioactive molecules. The fungus Beauveria sp. NBUF147, associated with an Irciniidae sponge from the mesophotic zone at a depth of 82 m, underwent chemical investigation that led to the identification of one new sterol, beautoide A (1), and one reported sterol, 3ß,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (2). Their structures were determined from analysis of spectroscopic data and X-ray crystallography. Evaluation of biological activity in prednisolone-induced osteoporotic zebrafish showed that 1 was anti-osteoclastogenic in vivo at 3.0 µM.

SELECTION OF CITATIONS
SEARCH DETAIL