Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 331
Filter
1.
J Colloid Interface Sci ; 677(Pt B): 91-100, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39137566

ABSTRACT

The further commercialization of layer-structured Ni-rich LiNi0.83Co0.11Mn0.06O2 (NCM83) cathode for high-energy lithium-ion batteries (LIBs) has been challenged by severe capacity decay and thermal instability owing to the microcracks and harmful phase transitions. Herein, Ti4+-doped NCM83 cathode materials are rationally designed via a simple and low-cost in-situ modification method to improve the crystal structure and electrode-electrolyte interface stability by inhibiting irreversible polarizations and harmful phase transitions of the NCM83 cathode materials due to Ti4+-doped forms stronger metal-O bonds and a stable bulk structural. In addition, the optimal doping amount of the composite cathode material is also determined through the results of physical characterization and electrochemical performance testing. The optimized Ti4+-doped NCM83 cathode material presents wider Li+ ions diffusion channels (c = 14.1687 Å), lower Li+/Ni2+ mixing degree (2.68 %), and compact bulk structure. The cell assembled with the optimized Ti4+-doped NCM83 cathode material exhibits remarkable capacity retention ratio of 95.4 % after 100cycles at 2.0C and room temperature, and outstanding reversible discharge specific capacity of 148.2 mAh g-1 at 5.0C. Even under elevated temperature of 60 °C, it delivers excellent capacity retention ratio of 92.2 % after 100cycles at 2.0C, which is significantly superior to the 47.9 % of the unmodified cathode material. Thus, the in-situ Ti4+-doped strategy presents superior advantages in enhancing the structural stability of Ni-rich cathode materials for LIBs.

2.
Small ; : e2406453, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358949

ABSTRACT

The layer-structured oxide cathode for sodium-ion batteries has attracted a widespread attention due to the unique redox properties and the anionic redox activity providing additional capacity. Nevertheless, such excessive oxygen redox reactions will lead to irreversible oxygen release, resulting in a rapid deterioration of the cycling stability. Herein, sulfur ion is successfully introduced to the O3-NaNi0.3Mn0.5Cu0.1Ti0.05W0.05O2 material through high-temperature quenching, thereby developing a novel Na2S-modified O3/P2-NaNi0.3Mn0.5Cu0.1Ti0.05W0.05O2 composite with extended cycling life. The S2- is analyzed for the ability to enhance the reversibility of oxidation-reduction reactions under high voltage and suppress the loss of lattice oxygen during cycling. The stable S─O covalent bonds are found to inhibit the oxygen generation and release within the structure. Benefiting from these improvements, the Na2S-modified O3/P2-NaNi0.3Mn0.5Cu0.1Ti0.05W0.05O2 exhibited a high reversible capacity of 173.1 mA h g-1 over a wide voltage range of 1.5-4.3 V under test conditions at 0.1 C and 81.5% capacity retention after 120 cycles at 1 C. The Na2S-modified O3/P2-NaNi0.3Mn0.5Cu0.1Ti0.05W0.05O2 demonstrates the excellent rate capability with the reversible capacities of 173.1,137.0,114.7,96.7, and 80.1 mA h g-1 at 0.1, 0.2, 0.5, 1, and 2 C.

3.
Interdiscip Sci ; 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367992

ABSTRACT

The structural stability of proteins is an important topic in various fields such as biotechnology, pharmaceuticals, and enzymology. Specifically, understanding the structural stability of protein is crucial for protein design. Artificial design, while pursuing high thermodynamic stability and rigidity of proteins, inevitably sacrifices biological functions closely related to protein flexibility. The thermodynamic stability of proteins is not always optimal when they are highest to perfectly perform their biological functions. Extensive theoretical and experimental screening is often required to obtain stable protein structures. Thus, it becomes critically important to develop a stability prediction model based on the balance between protein stability and bioactivity. To design protein drugs with better functionality in a broader structural space, a novel protein structural stability predictor called PSSP has been developed in this study. PSSP is a mean pooled dual graph convolutional network (GCN) model based on sequence characteristics and secondary structure, distance matrix, graph, and residue properties of a nanoprotein to provide rapid prediction and judgment. This model exhibits excellent robustness in predicting the structural stability of nanoproteins. Comparing with previous artificial intelligence algorithms, the results indicate this model can provide a rapid and accurate assessment of the structural stability of artificially designed proteins, which shows the great promises for promoting the robust development of protein design.

4.
Sci Rep ; 14(1): 23876, 2024 Oct 12.
Article in English | MEDLINE | ID: mdl-39396085

ABSTRACT

This study investigates the effectiveness of Microbially Induced Calcite Precipitation (MICP) technology in enhancing the stability of aeolian sand. Applying MICP to desert sand samples from Kashi, Xinjiang, the results demonstrated significant structural stability and erosion resistance in treated soils during wind erosion tests. Particularly after 14 days of treatment, the soil samples exhibited optimal wind erosion resistance and surface crust strength. Additionally, the formation of calcite significantly improved the soil's penetration strength and wind erosion resistance, with SEM analysis confirming that calcite "bridges" between soil particles enhanced inter-particle bonding. Environmental impact assessments indicated that MICP technology is not only environmentally friendly but also effectively reduces the risk of soil environmental pollution. These findings validate the potential application of MICP technology in enhancing the stability and environmental adaptability of aeolian sand.

5.
Ecology ; : e4415, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39267580

ABSTRACT

Soil microbes have long been recognized to substantially affect the coexistence of pairwise plant species across terrestrial ecosystems. However, projecting their impacts on the coexistence of multispecies plant systems remains a pressing challenge. To address this challenge, we conducted a greenhouse experiment with 540 seedlings of five tree species in a subtropical forest in China and evaluated microbial effects on multispecies coexistence using the structural method, which quantifies how the structure of species interactions influences the likelihood for multiple species to persist. Specifically, we grew seedlings alone or with competitors in different microbial contexts and fitted individual biomass to a population dynamic model to calculate intra- and interspecific interaction strength with and without soil microbes. We then used these interaction structures to calculate two metrics of multispecies coexistence, structural niche differences (which promote coexistence) and structural fitness differences (which drive exclusion), for all possible communities comprising two to five plant species. We found that soil microbes generally increased both the structural niche and fitness differences across all communities, with a much stronger effect on structural fitness differences. A further examination of functional traits between plant species pairs found that trait differences are stronger predictors of structural niche differences than of structural fitness differences, and that soil microbes have the potential to change trait-mediated plant interactions. Our findings underscore that soil microbes strongly influence the coexistence of multispecies plant systems, and also add to the experimental evidence that the influence is more on fitness differences rather than on niche differences.

6.
ACS Appl Mater Interfaces ; 16(40): 53740-53749, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39316669

ABSTRACT

Ni-rich single-crystalline layered cathodes have garnered significant attention due to their high energy density and thermal stability. However, they experience severe capacity degradation caused by lattice strain and interfacial side reactions during practical applications. In this study, an effective yttrium modification method is employed to stabilize the structure of Ni-rich single-crystalline LiNi0.83Mn0.05Co0.12O2 (SC-NMC83) to solve these issues. This innovative approach successfully immobilizes oxygen within the material, preventing crack formation while simultaneously broadening the diffusion path of Li+. The yttrium-modified sample (SC-NMC83-Y) exhibits a superior capacity retention compared to the SC-NMC83 sample, with values of 90% and 76.1% after 100 cycles, respectively. This work demonstrates the promising potential of a doping strategy for Ni-rich single-crystalline cathodes and paves a pathway for its practical implementation, such as all-solid-state batteries.

7.
Nano Lett ; 24(40): 12343-12352, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39283995

ABSTRACT

Lithium-rich layered oxides (LLOs) capable of supporting both cationic and anionic redox chemistry are promising cathode materials. Yet, their initial charge to high voltages often trigger significant oxygen evolution, resulting in substantial capacity loss and structural instability. In this study, we applied a straightforward low-potential activation (LOWPA) method alongside a relatively stable electrolyte to address this issue. This approach enables precise control over the order-to-disorder transformation of the transition metal layers in LLOs, producing an in-plane cation-disordered Li1.2Mn0.54Co0.13Ni0.13O2 that averts irreversible oxygen evolution at 4.8 V by stabilizing Mn-O2 or Mn-O3 species within the Li/Mn-disordered nanopores. Consequently, an ultrahigh reversible capacity of 322 mAh g-1 (equating to 1141 Wh kg-1), 91.5% initial Coulombic efficiency, and enhanced durability and rate capability are simultaneously achieved. As LOWPA does not alter any chemical composition of LLOs, it also offers a simple model for untangling the complex phenomena associated with oxygen-redox chemistry.

8.
Food Chem ; 461: 141005, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39213733

ABSTRACT

Rational regulation of pH and xanthan gum (XG) concentration has the potential to modulate interactions among macromolecules and enhance 3D printability. This study investigated non-covalent interactions between XG and other components within compound proteins emulsion gel systems across varying pH values (4.0-8.0) and XG concentrations (0-1 wt%) and systematically explored impacts of gelation properties and structural features on 3D printability. The results of rheological and structural features indicated that pH-regulated non-covalent interactions were crucial for maintaining structural stability of emulsion gels with the addition of XG. The 3D printability of emulsion gels would be significantly improved through moderate depletion flocculation produced when XG concentration was 0.75 wt% at the pH 6.0. Mechanical properties like viscosity exhibited a strongly negative correlation with 3D printability, whereas structural stability showed a significantly positive correlation. Overall, this study provided theoretical insights for the development of emulsion gels for 3D printing by regulating non-covalent interactions.


Subject(s)
Emulsions , Gels , Polysaccharides, Bacterial , Printing, Three-Dimensional , Rheology , Polysaccharides, Bacterial/chemistry , Emulsions/chemistry , Gels/chemistry , Hydrogen-Ion Concentration , Viscosity
9.
Angew Chem Int Ed Engl ; : e202413452, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155243

ABSTRACT

Organic-metal coordination materials with rich structural diversity are considered as promising electrode materials for rechargeable sodium-ion batteries. However, the electrochemical performance can be constrained by the limited number of active sites and structural instability under the discharge/charge process. Herein, organometallic polymer microspheres (Fe-PDA-220) with a unique d-π conjugated structure was designed and successfully constructed through a simple synchronous polymerization and coordination reactions. Polymerization of phenylenediamine was initiated by Fe3+ and Fe2+ ions generated synchronously during the polymerization integrated with poly-aminoquinone chains to form Fe-C12N8 active centers. Used as electrode materials for sodium-ion batteries, the distinctive Fe-C bond significantly boosts the structural stability, and the π-d conjugation system could facilitate electron transfer. A high reversible capacity of 345 mAh g-1 was delivered at 0.1 A g-1 and a capacity of 106 mAh g-1 was maintained even after discharged/charged at 1.0 A g-1 for 5000 cycles, outperforming most reported coordination materials. Spectroscopic and electronic analyses revealed that a two-electron reaction occurred per active unit, accompanied by the reversible redox evolution of the C=N groups and Fe ions during  sodiation/desodiation. This work provides a promising and efficient strategy for boosting the electrochemical performance of organic electrode materials by the design of organometallic polymers.

10.
Biopolymers ; : e23622, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152773

ABSTRACT

The cryoprotectant potential of 3-(1-(2-(2-methoxyethoxy)ethyl)imidazol-3-io)butane-1-carboxylate (OE2imC3C) for proteins necessitates assessment to elucidate its relationship with protein hydration. To reveal this relationship, we assessed the protein stability (pre-freezing and post-thawing) and melting behavior in dilute aqueous protein-OE2imC3C solutions containing varying mole fractions (x) of OE2imC3C (x = 0, 7.7 × 10-3, and 1.7 × 10-2) using Fourier-transform infrared (FTIR) and near-UV circular dichroism (near-UV CD) spectroscopy and differential scanning calorimetry (DSC) techniques. Following freezing/thawing using a deep freezer, protein stability in aqueous OE2imC3C solutions (x = 1.7 × 10-2) preserved the folded state owing to the protein-OE2imC3C interaction, whereas stability at x = 7.7 × 10-3 was reduced. These results indicate that the protein cryoprotectant potential in aqueous OE2imC3C solutions at x = 1.7 × 10-2 is higher than that at x = 7.7 × 10-3, owing to the preferential binding of OE2imC3C with proteins.

11.
R Soc Open Sci ; 11(7): 231795, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39086828

ABSTRACT

Quantifying species interactions based on empirical observations is crucial for ecological studies. Advancements in nonlinear time-series analyses, particularly S-maps, are promising for high-dimensional and non-equilibrium ecosystems. S-maps sequentially perform a local linear model fitting to the time evolution of neighbouring points on the reconstructed attractor manifold, and the coefficients can approximate the Jacobian elements corresponding to interaction effects. However, despite that the advantages in nonlinear forecasting with noise-contaminated data, these methodologies have a limitation in the Jacobian estimation accuracy owing to non-equidistantly stretched local manifolds in the state space. Herein, we therefore introduced a local manifold distance (LMD) concept, a non-equidistant measure based on the multi-faceted state dependency. By integrating LMD with advanced computation techniques, we presented a robust and efficient analytical method, LMD-based regression (LMDr). To validate its advantages in prediction and Jacobian estimation, we analysed synthetic time series of model ecosystems with different noise levels and applied it to an experimental protozoan predator-prey system with established biological information. The robustness to noise was the highest for LMDr, which also showed a better correspondence to expected predator-prey interactions in the protozoan system. Thus, LMDr can be applied to study complex ecological networks under dynamic conditions.

12.
Sci Rep ; 14(1): 18229, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107453

ABSTRACT

This work aims to explore optimization methods for the design of earthen buildings in rural Fujian to achieve low-carbon emissions and improve the structural stability of earthen buildings. First, parametric modeling and optimization algorithms are employed through the Grasshopper platform. An intelligent earthen building design is created by combining the optimization of factors such as the structure of earthen buildings, building materials, and orientation. Then, a comparison is made with the unoptimized, energy-efficient, and carbon emission reduction designs. Finally, the work concludes that the proposed design significantly optimizes the total carbon emissions, energy consumption, structural stability, and economic aspects. The proposed design scheme achieves the highest carbon emission reduction effect, with a reduction rate of 34.64%. The proposed design exhibits lower maximum stress and higher minimum safety factor in terms of structural stability compared to other scenarios, along with smaller structural displacement. It also performs well in terms of initial investment, annual operating costs, and construction period. The significance of this work lies in providing scientific guidance for the design and construction of rural earthen buildings, promoting the organic integration of rural development with low-carbon initiatives. This indicates that the use of intelligent optimization methods for earthen building design is feasible and can yield positive results in practice.

13.
Small ; : e2402881, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967154

ABSTRACT

In this work, three dimensional (3D) self-supported Ni-FeOH@Ni-FeP needle arrays with core-shell heterojunction structure are fabricated via in situ hydroxide growth over Ni-FeP surface. The as-prepared electrodes show an outstanding oxygen evolution reaction (OER) performance, only requiring the low overpotential of 232 mV to reach 200 mA cm-2 with the Tafel slop of 40 mV dec-1. For overall water splitting, an alkaline electrolyzer with these electrodes only requires a cell voltage of 2.14 V to reach 1 A cm-2. Mechanistic investigations for such excellent electrocatalytic performances are utilized by in situ Raman spectroscopy in conjunction with density functional theory (DFT) calculations. The computation results present that Ni-FeOH@Ni-FeP attains better intrinsic conductivity and the D-band center (close to that of the ideal catalyst), thus giving superior excellent catalytic performances. Likewise, the surface Ni-FeOH layer can improve the structural stability of Ni-FeP cores and attenuate the eventual formation of irreversible FeOOH products. More importantly, the appearance of FeOOH intermediates can effectively decrease the energy barrier of NiOOH intermediates, and then rapidly accelerate the sluggish reaction dynamics, as well as further enhance the electrocatalytic activities, reversibility and cycling stability.

14.
ACS Appl Mater Interfaces ; 16(30): 39330-39340, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39016552

ABSTRACT

Binders are crucial for maintaining the mechanical stability of the electrodes. However, traditional binders fail to adequately buffer the volume expansion of Zn2SiO4 anode, causing electrode contact failure and considerable capacity loss during cycling. In this study, we propose a simple and effective solution to address these challenges through a combined strategy of hollow structure design and the introduction of an aqueous lithium poly(acrylic acid) (LiPAA) binder. Hollow structures can shorten ion-transfer distance and accommodate volume change outside. The excellent adhesion of the LiPAA binder created a secure connection between the active Zn2SiO4 particles, conductive additives, and the current collector, which enhanced the mechanical stability and integrity of the electrode. As a result of these positive factors, a Zn2SiO4 electrode using LiPAA as a binder can deliver an excellent capacity of 499 mAh g-1 at a high current density of 5 A g-1 and a long life span of 1000 cycles at 1 A g-1 with a capacity retention of 98%, which significantly outperforms other binders. As demonstrated by ex situ X-ray diffraction and ex situ X-ray absorption spectroscopy, the storage of lithium ions in Zn2SiO4 follows a dual conversion-alloying mechanism, using Zn as the redox center. In this process, Zn is first reduced to metallic Zn and then forms a LiZn alloy upon lithium-ion insertion. This work shows that LiPAA offers a promising approach to improve the cycling longevity of conversion and alloying anodes in Li-ion batteries.

15.
ACS Appl Mater Interfaces ; 16(30): 39447-39459, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39016610

ABSTRACT

Li-rich Mn-based cathode materials (LLOs) are often faced with problems such as low initial Coulombic efficiency (ICE), limited rate performance, voltage decay, and structural instability. Addressing these problems with a single approach is challenging. To overcome these limitations, we developed an LLO with surface functionalization using a simple fabrication method. This two-step process involved a liquid-stage NaBF4 treatment followed by an in situ chemical reaction during sintering. This reaction led to the creation of oxygen vacancies (OV), spinel structures, and doping with Na at the Li site, B at the tetrahedral interstitial spaces of O in both the transition-metal (TM) layer and Li layers as well as the octahedral interstices in the TM layer, and F at the O site. We have carried out a thorough study and employed density functional theory calculations to reveal the hidden mechanisms. The treatment not only increases the electrical conductivity but also changes the oxygen charge environment and inhibits lattice oxygen activity. Surprisingly, the B-O bond is so strong that it prevents the migration of TM within the tetrahedral interstitial spaces of O in both the TM and Li layers, hence stabilizing its structure. This bonding interaction strengthens the transition of the TM 3d and O 2p states to lower energy levels, thus causing an increase in the redox potentials. Hence, a rise in the operating voltage occurs. Of special importance, this therapy dramatically increases the ICE to 90.29% and keeps a specified capacity of 203.3 mAh/g after 100 cycles at 1C, which is an excellent capacity retention of 89.94%. This study introduces ideas and methods to tackle the challenges associated with LLOs in batteries. It also provides compelling evidence for the development of high-energy-density Li-ion batteries.

16.
Foods ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38890971

ABSTRACT

As a natural cationic peptide, Nisin is capable of widely inhibiting the growth of Gram-positive bacteria. However, it also has drawbacks such as its antimicrobial activity being susceptible to environmental factors. Nano-encapsulation can improve the defects of nisin in food applications. In this study, nisin-loaded egg white protein nanoparticles (AH-NEn) were prepared in fixed ultrasound-mediated under pH 3.0 and 90 °C. Compared with the controls, AH-NEn exhibited smaller particle size (112.5 ± 2.85 nm), smaller PDI (0.25 ± 0.01), larger Zeta potential (24 ± 1.18 mV), and higher encapsulation efficiency (91.82%) and loading capacity (45.91%). The turbidity and Fourier transform infrared spectroscopy (FTIR) results indicated that there are other non-covalent bonding interactions between the molecules of AH-NEn besides the electrostatic forces, which accounts for the fact that it is structurally more stable than the controls. In addition, by the results of fluorescence intensity, differential scanning calorimetry (DSC), and X-ray diffraction (XRD), it was shown that thermal induction could improve the solubility, heat resistance, and encapsulation of nisin in the samples. In terms of antimicrobial function, acid-heat induction did not recede the antimicrobial activity of nisin encapsulated in egg white protein (EWP). Compared with free nisin, the loss rate of bactericidal activity of AH-NEn was reduced by 75.0% and 14.0% following treatment with trypsin or a thermal treatment at 90 °C for 30 min, respectively.

17.
Food Res Int ; 188: 114440, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823857

ABSTRACT

The emulsification activity of myosin plays a significant role in affecting quality of emulsified meat products. High-density lipoprotein (HDL) possesses strong emulsification activity and stability due to its structural characteristics, suggesting potential for its utilization in developing functional emulsified meat products. In order to explore the effect of HDL addition on emulsification stability, rheological properties and structural features of myosin (MS) emulsions, HDL-MS emulsion was prepared by mixing soybean oil with isolated HDL and MS, with pH adjustments ranging from 3.0 to 11.0. The results found that emulsification activity and stability in two emulsion groups consistently improved as pH increased. Under identical pH, HDL-MS emulsion exhibited superior emulsification behavior as compared to MS emulsion. The HDL-MS emulsion under pH of 7.0-11.0 formed a viscoelastic protein layer at the interface, adsorbing more proteins and retarding oil droplet diffusion, leading to enhanced oxidative stability, compared to the MS emulsion. Raman spectroscopy analysis showed more flexible conformational changes in the HDL-MS emulsion. Microstructural observations corroborated these findings, showing a more uniform distribution of droplet sizes in the HDL-MS emulsion with smaller particle sizes. Overall, these determinations suggested that the addition of HDL enhanced the emulsification behavior of MS emulsions, and the composite emulsions demonstrated heightened responsiveness under alkaline conditions. This establishes a theoretical basis for the practical utilization of HDL in emulsified meat products.


Subject(s)
Emulsions , Lipoproteins, HDL , Myosins , Rheology , Emulsions/chemistry , Hydrogen-Ion Concentration , Lipoproteins, HDL/chemistry , Myosins/chemistry , Meat Products/analysis , Particle Size , Soybean Oil/chemistry , Viscosity , Spectrum Analysis, Raman
18.
Fundam Res ; 4(2): 394-400, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38933503

ABSTRACT

Protein misfolding and aggregation are crucial pathogenic factors for cataracts, which are the leading cause of visual impairment worldwide. α-crystallin, as a small molecular chaperone, is involved in preventing protein misfolding and maintaining lens transparency. The chaperone activity of α-crystallin depends on its oligomeric state. Our previous work identified a natural compound, celastrol, which could regulate the oligomeric state of αB-crystallin. In this work, based on the UNcle and SEC analysis, we found that celastrol induced αB-crystallin to form large oligomers. Large oligomer formation enhanced the chaperone activity of αB-crystallin and prevented aggregation of the cataract-causing mutant ßA3-G91del. The interactions between αB-crystallin and celastrol were detected by the FRET (Fluorescence Resonance Energy Transfer) technique, and verified by molecular docking. At least 9 binding patterns were recognized, and some binding sites covered the groove structure of αB-crystallin. Interestingly, αB-R120G, a cataract-causing mutation located at the groove structure, and celastrol can decrease the aggregates of αB-R120G. Overall, our results suggested celastrol not only promoted the formation of large αB-crystallin oligomers, which enhanced its chaperone activity, but also bound to the groove structure of its α-crystallin domain to maintain its structural stability. Celastrol might serve as a chemical and pharmacological chaperone for cataract treatment.

19.
Int J Biol Macromol ; 271(Pt 1): 132368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761912

ABSTRACT

The structural stability and therapeutic activity of Stem Bromelain (BM) have been explored by unravelling the interaction of stem BM in presence of two different types of anionic surfactants namely, bile salts, NaC and NaDC and the conventional anionic surfactants, SDDS and SDBS, below, at and above the critical micelle concentration (cmc) in aqueous phosphate buffer of pH 7. Different physicochemical parameters like, surface excess (Γcmc), minimum area of surfactants at air water interface (Amin) etc. are calculated from tensiometry both in absence and presence of BM. Several inflection points (C1, C2 and C3) have been found in tensiometry profile of surfactants in presence of BM due to the conformational change of BM assisted by surfactants. Similar observation also found in isothermal titration calorimetry (ITC) profiles where the enthalpy of micellization (ΔH0obs) of surfactants in absence and presence of BM have calculated. Further, steady state absorption and fluorescence spectra monitoring the tryptophan (Trp) emission of free BM and in presence of all the surfactants at three different temperatures (288.15 K, 298.15 K, and 308.15 K) reveal the nature of fluorescence quenching of BM in presence of bile salts/surfactants. Time resolved fluorescence studies at room temperature also support to determine the several quenching parameters. The binding constant (Kb) of BM with all the surfactants and free energy of binding (∆G0 of bile salts/surfactants with BM at different temperatures have been calculated exploiting steady state fluorescence technique. It is observed that, the binding of NaC with BM is greater as compared to other surfactants while Stern-Volmer quenching constant (KSV) is found greater in presence of SDBS as compared with others which supports the surface tension and ITC data with the fact that surface activity of surfactant(s) is decreasing with the binding of the surfactants at the core or binding pocket of BM. Circular Dichroism (CD) study shows the stability of secondary structure of BM in presence of NaC and NaDC below C3, while BM lost its structural stability even at very low surfactant concentration of SDDS and SDBS which also supports the more involvement of bile salts in binding rather than surfactants. The molecular docking studies have also been substantiated for better understanding the several experimental investigations interaction of BM with the bile salts/surfactants.


Subject(s)
Bromelains , Micelles , Molecular Docking Simulation , Surface-Active Agents , Thermodynamics , Bromelains/chemistry , Bromelains/metabolism , Surface-Active Agents/chemistry , Hydrogen-Ion Concentration , Anions/chemistry , Spectrometry, Fluorescence , Buffers
20.
Adv Mater ; 36(29): e2401048, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38760981

ABSTRACT

The emergence of layered sodium transition metal oxides featuring a multiphase structure presents a promising approach for cathode materials in sodium-ion batteries, showcasing notably improved energy storage capacity. However, the advancement of cathodes with multiphase structures faces obstacles due to the limited understanding of the integrated structural effects. Herein, the integrated structural effects by an in-depth structure-chemistry analysis in the developed layered cathode system NaxCu0.1Co0.1Ni0.25Mn0.4Ti0.15O2 with purposely designed P2/O3 phase integration, are comprehended. The results affirm that integrated phase ratio plays a pivotal role in electrochemical/structural stability, particularly at high voltage and with the incorporation of anionic redox. In contrast to previous reports advocating solely for the enhanced electrochemical performance in biphasic structures, it is demonstrated that an inappropriate composite structure is more destructive than a single-phase design. The in situ X-ray diffraction results, coupled with density functional theory computations further confirm that the biphasic structure with P2:O3 = 4:6 shows suppressed irreversible phase transition at high desodiated states and thus exhibits optimized electrochemical performance. These fundamental discoveries provide clues to the design of high-performance layered oxide cathodes for next-generation SIBs.

SELECTION OF CITATIONS
SEARCH DETAIL