Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.733
Filter
1.
Rev. biol. trop ; 72(1): e52860, ene.-dic. 2024. tab, graf
Article in English | LILACS, SaludCR | ID: biblio-1559315

ABSTRACT

Abstract Introduction: Aquatic birds (AB) are usually associated with wetlands, which provide refuge, food, and/or nesting sites for resident and migratory species. Despite their ecological importance, there is little knowledge on AB in some tropical environments, such as those found on the Colima coast. Objective: To investigate the spatial and temporal composition of the AB community in Juluapan Lagoon, Colima, Central Mexican Pacific. Methods: Monthly counts were conducted between June 2017 and May 2018 during low-tide conditions to record habitat use by AB. Species richness and bird counts were obtained to compare sampling areas; mean richness and number of individuals were compared between seasons. Results: We detected 53 species and 5 750 individuals. The highest species richness and relative abundance values were obtained in winter at the lagoon area farthest from the connection with the marine system, where anthropogenic activity is lower. Diversity was greater in zones 2 and 3 in spring, summer, and fall. Muddy flats were the most used environment, and the most frequent activity was resting. Nesting activity was only recorded in the middle of the lagoon at the mangrove during spring. "Shorebirds" and "waders" were the most dominant groups in the bird community of the Juluapan lagoon. Conclusions: This coastal wetland is a site of great biological importance for aquatic birds; thus, conservation measures should be implemented, and there should be a continuous study of the effects of anthropogenic pressure.


Resumen Introducción: Las aves acuáticas (AA) son usualmente relacionadas a los humedales debido a que éstos funcionan como sitios de refugio, alimentación y anidación de diferentes especies residentes y migratorias. Sin embargo, el conocimiento sobre las aves acuáticas en algunos humedales es nulo. Objetivo: Investigar la composición espacio-temporal de la comunidad de AA en la laguna Juluapan, Colima, en el Pacífico Central Mexicano. Métodos: Entre junio de 2017 y mayo de 2018 se llevaron a cabo conteos mensuales en condiciones de marea baja para registrar el uso de hábitat de las AA. Se obtuvieron valores de riqueza de especies y número de individuos para realizar comparaciones entre zonas de muestreo, así como el promedio del número de especies y número de individuos para comparaciones entre temporadas. Resultados: Se registraron un total de 53 especies y 5 750 individuos. Los valores de riqueza de especies y densidad de individuos fueron más altos durante invierno, en la zona más alejada al ambiente marino, donde la actividad antropogénica es menor. La diversidad tuvo valores más altos en la zona 2 y 3, durante primavera, verano y otoño. El ambiente más explotado por las aves fueron las planicies lodosas; y el descanso fue la actividad más frecuente. Asimismo, la actividad de anidación sólo se registró en el manglar de la zona media durante primavera. Las "aves playeras" y "aves zancudas" fueron los grupos más predominantes en la comunidad de aves de la laguna Juluapan. Conclusiones: Este humedal costero es un sitio de gran importancia biológica para aves acuáticas, por lo que resulta necesario la implementación de medidas de conservación, así como el estudio de los efectos por la presión antropogénica.


Subject(s)
Animals , Birds/classification , Aquatic Fauna , Sampling Studies , Mexico
2.
Int J Mol Sci ; 25(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39201288

ABSTRACT

The functioning of the human cornea heavily relies on the maintenance of its extracellular matrix (ECM) mechanical properties. Within this context, corneal stromal fibroblasts (CSFs) are essential, as they are responsible for remodeling the corneal ECM. In this study, we used a decellularized human amniotic membrane (dHAM) and a custom fibrillar collagen film (FCF) to explore the effects of fibrillar materials on human CSFs. Our findings indicate that substrates like FCF can enhance the early development of focal adhesions (FAs), leading to the activation and propagation of mechanotransduction signals. This is primarily achieved through FAK autophosphorylation and YAP1 nuclear translocation pathways. Remarkably, inhibiting FAK autophosphorylation negated the observed changes. Proteome analysis further confirmed the central role of FAs in mechanotransduction propagation in CSFs cultured on FCF. This analysis also highlighted complex signaling pathways, including chromatin epigenetic modifications, in response to fibrillar substrates. Overall, our research highlights the potential pathways through which CSFs undergo behavioral changes when exposed to fibrillar substrates, identifying FAs as essential mechanotransducers.


Subject(s)
Corneal Stroma , Fibroblasts , Focal Adhesions , Mechanotransduction, Cellular , Humans , Focal Adhesions/metabolism , Fibroblasts/metabolism , Corneal Stroma/cytology , Corneal Stroma/metabolism , Phosphorylation , Extracellular Matrix/metabolism , Cells, Cultured , YAP-Signaling Proteins/metabolism , Fibrillar Collagens/metabolism , Amnion/cytology , Amnion/metabolism , Focal Adhesion Kinase 1/metabolism
3.
Methods Mol Biol ; 2831: 11-20, 2024.
Article in English | MEDLINE | ID: mdl-39134840

ABSTRACT

Recent advancements in nano- and microfabrication techniques have led to the development of highly biomimetic patterned substrates able to guide neuronal sprouting, routing, elongation, and branching. Such substrates, recapitulating shapes and geometries found in the native brain, may pave the way toward the development of cell instructive paradigms able to guide morphogenesis at the neuron-material interface. In this scenario, high-resolution electron microscopy approaches, owing to their ability of discerning the details of neural morphogenesis at a nanoscale resolution, may play a crucial role in unravelling the fine ultrastructure of neurons interfacing with biomimetic structured substrates.


Subject(s)
Biomimetic Materials , Neurons , Neurons/ultrastructure , Neurons/cytology , Neurons/metabolism , Biomimetic Materials/chemistry , Animals , Biomimetics/methods , Microscopy, Electron/methods
4.
Mar Environ Res ; 201: 106712, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39213894

ABSTRACT

Evaluating the functional structure of benthic macrofaunal communities provides insights into how environmental drivers shape the ecosystem and establishes a baseline knowledge of the communities' dynamics and functioning. This understanding allows the prediction of responses to environmental changes and the implementation of efficient conservation and management strategies. Here we examine the structures and functions of benthic macrofaunal communities on the Northwest Iberian coast concerning environmental factors such as depth, hydrodynamic energy, and bottom type. The results suggest that the community assemblages and their function are structured by factors which influence food availability and habitat heterogeneity. The different sites exhibited different trait compositions and functional structures, indicating that distinct functions are performed according to environmental conditions. The communities found in sandy bottom areas with low hydrodynamic conditions presented frail functionality and demonstrated high vulnerability to alterations in their environment. Conversely, the communities found in rocky bottoms with high hydrodynamic conditions exhibited a fulfilled functional niche space, rendering them more resilient to such changes and less prone to loss of function. Although the analyses did not reveal significant differences in the factor depth, its influence on several factors seems relevant in shaping the functional structure of the communities. These findings highlight the importance of understanding the impact of local environmental conditions on ecosystem functioning, to effectively implement monitoring, management, and conservation strategies.

5.
Mol Pharm ; 21(9): 4576-4588, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39163735

ABSTRACT

The use of different template surfaces in crystallization experiments can directly influence the nucleation kinetics, crystal growth, and morphology of active pharmaceutical ingredients (APIs). Consequently, templated nucleation is an attractive approach to enhance crystal nucleation kinetics and preferentially nucleate desired crystal polymorphs for solid-form drug molecules, particularly large and flexible molecules that are difficult to crystallize. Herein, we investigate the effect of polymer templates on the crystal nucleation of clotrimazole and ketoprofen with both experiments and computational methods. Crystallization was carried out in toluene solvent for both APIs with a template library consisting of 12 different polymers. In complement to the experimental studies, we developed a computational workflow based on molecular dynamics (MD) and derived descriptors from the simulations to score and rank API-polymer interactions. The descriptors were used to measure the energy of interaction (EOI), hydrogen bonding, and rugosity (surface roughness) similarity between the APIs and polymer templates. We used a variety of machine learning models (14 in total) along with these descriptors to predict the crystallization outcome of the polymer templates. We found that simply rank-ordering the polymers by their API-polymer interaction energy descriptors yielded 92% accuracy in predicting the experimental outcome for clotrimazole and ketoprofen. The most accurate machine learning model for both APIs was found to be a random forest model. Using these models, we were able to predict the crystallization outcomes for all polymers. Additionally, we have performed a feature importance analysis using the trained models and found that the most predictive features are the energy descriptors. These results demonstrate that API-polymer interaction energies are correlated with heterogeneous crystallization outcomes.


Subject(s)
Clotrimazole , Crystallization , Ketoprofen , Molecular Dynamics Simulation , Polymers , Clotrimazole/chemistry , Ketoprofen/chemistry , Polymers/chemistry , Hydrogen Bonding , Kinetics , Machine Learning
6.
Talanta ; 279: 126640, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39128272

ABSTRACT

Surface Enhanced Raman Spectroscopy (SERS) technique is an effective analytical technique in which fingerprint information about analytes can be obtained, can provide detection limit performance at the single molecule level, and analyzes are performed in a single step without any intermediate steps. SERS technique offers additional benefits rather than other analytical techniques including high selectivity, ultrasensitive detection, uncomplicated protocols, in situ sampling, on-set capability and cost-effectiveness. As a result of the combination of developments in materials and nanotechnology science with the SERS analysis technique, this technique strengthens its use advantage day by day. The most important factor that limited the use of this technique was the fact that the solution containing the desired analyte(s) was dropped onto the SERS substrate and the same substrate could not be reused in subsequent analyses. To solve this problem, scientists have focused on developing reusable SERS substrates in recent years. In these studies, scientists basically used three SERS substrate cleaning applications (1) washing the SERS substrate with a suitable solvent that can elute the analyte from SERS surface after analysis, (2) cleaning the SERS substrate with catalytic degradation of analytes after analysis by modifying them with catalytic active materials and (3) Applying plasma cleaning procedure to SERS substrate after analysis and (4) applying adsorption and desorption procedure prior to SERS analysis. Herein, the aim of this review article is to evaluate the reusable SERS substrates-based methods based on their level of development and their potential to recycle. This review offers a coherent discussion on a wide range of sensing schemes employed in fabricating the SERS substrates. We utilized a critical approach in which elaborative examples were selected to highlight key shortcomings of various experimental configurations. In the same vein, there is a discussion of the advantages and limitations concerning the key instrumental advances and the expansion of the recent methods developed in this area.

7.
Eur J Med Chem ; 277: 116774, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39178726

ABSTRACT

Protein tyrosine phosphatase nonreceptor type 2 (PTPN2) is an enzyme that dephosphorylates proteins with tyrosine residues, thereby modulating relevant signaling pathways in vivo. PTPN2 acts as tumor suppressor or tumor promoter depending on the context. In some cancers, such as colorectal, and lung cancer, PTPN2 defects could impair the protein tyrosine kinase pathway, which is often over-activated in cancer cells, and inhibit tumor development and progression. However, PTPN2 can also suppress tumor immunity by regulating immune cells and cytokines. The structure, functions, and substrates of PTPN2 in various tumor cells were reviewed in this paper. And we summarized the research status of small molecule inhibitors and degraders of PTPN2. It also highlights the potential opportunities and challenges for developing PTPN2 inhibitors as anticancer drugs.

8.
Sci Total Environ ; 951: 175677, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39181265

ABSTRACT

Although mangrove forests can uptake atmospheric CO2 and store carbon as organic matter called "blue carbon", it is also an important natural source of greenhouse gas methane. Methanogens are major contributors to methane and play important roles in the global carbon cycle. However, our understanding of the key microbes and metabolic pathways responsible for methanogenesis under specific substrates in mangrove sediments is still very limited. Here, we set an anaerobic incubation to evaluate the responses of methanogens in mangrove sediments from South China to the addition of diverse methanogenic substrates (H2/CO2, acetate, trimethylamine (TMA), and methanethiol (MT)) and further investigated the dynamics of the whole microbial community. Our results showed that diverse substrates stimulated methanogenic activities at different times. The stimulation of methanogenesis was more pronounced at early and late periods by the addition of methylotrophic substrates TMA and MT, respectively. The amplicon sequencing analysis showed that genus Methanococcoides was mainly responsible for TMA-utilized methanogenesis in mangrove sediment, while the multitrophic Methanococcus was most abundant in H2/CO2 and MT treatments. Apart from that, the bacteria enrichments of Syntrophotalea, Clostridium_sensu_stricto_12, Fusibacter in MT treatments might also be associated with the stimulation of methane production. In addition, the metagenomic analysis suggested that Methanosarcinaceae was also one of the key methanogens in MT treatments with different genomic information compared to that in TMA treatments. Finally, the total relative abundances of methanogenesis-related genes were also highest in TMA and MT treatments. These results will help advance our understanding of the contributions of different methanogenesis pathways and methanogens to methane emissions in mangrove sediments.

9.
Mar Environ Res ; 200: 106660, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39088889

ABSTRACT

eDNA metabarcoding has been increasingly employed in the monitoring of marine invertebrate non-indigenous species (NIS), in particular using filtered seawater. However, comprehensive detection of all NIS may require a diversity of sampling substrates. To assess the effectiveness of 5 sample types (hard and artificial substrates, water, zooplankton) on the recovery of invertebrates' diversity, two marinas were monitored over three time points, using COI and 18S rRNA genes as DNA metabarcoding markers. We detected a total of 628 species and 23 NIS, with only up to 9% species and 17% of NIS detected by all sample types. Hard and artificial substrates were similar to each other but displayed the most significant difference in invertebrate recovery when compared to water eDNA and zooplankton. Five NIS are potential first records for Portugal. No NIS were detected in all sample types and seasons, highlighting the need for varied sampling approaches, and consideration of temporal variation for comprehensive marine NIS surveillance.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Invertebrates , Animals , Invertebrates/genetics , Introduced Species , Portugal , RNA, Ribosomal, 18S/genetics , Environmental Monitoring/methods , Aquatic Organisms/genetics
10.
Article in English | MEDLINE | ID: mdl-39143384

ABSTRACT

Ectoine, a biologically significant compound, was successfully produced by a strain of bacteria capable of utilizing sucrose. In a ground-breaking approach, we harnessed the potential of sugar beet molasses, a by-product rich in sucrose, amino acid, and vitamins, as a growth medium for this purpose. Through meticulous investigation, we identified the ideal conditions for maximizing ectoine synthesis. This remarkable milestone was reached by introducing only 1 g of (NH4)2SO4 and 5 mL of molasses per liter, maintaining a pH level of 8.0, upholding a 7.5% NaCl concentration, employing agitation at 120 rpm, and sustaining a temperature of 30 °C. This study marks a pioneering endeavour as it represents the first instance where molasses has been effectively employed to produce ectoine through the cultivation of Nesterenkonia sp. We showcased the production of 75.56 g of the valuable compound ectoine utilizing 1 L of waste molasses with this specific bacterial strain. These findings hold tremendous promise, not only in terms of resource utilization but also for the potential applications of ectoine in various biological contexts.

11.
Cells ; 13(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39120303

ABSTRACT

Human NAD(P)H-quinone oxidoreductase1 (HNQO1) is a two-electron reductase antioxidant enzyme whose expression is driven by the NRF2 transcription factor highly active in the prooxidant milieu found in human malignancies. The resulting abundance of NQO1 expression (up to 200-fold) in cancers and a barely detectable expression in body tissues makes it a selective marker of neoplasms. NQO1 can catalyze the repeated futile redox cycling of certain natural and synthetic quinones to their hydroxyquinones, consuming NADPH and generating rapid bursts of cytotoxic reactive oxygen species (ROS) and H2O2. A greater level of this quinone bioactivation due to elevated NQO1 content has been recognized as a tumor-specific therapeutic strategy, which, however, has not been clinically exploited. We review here the natural and new quinones activated by NQO1, the catalytic inhibitors, and the ensuing cell death mechanisms. Further, the cancer-selective expression of NQO1 has opened excellent opportunities for distinguishing cancer cells/tissues from their normal counterparts. Given this diagnostic, prognostic, and therapeutic importance, we and others have engineered a large number of specific NQO1 turn-on small molecule probes that remain latent but release intense fluorescence groups at near-infrared and other wavelengths, following enzymatic cleavage in cancer cells and tumor masses. This sensitive visualization/quantitation and powerful imaging technology based on NQO1 expression offers promise for guided cancer surgery, and the reagents suggest a theranostic potential for NQO1-targeted chemotherapy.


Subject(s)
NAD(P)H Dehydrogenase (Quinone) , Neoplasms , Humans , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , Neoplasms/drug therapy , Neoplasms/diagnostic imaging , Neoplasms/pathology , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Animals , Quinones/pharmacology , Quinones/metabolism , Molecular Targeted Therapy
12.
Article in English | MEDLINE | ID: mdl-39166707

ABSTRACT

Developing surfaces that effectively repel low-surface-tension liquids with tunable adhesive properties remains a pivotal challenge. Micronano hierarchical re-entrant structures emerge as a promising solution, offering a robust structural defense against liquid penetration, minimizing area fraction, and creating narrow gaps that generate substantial upward Laplace pressure. However, the absence of an efficient, scalable, and tunable construction method has impeded their widespread applications. Here, drawing inspiration from springtail epidermal structures, octopus suckers, and rose petals, we present a scalable manufacturing strategy for artificial micronano hierarchical T-shaped structures. This strategy employs double-transfer UV-curing nanoimprint lithography to form nanostructures on microstructured surfaces, offering high structural tunability. This approach enables precise control over topography, feature size, and arrangement of nano- and microscale sections, resulting in superamphiphobic surfaces that exhibit high contact angles (>150°) and tunable adhesive forces for low-surface-energy liquids. These surfaces can be applied to droplet-based microreactors, programmable droplet-transfer systems, and self-cleaning surfaces suitable for various liquids, particularly those with low surface tension. Remarkably, we have also succeeded in fabricating the hierarchical structures on flexible and transparent substrates. We demonstrate the advantages of this strategy in the fabrication of hierarchical micronanostructures, opening up a wide range of potential applications.

13.
Chem Asian J ; : e202400565, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954385

ABSTRACT

Asymmetric synthesis of chiral chemicals in high enantiomeric excess (ee) is pivotal to the pharmaceutical industry, but classic chemistry usually requires multi-step reactions, harsh conditions, and expensive chiral ligands, and sometimes suffers from unsatisfactory enantioselectivity. Enzymatic catalysis is a much greener and more enantioselective alternative, and cascade biotransformations with multi-step reactions can be performed in one pot to avoid costly intermediate isolation and minimise waste generation. One of the most attractive applications of enzymatic cascade transformations is to convert easily available simple racemic substrates into valuable functionalised chiral chemicals in high yields and ee. Here, we review the three general strategies to build up such cascade biotransformations, including enantioconvergent reaction, dynamic kinetic resolution, and destruction-and-reinstallation of chirality. Examples of cascade transformations using racemic substrates such as racemic epoxides, alcohols, hydroxy acids, etc. to produce the chiral amino alcohols, hydroxy acids, amines, and amino acids are given. The product concentration, ee, and yield, scalability, and substrate scope of these enzymatic cascades are critically reviewed. To further improve the efficiency and practical applicability of the cascades, enzyme engineering to enhance catalytic activities of the key enzymes using the latest microfluidics-based ultrahigh-throughput screening and artificial intelligence-guided directed evolution could be a useful approach.

14.
Mar Environ Res ; 200: 106631, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38986234

ABSTRACT

The use of Artificial substrates (AS) as sampling devices addresses challenges in macrofaunal quantitative sampling. While effectively capturing biodiversity patterns, the time-intensitive identification process at the species level remains a substantial challenge. The Taxonomic Sufficiency approach (TS), where only taxa above species level are identified, arises as a potential solution to be tested across different environmental monitoring scenarios. In this paper, we analyzed three AS macrobenthic datasets to evaluate the odds of TS in improving the cost-effective ratio in AS monitoring studies and establish the highest resolution level to detect assemblage changes under different environmental factors. Results indicated that the family level emerged as a pragmatic compromise, balancing precision and taxonomic effort. Cost/benefit analysis supported TS efficiency, maintaining correlation stability until the family level. Results also showed that reducing resolution to family does not entail a significant Loss of Information. This study contributes to the discourse on TS applicability, highlighting its practicality in monitoring scenarios, including spatial-temporal studies, and rapid biodiversity assessments. Additionally, it highlights the "second best approach" of family-level practicality depending on the specific monitoring scenario and recognizes the importance of the species-level "best approach" before applying TS in monitoring studies.


Subject(s)
Biodiversity , Ecosystem , Environmental Monitoring , Environmental Monitoring/methods , Animals , Classification/methods , Aquatic Organisms/physiology , Invertebrates/physiology
15.
J Biol Chem ; 300(8): 107546, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992435

ABSTRACT

In seeding plants, biosynthesis of the phytohormone ethylene, which regulates processes including fruit ripening and senescence, is catalyzed by 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase. The plant pathogen Pseudomonas savastanoi (previously classified as: Pseudomonas syringae) employs a different type of ethylene-forming enzyme (psEFE), though from the same structural superfamily as ACC oxidase, to catalyze ethylene formation from 2-oxoglutarate (2OG) in an arginine dependent manner. psEFE also catalyzes the more typical oxidation of arginine to give L-Δ1-pyrroline-5-carboxylate (P5C), a reaction coupled to oxidative decarboxylation of 2OG giving succinate and CO2. We report on the effects of C3 and/or C4 substituted 2OG derivatives on the reaction modes of psEFE. 1H NMR assays, including using the pure shift method, reveal that, within our limits of detection, none of the tested 2OG derivatives is converted to an alkene; some are converted to the corresponding ß-hydroxypropionate or succinate derivatives, with only the latter being coupled to arginine oxidation. The NMR results reveal that the nature of 2OG derivatization can affect the outcome of the bifurcating reaction, with some 2OG derivatives exclusively favoring the arginine oxidation pathway. Given that some of the tested 2OG derivatives are natural products, the results are of potential biological relevance. There are also opportunities for therapeutic or biocatalytic regulation of the outcomes of reactions catalyzed by 2OG-dependent oxygenases by the use of 2OG derivatives.

16.
Structure ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39013461

ABSTRACT

Two structures of fructose 6-phosphate aldolase, the wild-type and an engineered variant containing five active-site mutations, have been solved by cryoelectron microscopy (cryo-EM). The engineered variant affords production of aldols from aryl substituted ketones and aldehydes. This structure was solved to a resolution of 3.1 Å and contains the critical iminium reaction intermediate trapped in the active site. This provides new information that rationalizes the acquired substrate scope and aids in formulating hypotheses of the chemical mechanism. A Tyr residue (Y131) is positioned for a role as catalytic acid/base during the aldol reaction and the different structures demonstrate mobility of this amino acid residue. Further engineering of this fructose 6-phosphate aldolase (FSA) variant, guided by this new structure, identified additional FSA variants that display improved carboligation activities with 2-hydroxyacetophenone and phenylacetaldehyde.

17.
Methods Enzymol ; 700: 455-483, 2024.
Article in English | MEDLINE | ID: mdl-38971610

ABSTRACT

Over the years, it has become more and more obvious that lipid membranes show a very complex behavior. This behavior arises in part from the large number of different kinds of lipids and proteins and how they dynamically interact with each other. In vitro studies using artificial membrane systems have shed light on the heterogeneity based on lipid-lipid interactions in multicomponent bilayer mixtures. Inspired by the raft hypothesis, the coexistence of liquid-disordered (ld) and liquid-ordered (lo) phases has drawn much attention. It was shown that ternary lipid mixtures containing low- and high-melting temperature lipids and cholesterol can phase separate into a lo phase enriched in the high-melting lipids and cholesterol and a ld phase enriched in the low-melting lipids. Depending on the model membrane system under investigation, different domain sizes, shapes, and mobilities have been found. Here, we describe how to generate phase-separated lo/ld phases in model membrane systems termed pore-spanning membranes (PSMs). These PSMs are prepared on porous silicon substrates with pore sizes in the micrometer regime. A proper functionalization of the top surface of the substrates is required to achieve the spreading of giant unilamellar vesicles (GUVs) to obtain PSMs. Starting with lo/ld phase-separated GUVs lead to membrane heterogeneities in the PSMs. Depending on the functionalization strategy of the top surface of the silicon substrate, different membrane heterogeneities are observed in the PSMs employing fluorescence microscopy. A quantitative analysis of the heterogeneity as well as the dynamics of the lipid domains is described.


Subject(s)
Lipid Bilayers , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Porosity , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Cholesterol/chemistry
18.
Materials (Basel) ; 17(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38998324

ABSTRACT

In this communication, the design and fabrication of optical active metamaterials were developed by the incorporation of graphene and joining it to different substrates with variable spectroscopical properties. It focuses on how graphene and its derivatives could generate varied optical setups and materials considering modified and enhanced optics within substrates and surfaces. In this manner, it is discussed how light could be tuned and modified along its path from confined nano-patterned surfaces or through a modified micro-lens. In addition to these optical properties generated from the physical interaction of light, it should be added that the non-classical light pathways and quantum phenomena could participate. In this way, graphene and related carbon-based materials with particular properties, such as highly condensed electronics, pseudo-electromagnetic properties, and quantum and luminescent properties, could be incorporated. Therefore, the modified substrates could be switched by photo-stimulation with variable responses depending on the nature of the material constitution. Therefore, the optical properties of graphene and its derivatives are discussed in these types of metasurfaces with targeted optical active properties, such as within the UV, IR, and terahertz wavelength intervals, along with their further properties and respective potential applications.

19.
Curr Res Microb Sci ; 7: 100250, 2024.
Article in English | MEDLINE | ID: mdl-38974669

ABSTRACT

The increasing demand for sustainable energy has brought biobutanol as a potential substitute for fossil fuels. The Clostridium genus is deemed essential for biobutanol synthesis due to its capability to utilize various substrates. However, challenges in maintaining fermentation continuity and achieving commercialization persist due to existing barriers, including butanol toxicity to Clostridium, low substrate utilization rates, and high production costs. Proper substrate selection significantly impacts fermentation efficiency, final product quality, and economic feasibility in Clostridium biobutanol production. This review examines underutilized substrates for biobutanol production by Clostridium, which offer opportunities for environmental sustainability and a green economy. Extensive research on Clostridium, focusing on strain development and genetic engineering, is essential to enhance biobutanol production. Additionally, critical suggestions for optimizing substrate selection to enhance Clostridium biobutanol production efficiency are also provided in this review. In the future, cost reduction and advancements in biotechnology may make biobutanol a viable alternative to fossil fuels.

20.
J Microbiol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985432

ABSTRACT

Most microorganisms resist pure cultivation under conventional laboratory conditions. One of the primary issues for this un-culturability is the absence of biologically produced growth-promoting factors in traditionally defined growth media. However, whether cultivating microbes by providing spent culture supernatant of pivotal microbes in the growth medium can be an effective approach to overcome this limitation is still an under-explored area of research. Here, we used the spent culture medium (SCM) method to isolate previously uncultivated marine bacteria and compared the efficiency of this method with the traditional cultivation (TC) method. In the SCM method, Ca. Bathyarchaeia-enriched supernatant (10%) was used along with recalcitrant organic substrates such as lignin, humic acid, and organic carbon mixture. Ca. Bathyarchaeia, a ubiquitous class of archaea, have the capacity to produce metabolites, making their spent culture supernatant a key source to recover new bacterial stains. Both cultivation methods resulted in the recovery of bacterial species from the phyla Pseudomonadota, Bacteroidota, Actinomycetota, and Bacillota. However, our SCM approach also led to the recovery of species from rarely cultivated groups, such as Planctomycetota, Deinococcota, and Balneolota. In terms of the isolation of new taxa, the SCM method resulted in the cultivation of 80 potential new strains, including one at the family, 16 at the genus, and 63 at the species level, with a novelty ratio of ~ 35% (80/219). In contrast, the TC method allowed the isolation of ~ 10% (19/171) novel strains at species level only. These findings suggest that the SCM approach improved the cultivation of novel and diverse bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL