Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.239
Filter
1.
Steroids ; 209: 109466, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38955303

ABSTRACT

Hydrocortisone succinate (1) is a synthetic anti-inflammatory drug and key intermediate in the synthesis of other steroidal drugs. This work is based on the fungal biotransformation of 1, using Monascus purpureus and Cunninghamella echinulata strains. Comopound 1 was transformed into four metabolites, identified as hydrocortisone (2), 11ß-hydroxyandrost-4-en-3,17-dione (3), Δ1-cortienic acid (4), and hydrocortisone-17-succinate (5), obtained through side chain cleavage, hydrolysis, dehydrogenation, and oxidation reactions. These compounds have previously been synthesized either chemically or enzymatically from different precursors. Though this is not the first report on the biotransformation of 1, but it obviously is a first, where the biotransformed products of compound 1 have been characterized structurally with the help of modern spectroscopic techniques. It is noteworthy that these products have already shown biological potential, however a more thorough investigation of the anti-inflammatory properties of these metabolites would be of high value. These results not only emphasize upon the immense potential of biotransformation in catalysis of reactions, otherwise not-achievable chemically, but also holds promise for the development of novel anti-inflammatory compounds.


Subject(s)
Biotransformation , Cunninghamella , Hydrocortisone , Monascus , Cunninghamella/metabolism , Monascus/metabolism , Hydrocortisone/metabolism , Hydrocortisone/analogs & derivatives
2.
Bioresour Technol ; 407: 131137, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39043278

ABSTRACT

Klebsiella oxytoca KP001-TF60 (ΔadhEΔpta-ackAΔldhAΔbudABΔpflBΔtdcDΔpmd) was re-engineered to direct more carbon flux towards succinate production with less acetate. Glucose uptake, cell growth, and carbon distribution were restricted by alterations in relative expressions and nucleotide sequences of genes associated with PEP and pyruvate metabolisms. Transcripts of pck, ppc, and frd genes were up-regulated for enhancing NADH reoxidation during succinate production while increased pyk and tdcE transcripts were observed due to maintenance of acetyl-CoA through the oxidative branch of TCA cycle. Based on whole-genome sequencing, several genes in sugars-specific PTS (ptsG, bglF, chbR, fruA, mtlR, and treY), ABC transporters (alsK, and rbsK), Major Facilitator Superfamily (uhpB and setB), and catabolite repression (cyaA and csrB) were found to be mutated. The strain produced succinate yield up to 0.89 g/g (∼80 % theoretical maximum) with acetate < 1 g/L, and may be one of the succinate producers applied in an industrial-production scale with simplified purification processes.

3.
Gut Microbes ; 16(1): 2379624, 2024.
Article in English | MEDLINE | ID: mdl-39042424

ABSTRACT

Symbiosis between the host and intestinal microbial communities is essential for human health. Disruption in this symbiosis is linked to gastrointestinal diseases, including inflammatory bowel diseases, as well as extra-gastrointestinal diseases. Unbalanced gut microbiome or gut dysbiosis contributes in multiple ways to disease frequency, severity and progression. Microbiome taxonomic profiling and metabolomics approaches greatly improved our understanding of gut dysbiosis features; however, the precise mechanisms involved in gut dysbiosis establishment still need to be clarified. The aim of this review is to present new actors and mechanisms underlying gut dysbiosis formation following parasitic infection or in a context of altered Paneth cells, revealing the existence of a critical crosstalk between Paneth and tuft cells to control microbiome composition.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Paneth Cells , Dysbiosis/microbiology , Humans , Animals , Paneth Cells/metabolism , Symbiosis , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Tuft Cells
4.
Food Chem Toxicol ; : 114890, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39059689

ABSTRACT

Consumers are exposed to succinate dehydrogenase inhibitor (SDHI) pesticides through their diet. A cumulative dietary risk assessment for the French population has been performed with French monitoring data (2017-2021) and consumption data from INCA3. The calculation followed a two-tiered approach, using deterministic then probabilistic methods. It was carried out, using European health based guidance values (HBGV) derived for each active substance to characterise their toxicity. In Tier I, the calculated hazard index of 0.12 was below the threshold of 1 and in Tier II, the total margin of exposure at percentile 99.9 remains above the trigger value of 100 (1798 [1631 - 2311]). In Tier II, the three main risk drivers identified at the upper tail of the distribution were strawberries-fluopyram (19.1%), peaches-fluopyram (14.1%) and table grapes-boscalid (10.5%). Finally, the impact of the major sources of uncertainties was qualitatively evaluated. All together, they were considered of low impact on the outcomes. This work demonstrates the absence of unacceptable chronic risk related to the cumulative exposure of SDHI for French consumers during the 2017-2021 period.

5.
Nat Prod Res ; : 1-9, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034470

ABSTRACT

Combretum paniculatum, a deciduous tree from the Combretaceae family, has been traditionally used in ethnomedicine for treating conditions such as chronic diarrhoea, dysentery, stomach pain, and wounds. The research aimed to analyse the plant's chemical composition and its effectiveness against microbial infections. Two compounds were isolated from the plant's stem barks and identified as cholest-5-en-3-ol and dihexyldecyl succinate, with the latter being newly discovered within the Combretum genus. Both isolated compounds and the plant's crude extracts were tested against bacteria and fungi. While the isolated compounds showed moderate antibacterial and minimal antifungal activities, the crude extracts displayed superior antimicrobial effects, likely due to the synergistic interactions among multiple compounds. These results suggest potential for further exploration of C. paniculatum's chemical constituents and their application in treating microbial diseases within the traditional medicine framework.

6.
Microb Cell Fact ; 23(1): 194, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970033

ABSTRACT

BACKGROUND: Biotransformation of CO2 into high-value-added carbon-based products is a promising process for reducing greenhouse gas emissions. To realize the green transformation of CO2, we use fatty acids as carbon source to drive CO2 fixation to produce succinate through a portion of the 3-hydroxypropionate (3HP) cycle in Cupriavidus necator H16. RESULTS: This work can achieve the production of a single succinate molecule from one acetyl-CoA molecule and two CO2 molecules. It was verified using an isotope labeling experiment utilizing NaH13CO3. This implies that 50% of the carbon atoms present in succinate are derived from CO2, resulting in a twofold increase in efficiency compared to prior methods of succinate biosynthesis that relied on the carboxylation of phosphoenolpyruvate or pyruvate. Meanwhile, using fatty acid as a carbon source has a higher theoretical yield than other feedstocks and also avoids carbon loss during acetyl-CoA and succinate production. To further optimize succinate production, different approaches including the optimization of ATP and NADPH supply, optimization of metabolic burden, and optimization of carbon sources were used. The resulting strain was capable of producing succinate to a level of 3.6 g/L, an increase of 159% from the starting strain. CONCLUSIONS: This investigation established a new method for the production of succinate by the implementation of two CO2 fixation reactions and demonstrated the feasibility of ATP, NADPH, and metabolic burden regulation strategies in biological carbon fixation.


Subject(s)
Carbon Dioxide , Cupriavidus necator , Fatty Acids , Succinic Acid , Carbon Dioxide/metabolism , Cupriavidus necator/metabolism , Fatty Acids/metabolism , Succinic Acid/metabolism , Acetyl Coenzyme A/metabolism , NADP/metabolism
7.
J Microbiol Biotechnol ; 34(7): 1530-1543, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38973389

ABSTRACT

With an increase in the commercialization of bioplastics, the importance of screening for plastic-degrading strains and microbes has emerged. Conventional methods for screening such strains are time-consuming and labor-intensive. Therefore, we suggest a method for quickly and effectively screening plastic-degrading microbial strains through dual esterase assays for soil and isolated strains, using p-nitrophenyl alkanoates as substrates. To select microbe-abundant soil, the total amount of phospholipid fatty acids (PLFAs) included in each soil sample was analyzed, and esterase assays were performed for each soil sample to compare the esterase activity of each soil. In addition, by analyzing the correlation coefficients and sensitivity between the amount of PLFAs and the degree of esterase activity according to the substrate, it was confirmed that substrate pNP-C2 is the most useful index for soil containing several microbes having esterase activity. In addition, esterase assays of the isolated strains allowed us to select the most active strain as the degrading strain, and 16S rRNA results confirmed that it was Bacillus sp. N04 showed the highest degradation activity for polybutylene succinate (PBS) as measured in liquid culture for 7 days, with a degradation yield of 99%. Furthermore, Bacillus sp. N04 showed degradation activity against various bioplastics. We propose the dual application of p-nitrophenyl alkanoates as an efficient method to first select the appropriate soil and then to screen for plastic-degrading strains in it, and conclude that pNP-C2 in particular, is a useful indicator.

8.
Se Pu ; 42(7): 702-710, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-38966978

ABSTRACT

Organic acid metabolites exhibit acidic properties. These metabolites serve as intermediates in major carbon metabolic pathways and are involved in several biochemical pathways, including the tricarboxylic acid (TCA) cycle and glycolysis. They also regulate cellular activity and play crucial roles in epigenetics, tumorigenesis, and cellular signal transduction. Knowledge of the binding proteins of organic acid metabolites is crucial for understanding their biological functions. However, identifying the binding proteins of these metabolites has long been a challenging task owing to the transient and weak nature of their interactions. Moreover, traditional methods are unsuitable for the structural modification of the ligands of organic acid metabolites because these metabolites have simple and similar structures. Even minor structural modifications can significantly affect protein interactions. Thermal proteome profiling (TPP) provides a promising avenue for identifying binding proteins without the need for structural modifications. This approach has been successfully applied to the identification of the binding proteins of several metabolites. In this study, we investigated the binding proteins of two TCA cycle intermediates, i.e., succinate and fumarate, and lactate, an end-product of glycolysis, using the matrix thermal shift assay (mTSA) technique. This technique involves combining single-temperature (52 ℃) TPP and dose-response curve analysis to identify ligand-binding proteins with high levels of confidence and determine the binding affinity between ligands and proteins. To this end, HeLa cells were lysed, followed by protein desalting to remove endogenous metabolites from the cell lysates. The desalted cell lysates were treated with fumarate or succinate at final concentrations of 0.004, 0.04, 0.4, and 2 mmol/L in the experimental groups or 2 mmol/L sodium chloride in the control group. Considering that the cellular concentration of lactate can be as high as 2-30 mmol/L, we then applied lactate at final concentrations of 0.2, 1, 5, 10, and 25 mmol/L in the experimental groups or 25 mmol/L sodium chloride in the control group. Using high-sensitivity mass spectrometry coupled with data-independent acquisition (DIA) quantification, we quantified 5870, 5744, and 5816 proteins in succinate, fumarate, and lactate mTSA experiments, respectively. By setting stringent cut-off values (i.e., significance of changes in protein thermal stability (p-value)<0.001 and quality of the dose-response curve fitting (square of Pearson's correlation coefficient, R2)>0.95), multiple binding proteins for these organic acid metabolites from background proteins were confidently determined. Several known binding proteins were identified, notably fumarate hydratase (FH) as a binding protein for fumarate, and α-ketoglutarate-dependent dioxygenase (FTO) as a binding protein for both fumarate and succinate. Additionally, the affinity data for the interactions between these metabolites and their binding proteins were obtained, which closely matched those reported in the literature. Interestingly, ornithine aminotransferase (OAT), which is involved in amino acid biosynthesis, and 3-mercaptopyruvate sulfurtransferase (MPST), which acts as an antioxidant in cells, were identified as lactate-binding proteins. Subsequently, an orthogonal assay technique developed in our laboratory, the solvent-induced precipitation (SIP) technique, was used to validate the mTSA results. SIP identified OAT as the top target candidate, validating the mTSA-based finding that OAT is a novel lactate-binding protein. Although MPST was not identified as a lactate-binding protein by SIP, statistical analysis of MPST in the mTSA experiments with 10 or 25 mmol/L lactate revealed that MPST is a lactate-binding protein with a high level of confidence. Peptide-level empirical Bayes t-tests combined with Fisher's exact test also supported the conclusion that MPST is a lactate-binding protein. Lactate is structurally similar to pyruvate, the known binding protein of MPST. Therefore, assuming that lactate could potentially occupy the binding site of pyruvate on MPST. Overall, the novel binding proteins identified for lactate suggest their potential involvement in amino acid synthesis and redox balance regulation.


Subject(s)
Citric Acid Cycle , Humans , HeLa Cells , Succinic Acid/metabolism , Succinic Acid/chemistry , Fumarates/metabolism , Fumarates/chemistry
9.
World J Clin Cases ; 12(18): 3321-3331, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983415

ABSTRACT

BACKGROUND: Sudden sensorineural hearing loss (SSNHL), characterized by a rapid and unexplained loss of hearing, particularly at moderate to high frequencies, presents a significant clinical challenge. The therapeutic use of methylprednisolone sodium succinate (MPSS) via different administration routes, in combination with conventional medications, remains a topic of interest. AIM: To compare the therapeutic efficacy of MPSS administered via different routes in combination with conventional drugs for the treatment of mid- to high-frequency SSNHL. METHODS: The medical records of 109 patients with mid- to high-frequency SSNHL were analyzed. The patients were divided into three groups based on the route of administration: Group A [intratympanic (IT) injection of MPSS combined with mecobalamin and Ginkgo biloba leaf extract injection], Group B (intravenous injection of MPSS combined with mecobalamin and Ginkgo biloba leaf extract injection), and Group C (single IT injection of MPSS). The intervention effects were compared and analyzed. RESULTS: The posttreatment auditory thresholds in Group A (21.23 ± 3 .34) were significantly lower than those in Groups B (28.52 ± 3.36) and C (30.23 ± 4.21; P < 0.05). Group A also exhibited a significantly greater speech recognition rate (92.23 ± 5.34) than Groups B and C. The disappearance time of tinnitus, time to hearing recovery, and disappearance time of vertigo in Group A were significantly shorter than those in Groups B and C (P < 0.05). The total effective rate in Group A (97.56%) was significantly greater than that in Groups B and C (77.14% and 78.79%, χ 2 = 7.898, P = 0.019). Moreover, the incidence of adverse reactions in Groups A and C was significantly lower than that in Group B (4.88%, 3.03% vs 2.57%, χ 2 = 11.443, P = 0.003), and the recurrence rate in Group A was significantly lower than that in Groups B and C (2.44% vs 20.00% vs 21.21%, χ 2 = 7.120, P = 0.028). CONCLUSION: IT injection of MPSS combined with conventional treatment demonstrates superior efficacy and safety compared to systemic administration via intravenous infusion and a single IT injection of MPSS. This approach effectively improves patients' hearing and reduces the risk of disease recurrence.

10.
Bull Exp Biol Med ; 177(1): 51-56, 2024 May.
Article in English | MEDLINE | ID: mdl-38954302

ABSTRACT

The effectiveness of ethylmethylhydroxypyridine succinate (EMHPS) in acute alcohol intoxication was tested in a study on SPF male outbred ICR mice. Ethanol (concentration 40%) was administered to animals once intraperitoneally at a dose of 4 g/kg. Control animals were injected with saline in an equivalent volume. In 15 min after the administration of alcohol, the animals were injected intravenously or intramuscularly with EMHPS at a dose of 50 or 100 mg/kg or with saline via the same route in an equivalent volume. Animal behavior was tested 3 and 24 h later after administration of the substances. After 3 and 24 h, mice in the pathological control groups developed semiptosis, the gait and the turning over reflex were impaired, the strength of the hind limbs decreased and the distance between the hind limbs increased when landing; in the open-field test, the latency of the first movement increased, and the number of rearing postures decreased. Intravenous and intramuscular administration of EMHPS in doses of 50 and 100 mg/kg had a pronounced antitoxic and neuroprotective effect in acute alcohol intoxication: all studied parameters did not differ significantly from the control.


Subject(s)
Alcoholic Intoxication , Ethanol , Mice, Inbred ICR , Pyridines , Animals , Male , Alcoholic Intoxication/drug therapy , Mice , Pyridines/pharmacology , Pyridines/therapeutic use , Injections, Intramuscular , Behavior, Animal/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
11.
Pharm Dev Technol ; : 1-12, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38965754

ABSTRACT

Depression, the second biggest cause of disability worldwide, is widespread. Many antidepressant medications, including Desvenlafaxine Succinate (D.V.S.), function by elevating neurotransmitter levels at the synapse through the inhibition of reabsorption by neurons. However, the effectiveness of these treatments is often limited by their inability to reach the brain using conventional administration methods. Bilosome-stabilized nanovesicles containing bile salts have drawn much interest because of their adaptability and versatility in various applications. This study aimed to address this issue by formulating intranasal bilosomes incorporated into a mucoadhesive in situ gel to deliver D.V.S. directly to the brain for depression treatment. The desvenlafaxine-loaded bilosomes were developed using a thin film hydration method based on the l-optimal design. They were intended to provide a more convenient route of administration for antidepressants, enhancing bioavailability and brain targeting through intranasal delivery. The study assessed the optimized bilosomes for particle size (311.21 ± 0.42 nm), Zeta potential (-37.35 ± 0.43)and encapsulation efficiency (99.53 ± 0.41%) and further evaluated them in ex vivo and in vivo pharmacokinetics studies. Pharmacokinetic data reveal enhanced brain uptake compared to a free drug. A statistically optimized bilosome formulation was determined. The intranasal administration of mucoadhesive in situ gel containing desvenlafaxine succinate-loaded bilosomes facilitated direct nose-to-brain drug delivery, improving brain bioavailability.

12.
Molecules ; 29(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998963

ABSTRACT

Solifenacin (SFC) is a potent muscarinic antagonist that effectively reduces bladder muscle contraction, thereby alleviating symptoms such as frequency of micturition and urgency. Oxidation of SFC leads to the formation of impurities like Impurity K. Effective analysis and control of this impurity is crucial for ensuring compliance with regulatory standards and safeguarding patient health. To address these challenges, we propose a novel one-step synthesis of Impurity K from SFC. Impurity K was synthesized using cerium(IV) ammonium nitrate (CAN) in water/acetonitrile as the solvent. Additionally, we describe a new HPLC-MS method for the detection of Impurity K in solifenacin succinate tablets.


Subject(s)
Solifenacin Succinate , Solifenacin Succinate/chemistry , Solifenacin Succinate/analysis , Chromatography, High Pressure Liquid/methods , Drug Contamination , Mass Spectrometry/methods , Cerium/chemistry , Muscarinic Antagonists/analysis , Muscarinic Antagonists/chemistry , Muscarinic Antagonists/chemical synthesis , Tablets , Acetonitriles/chemistry , Liquid Chromatography-Mass Spectrometry
13.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000026

ABSTRACT

Bursaphelenchus xylophilus is a dangerous quarantine pest that causes extensive damage to pine ecosystems worldwide. Cyclobutrifluram, a succinate dehydrogenase inhibitor (SDHI), is a novel nematicide introduced by Syngenta in 2013. However, the nematocidal effect of cyclobutrifluram against plant-parasitic nematodes remains underexplored. Therefore, here, we aim to address this knowledge gap by evaluating the toxicity, effects, and mode of action of cyclobutrifluram on B. xylophilus. The result shows that cyclobutrifluram is the most effective agent, with an LC50 value of 0.1078 mg·L-1. At an LC20 dose, it significantly reduced the population size to 10.40 × 103 ± 737.56-approximately 1/23 that of the control group. This notable impact may stem from the agent's ability to diminish egg-laying and hatching rates, as well as to impede the nematodes' development. In addition, it has also performed well in the prevention of pine wilt disease, significantly reducing the incidence in greenhouses and in the field. SDH consists of a transmembrane assembly composed of four protein subunits (SDHA to SDHD). Four sdh genes were characterized and proved by RNAi to regulate the spawning capacity, locomotion ability, and body size of B. xylophilus. The mortality of nematodes treated with sdhc-dsRNA significantly decreased upon cyclobutrifluram application. Molecular docking further confirmed that SDHC, a cytochrome-binding protein, is the target. In conclusion, cyclobutrifluram has a good potential for trunk injection against B. xylophilus. This study provides valuable information for the screening and application of effective agents in controlling and preventing PWD in forests.


Subject(s)
Antinematodal Agents , Succinate Dehydrogenase , Tylenchida , Animals , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Antinematodal Agents/pharmacology , Tylenchida/drug effects , Tylenchida/genetics , Tylenchida/physiology , Pinus/parasitology , Molecular Docking Simulation , Plant Diseases/parasitology , Mitochondria/drug effects , Mitochondria/metabolism
14.
Biochim Biophys Acta Bioenerg ; 1865(4): 149494, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960079

ABSTRACT

Mitochondrial bioenergetics in females and males is different. However, whether mitochondria from male and female brains display differences in enzymes of oxidative phosphorylation remains unknown. Therefore, we characterized mitochondrial complexes from the brains of male and female macaques (Macaca mulatta). Cerebral tissue from male macaques exhibits elevated content and activity of mitochondrial complex I (NADH:ubiquinone oxidoreductase) and higher activity of complex II (succinate dehydrogenase) compared to females. No significant differences between sexes were found in the content of α-ketoglutarate dehydrogenase or in the activities of cytochrome c oxidase and F1Fo ATPase. Our results underscore the need for further investigations to elucidate sex-related mitochondrial differences in humans.

15.
Biochim Biophys Acta Bioenerg ; 1865(4): 149488, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950690

ABSTRACT

Staphylococcus aureus, a Gram-positive bacterium, is an opportunistic pathogen and one of the most frequent causes for community acquired and nosocomial infections that has become a major public health threat due to the increased incidence of its drug resistance. Although being a prominent pathogen, its energetic metabolism is still underexplored, and its respiratory enzymes have been escaping attention. S. aureus can adapt to different environmental conditions by performing both aerobic and anaerobic respirations, which is particularly important as it frequently colonizes niches with different oxygen concentrations. This adaptability is derived from the composition of its respiratory chain, specifically from the presence of terminal electron acceptor reductases. The plasticity of S. aureus energy metabolism is enlarged by the ten quinone reductases encoded in its genome, eight of them being monotopic proteins. The role of these proteins is critical as they connect the different catabolic pathways to the respiratory chain. In this work, we identify, describe, and revise the monotopic quinone reductases present in S. aureus, providing an integrated view of its respiratory chain.

16.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-39027995

ABSTRACT

Following the publication of the above article, the authors realized that, in Fig. 1D on p. 7363, the data panel selected for the '0.5 mM Succinate' group was duplicated in Fig. 1B (Control) in another article of theirs published in FASEB J ("α­Ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ADRB2 pathway": doi: 10.1096/fj.201700670R) due to the fact that they had inadvertently confused the layout of the two figures. The authors apologize for this error. Secondly, in terms of the quantification of the blots shown in Fig. 2A, ß­actin was not in fact used as a loading control; the phosphoproteins were normalized against the levels of the relative total protein, and the layout of Fig. 2A has been revised to reflect this (note that the the figure legend for Fig. 2 has also been revised: The last sentence no longer reads, "ß­actin was used as a loading control."). The revised versions of Figs. 1 and 2 are shown on the next page. Note that these errors did not affect the results or the main conclusions reported in the study, and no corrections were required either to the descriptions in the text or to the histograms shown in these figures. All the authors approve of the publication of this corrigendum, and the authors are grateful to the Editor of Molecular Medicine Reports for allowing them the opportunity to publish this. The authors regret their oversight in allowing these errors to be included in the paper, and apologize to the readership for any inconvenience caused. [Molecular Medicine Reports 16: 7361­7366, 2017; DOI: 10.3892/mmr.2017.7554].

17.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38952008

ABSTRACT

Microbial interactions impact the functioning of microbial communities. However, microbial interactions within host-associated communities remain poorly understood. Here, we report that the beneficiary rhizobacterium Niallia sp. RD1 requires the helper Pseudomonas putida H3 for bacterial growth and beneficial interactions with the plant host. In the absence of the helper H3 strain, the Niallia sp. RD1 strain exhibited weak respiration and elongated cell morphology without forming bacterial colonies. A transposon mutant of H3 in a gene encoding succinate-semialdehyde dehydrogenase displayed much attenuated support of RD1 colony formation. Through the subsequent addition of succinate to the media, we found that succinate serves as a public good that supports RD1 growth. Comparative genome analysis highlighted that RD1 lacked the gene for sufficient succinate, suggesting its evolution as a beneficiary of succinate biosynthesis. The syntrophic interaction between RD1 and H3 efficiently protected tomato plants from bacterial wilt and promoted tomato growth. The addition of succinate to the medium restored complex II-dependent respiration in RD1 and facilitated the cultivation of various bacterial isolates from the rhizosphere. Taken together, we delineate energy auxotrophic beneficiaries ubiquitous in the microbial community, and these beneficiaries could benefit host plants with the aid of helpers in the rhizosphere.


Subject(s)
Rhizosphere , Solanum lycopersicum , Succinic Acid , Solanum lycopersicum/microbiology , Succinic Acid/metabolism , Microbial Interactions , Soil Microbiology , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Pseudomonas putida/growth & development
18.
Anaerobe ; : 102883, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038530

ABSTRACT

OBJECTIVES: Syntrophy has been documented between pectinophiles and methanol-utilizing bacteria, along with instances of cross-feeding between pectinophiles and methanogens. However, studies on the ecology of pectinophiles in anaerobic digestion (AD) are lacking. Therefore, in this study, we aimed to elucidate the ecology of pectinophiles by isolating novel pectinophile forms and conducting a comprehensive analysis of their physiology and ecology. METHODS: Complex microbial communities from AD systems were enriched in a pectin-containing medium; subsequently, specific strains were isolated using a pectinophile isolation method. The carbon source assimilation and growth ability of the isolates, along with their symbiotic relationships, were evaluated using batch tests. RESULTS: Strain LPYR103-Pre exhibited 16S rRNA gene sequence similarity and average nucleotide identity values of 94.3% and 77.9%, respectively, compared to its closest related species, Segatella cerevisiae. Strain LPYR103-Pre demonstrated attenuated growth in the presence of eight common sugars but exhibited remarkably high growth in the presence of pectin, D-galacturonate, and D-glucuronate, with succinate being identified as a primary metabolite. Accumulation of succinate inhibited the growth of strain LPYR103-Pre. However, this growth impediment was alleviated by Dialister hominis LPYG114-Dih, whose growth required succinate. CONCLUSIONS: Our results elucidate the specific carbon source requirements of the Segatella-like strain LPYR103-Pre and succinate-mediated symbiosis involving D. hominis. These findings provide new insights into the degradation of pectin and its degradation products during AD, contributing to the identification of unknown pectinophiles.

19.
Int J Biol Macromol ; : 133786, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992551

ABSTRACT

The poor interfacial compatibility of natural fiber-reinforced polymer composites has become a major challenge in the development of industry-standard high-performance composites. To solve this problem, this study constructs a novel rigid-flexible balanced molecular crosslinked network transition interface in composites. The interface improves the interfacial compatibility of the composites by balancing the stiffness and strength of the fibers and the matrix, effectively improving the properties of the composites. The flexural strength and flexural modulus of the composites were enhanced by 38 % and 44 %, respectively. Water absorption decreased by 30 %. The initial and maximum thermal degradation temperatures increased by 20 °C and 16 °C, respectively. The maximum storage modulus increased by 316 %. Furthermore, the impact toughness was elevated by 41 %, attributed to the crosslinked network's efficacy in absorbing and dissipating externally applied energy. This innovative approach introduces a new theory of interfacial reinforcement compatibility, advancing the development of high-performance and sustainable biocomposites.

20.
Wiad Lek ; 77(5): 1063-1068, 2024.
Article in English | MEDLINE | ID: mdl-39008598

ABSTRACT

OBJECTIVE: Aim: To analyze latest research on the usage of choline alfoscerate and ethylmethylhydroxypyridine succinate (EMHPS) as nootropic therapy for patients with chronic cerebral circulation insufficiency (CCCI). PATIENTS AND METHODS: Materials and Methods: Bibliosemantic, comparative and system analysis methods were used in the study. The proposed recommendations are developed on the basis of the analysis of modern literature, the results of randomized studies and meta-analyses, authoritative studies devoted to the study of the CCCI problem. CONCLUSION: Conclusions: The combination of EMHPS with choline alfoscerate for the complex treatment of CCCI and associated syndromes improves the functions of the endothelium, leads to asthenic syndrome, indicators of stress, depression and anxiety decreasing has a positive effect on the cognitive impairment and complications' progress reduction.


Subject(s)
Cerebrovascular Circulation , Humans , Cerebrovascular Circulation/drug effects , Nootropic Agents/therapeutic use , Glycerylphosphorylcholine/therapeutic use , Glycerylphosphorylcholine/administration & dosage , Chronic Disease , Cerebrovascular Disorders/drug therapy , Pyridines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL