Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Phys Med ; 125: 104495, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098107

ABSTRACT

BACKGROUND: Surface-guided imaging (SGI) is increasingly utilized to monitor patient motion during deep inspiration breath hold (DIBH) in radiotherapy. Understanding the association between surface and internal motion is crucial for effective monitoring. PURPOSE: To investigate the relation between motion detected by SGI using surface-guided radiotherapy (SGRT) and internal motion measured through diaphragm tracking on kV projections acquired with DIBH for online CBCT. METHODS: Both SGI and kV were simultaneously acquired for ten patients over a total of 200 breath holds (BH). Diaphragm tracking was performed using second-degree polynomial curve fitting on the derivative images for each kV projection and high-pass filtering at 1/30 Hz to remove rotational effects. The superior-inferior (SI) and anterior-posterior (AP) motions of SGI were then compared to kV tracking using various statistical measures. RESULTS: The correlation (individuals' median: -0.07 to 0.73) was a suboptimal metric for the BH data. The median and 95th percentile absolute differences between SGI-SI and kV were 0.73 mm and 3.46 mm, respectively, during DIBH. For SGI-AP, the corresponding values were 0.55 mm and 2.80 mm. For inter-BH measurements, the contingency table based on a 3 mm threshold indicated surface/diaphragm motion agreement for SGI-SI/kV and SGI-AP/kV was 61 % and 56 %, respectively. CONCLUSION: Both intra- and inter-BH measurements indicated a limited association between surface and diaphragm motion, with certain constraints noted due to kV tracking and DIBH data. These findings warrant further investigation into the association between surface and internal motion.

2.
Technol Cancer Res Treat ; 23: 15330338241271946, 2024.
Article in English | MEDLINE | ID: mdl-39109645

ABSTRACT

PURPOSE: To improve the setup reproducibility of neck curvature using real-time optical surface imaging (OSI) guidance on 2 regions of interest (ROIs) to infer cervical spine (c-spine) curvature for surface-guided radiotherapy (SGRT) of head-and-neck (HN) and c-spine cancer. METHODS: A novel SGRT setup approach was designed to reproduce neck curvature with 2 ROIs: upper-chest ROI and open-face ROI. It was hypothesized that the neck curvature could be reproduced if both ROIs were aligned within ±3 mm/2˚ tolerance. This was tested prospectively in 7 volunteers using real-time 3D-OSI guidance and lateral 2D-photography verification after the 3D and 2D references were captured from the initial conventional setup. Real-time SGRT was performed to align chest-ROI and face-ROI, and the longitudinal distance between them was adjustable using a head-support slider. Verification of neck curvature anteriorly and posteriorly was achieved by overlaying edge-extracted lateral pictures. Retrospectively, the relationship between anterior surface and spinal canal alignment was checked in 11 patients using their simulation CT (simCT) and setup cone-beam CT (CBCT). After the anterior surface was rigidly aligned, the spinal canal alignment was checked and quantified using the mean-distance-to-agreement (MDA) and DICE similarity index, and surface-to-spine correlation was calculated. RESULTS: The reproducibility of neck curvatures using the 2xROI SGRT setup is verified and the mean neck-outline-matching difference is within ±2 mm in lateral photographic overlays. The chest-ROI alignment takes 110 ± 58 s and the face-ROI takes 60 ± 35 s. When the anterior body surface is aligned (MDA = 1.1 ± 0.6 mm, DICE = 0.96 ± 0.02,) the internal spinal canal is also aligned (MDA = 1.0 ± 0.3 mm, DICE = 0.84 ± 0.04) in 11 patients. The surface-to-spine correlation is c = 0.90 (MDA) and c = 0.85 (DICE). CONCLUSION: This study demonstrates the feasibility of the novel 2-ROI SGRT setup technique to achieve reproducible neck and c-spine curvature regardless of neck visibility and availability as ROI. Staff training is needed to adopt this unconventional SGRT technique to improve patient setup.


Subject(s)
Cone-Beam Computed Tomography , Head and Neck Neoplasms , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Humans , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/pathology , Male , Radiotherapy, Image-Guided/methods , Female , Cone-Beam Computed Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Middle Aged , Feasibility Studies , Aged , Neck , Adult , Reproducibility of Results , Imaging, Three-Dimensional/methods , Cervical Vertebrae/diagnostic imaging
3.
J Plast Reconstr Aesthet Surg ; 97: 230-236, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39168032

ABSTRACT

INTRODUCTION: Simulation of aesthetic outcomes of wide local excision and level one oncoplastic breast conserving treatment (BCT) using 3-dimensional surface imaging (3D-SI) prepares women for their aesthetic outcome. It remains unknown whether women's memory of this information at the one-year follow-up matches their perception of reality or affects the quality of life. METHODS: With ethical approval, a prospective 3-arm RCT was conducted and it included 3D-simulation, viewing post-operative 2D photographs of other women and standard care. At one-year post-surgery, the participants completed a visual analogue scale (VAS) for the question "How well do you think the information about how your breasts are likely to look after surgery reflects how they actually look today?" and the BCT BREAST-Q module. The Kruskal-Wallis test was used to examine between-group differences at a 5% significance level. RESULTS: From 2017 to 2019, 117 women completed the primary endpoint of being informed about the aesthetic outcome via verbal description, photographs or simulation. Seventy-eight (74%) of the 106 women who remained eligible attended the one-year follow-up. The standardised preoperative 3D-SI simulation did not affect the patient's perception of the aesthetic outcome compared to standard care or viewing 2D photographs as measured using the VAS (p = 0.40) or BREAST-Q scores for satisfaction with information (p = 0.76), satisfaction with breasts (p = 0.70), and psychosocial wellbeing domains (p = 0.81). DISCUSSION: Viewing their own 3D-SI standardised simulation did not significantly affect how the participants perceived their aesthetic outcome. In addition, it did not alter the patient-reported satisfaction. These results demonstrated that simulation for wide local excision or level one oncoplastic surgery does not set unrealistic expectations of the aesthetic outcome when used in a preoperative setting. SYNOPSIS: The use of a non-bespoke three-dimensional simulation of the aesthetic outcome for breast conserving treatment in the preoperative setting does not over-inflate expectations compared to standard care.

4.
Sensors (Basel) ; 24(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39065879

ABSTRACT

Due to the scheme of fixed-platform beam-steering radar and the space of the blast furnace being subjected to harsh environmental influences, the traditional detection methods of burden surface are limited by geometric distortion, noncoherent clutter, and noise interference, which leads to an increase in the image entropy value and the equivalent number of views, makes the density distribution of burden surface show a diffuse state, and greatly affects the stability and accuracy. In this paper, a new fixed-platform beam-steering radar synthetic aperture radar imaging method (FPBS-SAR) is proposed in the sensory domain of the blast furnace environment. From the perspective of fixed-platform beam-steering radar motion characteristics, the target range-azimuth coupled distance history model under the sub-aperture is established, the azimuthal Doppler variation characteristics of the fixed-platform beam-steering process are analyzed, and the compensation function of the transform domain for geometric disturbance correction is proposed. For noncoherent noise suppression in blast furnaces, the trimmed geometric mean-order-likelihood CFAR method is proposed to take into account the information of burden surface and clutter suppression. To verify the method, point target simulation and imaging for the industrial field measurement data are carried out. The results indicate that geometric distortion is well eliminated, the image entropy value and the equivalent number of views have decreased, and noncoherent noise in blast furnaces is suppressed.

5.
Cureus ; 16(3): e56242, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38618470

ABSTRACT

The American Association of Physicists in Medicine (AAPM) recently published the report of Task Group (TG) 302, which provides recommendations on acceptance, commissioning, and ongoing routine quality assurance (QA) for surface-guided radiation therapy (SGRT) systems. One of the recommended monthly QA tests is a dynamic localization accuracy test. This work aimed to develop an automated procedure for monthly SGRT dynamic localization QA. An anthropomorphic head phantom was rigidly attached to the 6-dof couch of a TrueBeam linac. TrueBeam Developer Mode was used to take an MV image of the phantom at the starting position, then automatically drive the couch through a series of translations and rotations, taking an MV image after each translation. The Identify SGRT system monitored the motion of the phantom surface from the starting position. Translations assessed on MV images were compared to translations reported in trajectory log files and Identify log files. Rotations were compared between trajectory log files and Identify log files. Three experiments were conducted. None of the translations or rotations from any experiment exceeded the tolerance values for stereotactic ablative body radiation therapy (SABR) recommended by AAPM TG-142. Maximum deviations from the expected translation values from MV imaging, trajectory log files, and Identify log files were -0.94mm, -0.11mm, and -0.78mm, respectively. Maximum deviations from the expected rotation values from trajectory log files and Identify log files were 0.01 and -0.2 degrees, respectively. The proposed method is a simple automated way to complete monthly dynamic localization QA of SGRT systems.

6.
Microsc Microanal ; 30(2): 208-225, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38578956

ABSTRACT

In this article, porous GaN distributed Bragg reflectors (DBRs) were fabricated by epitaxy of undoped/doped multilayers followed by electrochemical etching. We present backscattered electron scanning electron microscopy (BSE-SEM) for sub-surface plan-view imaging, enabling efficient, non-destructive pore morphology characterization. In mesoporous GaN DBRs, BSE-SEM images the same branching pores and Voronoi-like domains as scanning transmission electron microscopy. In microporous GaN DBRs, micrographs were dominated by first porous layer features (45 nm to 108 nm sub-surface) with diffuse second layer (153 nm to 216 nm sub-surface) contributions. The optimum primary electron landing energy (LE) for image contrast and spatial resolution in a Zeiss GeminiSEM 300 was approximately 20 keV. BSE-SEM detects porosity ca. 295 nm sub-surface in an overgrown porous GaN DBR, yielding low contrast that is still first porous layer dominated. Imaging through a ca. 190 nm GaN cap improves contrast. We derived image contrast, spatial resolution, and information depth expectations from semi-empirical expressions. These theoretical studies echo our experiments as image contrast and spatial resolution can improve with higher LE, plateauing towards 30 keV. BSE-SEM is predicted to be dominated by the uppermost porous layer's uppermost region, congruent with experimental analysis. Most pertinently, information depth increases with LE, as observed.

7.
JPRAS Open ; 39: 330-343, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38390355

ABSTRACT

Background: The utilization of three-dimensional (3D) surface imaging for facial anthropometry is a significant asset for patients undergoing maxillofacial surgery. Notably, there have been recent advancements in smartphone technology that enable 3D surface imaging.In this study, anthropometric assessments of the face were performed using a smartphone and a sophisticated 3D surface imaging system. Methods: 30 healthy volunteers (15 females and 15 males) were included in the study. An iPhone 14 Pro (Apple Inc., USA) using the application 3D Scanner App (Laan Consulting Corp., USA) and the Vectra M5 (Canfield Scientific, USA) were employed to create 3D surface models. For each participant, 19 anthropometric measurements were conducted on the 3D surface models. Subsequently, the anthropometric measurements generated by the two approaches were compared. The statistical techniques employed included the paired t-test, paired Wilcoxon signed-rank test, Bland-Altman analysis, and calculation of the intraclass correlation coefficient (ICC). Results: All measurements showed excellent agreement between smartphone-based and Vectra M5-based measurements (ICC between 0.85 and 0.97). Statistical analysis revealed no statistically significant differences in the central tendencies for 17 of the 19 linear measurements. Despite the excellent agreement found, Bland-Altman analysis revealed that the 95% limits of agreement between the two methods exceeded ±3 mm for the majority of measurements. Conclusion: Digital facial anthropometry using smartphones can serve as a valuable supplementary tool for surgeons, enhancing their communication with patients. However, the proposed data suggest that digital facial anthropometry using smartphones may not yet be suitable for certain diagnostic purposes that require high accuracy.

8.
Diagnostics (Basel) ; 14(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396462

ABSTRACT

Digitalizing all aspects of dental care is a contemporary approach to ensuring the best possible clinical outcomes. Ongoing advancements in 3D face acquisition have been driven by continuous research on craniofacial structures and treatment effects. An array of 3D surface-imaging systems are currently available for generating photorealistic 3D facial images. However, choosing a purpose-specific system is challenging for clinicians due to variations in accuracy, reliability, resolution, and portability. Therefore, this review aims to provide clinicians and researchers with an overview of currently used or potential 3D surface imaging technologies and systems for 3D face acquisition in craniofacial research and daily practice. Through a comprehensive literature search, 71 articles meeting the inclusion criteria were included in the qualitative analysis, investigating the hardware, software, and operational aspects of these systems. The review offers updated information on 3D surface imaging technologies and systems to guide clinicians in selecting an optimal 3D face acquisition system. While some of these systems have already been implemented in clinical settings, others hold promise. Furthermore, driven by technological advances, novel devices will become cost-effective and portable, and will also enable accurate quantitative assessments, rapid treatment simulations, and improved outcomes.

9.
Obes Pillars ; 9: 100100, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38357215

ABSTRACT

Background: Obesity and overweight are commonplace, yet attrition rates in weight management clinics are high. Traditional methods of body measurement may be a deterrent due to invasive and time-consuming measurements and negative experiences of how data are presented back to individuals. Emerging new technologies, such as three-dimensional (3D) surface imaging technology, might provide a suitable alternative. This study aimed to understand acceptability of traditional and 3D surface imaging-based body measures, and whether perceptions differ between population groups. Methods: This study used a questionnaire to explore body image, body measurement and shape, followed by a qualitative semi-structured interview and first-hand experience of traditional and 3D surface imaging-based body measures. Results: 49 participants responded to the questionnaire and 26 participants attended for the body measurements and interview over a 2-month period. There were 3 main themes from the qualitative data 1) Use of technology, 2) Participant experience, expectations and perceptions and 3) Perceived benefits and uses. Conclusion: From this study, 3D-surface imaging appeared to be acceptable to patients as a method for anthropometric measurements, which may reduce anxiety and improve attrition rates in some populations. Further work is required to understand the scalability, and the role and implications of these technologies in weight management practice. (University Research Ethics Committee reference number ER41719941).

10.
J Appl Clin Med Phys ; 25(4): e14242, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38178622

ABSTRACT

PURPOSE: High-quality CBCT and AI-enhanced adaptive planning techniques allow CBCT-guided stereotactic adaptive radiotherapy (CT-STAR) to account for inter-fractional anatomic changes. Studies of intra-fractional respiratory motion management with a surface imaging solution for CT-STAR have not been fully conducted. We investigated intra-fractional motion management in breath-hold Ethos-based CT-STAR and CT-SBRT (stereotactic body non-adaptive radiotherapy) using optical surface imaging combined with onboard CBCTs. METHODS: Ten cancer patients with mobile lower lung or upper abdominal malignancies participated in an IRB-approved clinical trial (Phase I) of optical surface image-guided Ethos CT-STAR/SBRT. In the clinical trial, a pre-configured gating window (± 2 mm in AP direction) on optical surface imaging was used for manually triggering intra-fractional CBCT acquisition and treatment beam irradiation during breath-hold (seven patients for the end of exhalation and three patients for the end of inhalation). Two inter-fractional CBCTs at the ends of exhalation and inhalation in each fraction were acquired to verify the primary direction and range of the tumor/imaging-surrogate (donut-shaped fiducial) motion. Intra-fractional CBCTs were used to quantify the residual motion of the tumor/imaging-surrogate within the pre-configured breath-hold window in the AP direction. Fifty fractions of Ethos RT were delivered under surface image-guidance: Thirty-two fractions with CT-STAR (adaptive RT) and 18 fractions with CT-SBRT (non-adaptive RT). The residual motion of the tumor was quantified by determining variations in the tumor centroid position. The dosimetric impact on target coverage was calculated based on the residual motion. RESULTS: We used 46 fractions for the analysis of intra-fractional residual motion and 43 fractions for the inter-fractional motion analysis due to study constraints. Using the image registration method, 43 pairs of inter-fractional CBCTs and 100 intra-fractional CBCTs attached to dose maps were analyzed. In the motion range study (image registration) from the inter-fractional CBCTs, the primary motion (mean ± std) was 16.6 ± 9.2 mm in the SI direction (magnitude: 26.4 ± 11.3 mm) for the tumors and 15.5 ± 7.3 mm in the AP direction (magnitude: 20.4 ± 7.0 mm) for the imaging-surrogate, respectively. The residual motion of the tumor (image registration) from intra-fractional breath-hold CBCTs was 2.2 ± 2.0 mm for SI, 1.4 ± 1.4 mm for RL, and 1.3 ± 1.3 mm for AP directions (magnitude: 3.5 ± 2.1 mm). The ratio of the actual dose coverage to 99%, 90%, and 50% of the target volume decreased by 0.95 ± 0.11, 0.96 ± 0.10, 0.99 ± 0.05, respectively. The mean percentage of the target volume covered by the prescribed dose decreased by 2.8 ± 4.4%. CONCLUSION: We demonstrated the intra-fractional motion-managed treatment strategy in breath-hold Ethos CT-STAR/SBRT using optical surface imaging and CBCT. While the controlled residual tumor motion measured at 3.5 mm exceeded the predetermined setup value of 2 mm, it is important to note that this motion still fell within the clinically acceptable range defined by the PTV margin of 5 mm. Nonetheless, additional caution is needed with intra-fractional motion management in breath-hold Ethos CT-STAR/SBRT using optical surface imaging and CBCT.


Subject(s)
Lung Neoplasms , Radiosurgery , Radiotherapy, Image-Guided , Spiral Cone-Beam Computed Tomography , Humans , Breath Holding , Cone-Beam Computed Tomography/methods , Feasibility Studies , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods
11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1027469

ABSTRACT

Objective:To evaluate the accuracy of the optical surface imaging system (OSI) using stereotactic radiosurgery (SRS) algorithm in single-center non-coplanar treatment of multiple brain metastases.Methods:Data of phantom and 15 patients with multiple brain metastases who underwent single-center non-coplanar radiotherapy in West China Hospital of Sichuan University from February to April 2022 were retrospectively analyzed. kV/MV and OSI imaging were used for imaging of the patients and phantoms under the same non-coplanar couch angle, respectively. The accuracy of OSI imaging of the phantoms and patients was evaluated using kV/MV imaging as reference image. The difference between the OSI and kV/MV systems is defined as accuracy, and the percentage of the absolute difference ≤1.00 mm in the translational direction or ≤0.50° in the rotational direction is defined as the threshold pass rate. Origin software was used to draw radar maps and Bland-Altman plots for statistical analysis.Results:When OSI images were used for the phantom imaging, the average differences in six-dimensional directions of lateral, long, vertical, rotational, roll and pitch were 0.03 mm, -0.09 mm, -0.27 mm, 0.04°, 0.17° and -0.19°, respectively. The maximum values were -2.20 mm, -2.30 mm, -1.20 mm, 0.60°, -1.00°, and -1.00°, respectively. When OSI system was utilized for the imaging of 15 patients, the average differences in six-dimensional directions were 0.44 mm, 0.16 mm, -0.20 mm, -0.11°, 0.10°, and -0.12°, respectively. The maximum values were -1.80 mm, 2.00 mm, 0.90 mm, -0.90°, -0.70°, and 0.80°, respectively. The translational errors mainly occurred in the lateral and long directions. The qualified rates of the threshold values of the phantoms and patients were 77% and 75% in the lateral direction, 82% and 89% in the long direction, respectively. In addition, 57% and 56% of patients met the threshold conditions of ±1.00 mm and ±0.50° in the six-dimensional directions, respectively.Conclusions:The OSI system using new SRS algorithm cannot meet the high accuracy requirements of single-center non-coplanar radiotherapy for multiple brain metastasis, especially in the lateral and long directions. It is not recommended for non-coplanar image guidance.

12.
J Dent ; 139: 104775, 2023 12.
Article in English | MEDLINE | ID: mdl-37944629

ABSTRACT

OBJECTIVES: To compare the accuracy of smartphone-generated three-dimensional (3D) facial images to that of direct anthropometry (DA) and 3dMD with the aim of assessing the validity and reliability of smartphone-generated 3D facial images for routine clinical applications. MATERIALS AND METHODS: Twenty-five anthropometric soft-tissue facial landmarks were labelled manually on 22 orthognathic surgery patients (11 males and 11 females; mean age 26.2 ± 5.3 years). For each labelled face, two imaging operations were performed using two different surface imaging systems: 3dMDface and Bellus3D FaceApp. Next, 42 inter-landmark facial measurements amongst the identified facial landmarks were measured directly on each labelled face and also digitally on 3D facial images. The measurements obtained from smartphone-generated 3D facial images (SGI) were statistically compared with those from DA and 3dMD. RESULTS: SGI had slightly higher measurement values than DA and 3dMD, but there was no statistically significant difference between the mean values of inter-landmark measures across the three methods. Clinically acceptable differences (≤3 mm or ≤5°) were observed for 67 % and 74 % of measurements with good agreement between DA and SGI, and 3dMD and SGI, respectively. An overall small systematic bias of ± 0.2 mm was observed between the three methods. Furthermore, the mean absolute difference between DA and SGI methods was highest for linear (1.41 ± 0.33 mm) as well as angular measurements (3.07 ± 0.73°). CONCLUSIONS: SGI demonstrated fair trueness compared to DA and 3dMD. The central region and flat areas of the face in SGI are more accurate. Despite this, SGI have limited clinical application, and the panfacial accuracy of the SGI would be more desirable from a clinical application standpoint. CLINICAL SIGNIFICANCE: The usage of SGI in clinical practice for region-specific macro-proportional facial assessment involving central and flat regions of the face or for patient education purposes, which does not require accuracy within 3 mm and 5° can be considered.


Subject(s)
Face , Smartphone , Male , Female , Humans , Young Adult , Adult , Face/diagnostic imaging , Face/anatomy & histology , Reproducibility of Results , Imaging, Three-Dimensional , Anthropometry
13.
Clin Oncol (R Coll Radiol) ; 35(12): e657-e665, 2023 12.
Article in English | MEDLINE | ID: mdl-37778972

ABSTRACT

AIMS: To conduct a direct comparison regarding the non-coplanar positioning accuracy between the optical surface imaging system Catalyst HDTM and non-coplanar cone-beam computed tomography (NC-CBCT) in intracranial single-isocentre non-coplanar stereotactic radiosurgery (SRS) and hypofractionated stereotactic radiotherapy (HSRT). MATERIALS AND METHODS: Twenty patients with between one and five brain metastases who underwent single-isocentre non-coplanar volumetric modulated arc therapy (NC-VMAT) SRS or HSRT were enrolled in this study. For each non-zero couch angle, both Catalyst HDTM and NC-CBCT were used for set-up verification prior to beam delivery. The set-up error reported by Catalyst HDTM was compared with the set-up error derived from NC-CBCT, which was defined as the gold standard. Additionally, the dose delivery accuracy of each non-coplanar field after using Catalyst HDTM and NC-CBCT for set-up correction was measured with SRS MapCHECKTM. RESULTS: The median set-up error differences (absolute values) between the two positioning methods were 0.30 mm, 0.40 mm, 0.50 mm, 0.15°, 0.10° and 0.10° in the vertical, longitudinal, lateral, yaw, pitch and roll directions, respectively. The largest absolute set-up error differences regarding translation and rotation were 1.5 mm and 1.1°, which occurred in the longitudinal and yaw directions, respectively. Only 35.71% of the pairs of measurements were within the tolerance of 0.5 mm and 0.5° simultaneously. In addition, the non-coplanar field with NC-CBCT correction yielded a higher gamma passing rate than that with Catalyst HDTM correction (P < 0.05), especially for evaluation criteria of 1%/1 mm with a median increase of 12.8%. CONCLUSIONS: Catalyst HDTM may not replace NC-CBCT for non-coplanar set-up corrections in single-isocentre NC-VMAT SRS and HSRT for single and multiple brain metastases. The potential role of Catalyst HDTM in intracranial SRS/HSRT needs to be further studied in the future.


Subject(s)
Brain Neoplasms , Radiosurgery , Humans , Radiosurgery/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Cone-Beam Computed Tomography , Carmustine , Etoposide , Radiotherapy Planning, Computer-Assisted/methods
14.
Med Phys ; 50(11): 6684-6692, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37816130

ABSTRACT

BACKGROUND: Administration of external radiation therapy via proton therapy systems carries a risk of occasional collisions between the patient's body and gantry, which is increased by the snout placed near the patient for better dose distribution. Although treatment planning software (TPS) can simulate controlled collisions, the computed tomography (CT) data used for treatment planning are insufficient given that collisions can occur outside the CT imaging region. Thus, imaging the three-dimensional (3D) surface outside the CT range and combining the data with those obtained by CT are essential for avoiding collisions. PURPOSE: To construct a prototype for 3D surface imaging and an end-to-end framework for preventing collisions between the patient's body and the gantry. METHODS: We obtained 3D surface data using a light sectioning method (LSM). By installing only cameras in front of the CT, we achieved LSM using the CT couch motion and preinstalled patient-positioning lasers. The camera image contained both sagittal and coronal lines, which are unnecessary for LSM and were removed by deep learning. We combined LSM 3D surface data and original CT data to create synthetic Digital Imaging and Communications in Medicine (DICOM) data. Subsequently, we compared the TPS snout auto-optimization using the original CT data with the synthetic DICOM data. RESULTS: The mean positional error for LSM of the arms and head was 0.7 ± 0.8  and 0.8 ± 0.8 mm for axial and sagittal imaging, respectively. The TPS snout auto-optimization indicated that the original CT data would cause collisions; however, the synthetic DICOM data prevented these collisions. CONCLUSIONS: The prototype system's acquisition accuracy for 3D surface data was approximately 1 mm, which was sufficient for the collision simulation. The use of a TPS with collision avoidance can help optimize the snout position using synthetic DICOM data. Our proposed method requires no external software for collision simulation and can be integrated into the clinical workflow to improve treatment planning efficiency.


Subject(s)
Proton Therapy , Humans , Radiotherapy Planning, Computer-Assisted/methods , Software , Computer Simulation , Tomography, X-Ray Computed
15.
J Appl Clin Med Phys ; 24(12): e14133, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37643456

ABSTRACT

PURPOSE: With the clinical implementation of kV-CBCT-based daily online-adaptive radiotherapy, the ability to monitor, quantify, and correct patient movement during adaptive sessions is paramount. With sessions lasting between 20-45 min, the ability to detect and correct for small movements without restarting the entire session is critical to the adaptive workflow and dosimetric outcome. The purpose of this study was to quantify and evaluate the correlation of observed patient movement with machine logs and a surface imaging (SI) system during adaptive radiation therapy. METHODS: Treatment machine logs and SGRT registration data log files for 1972 individual sessions were exported and analyzed. For each session, the calculated shifts from a pre-delivery position verification CBCT were extracted from the machine logs and compared to the SGRT registration data log files captured during motion monitoring. The SGRT calculated shifts were compared to the reported shifts of the machine logs for comparison for all patients and eight disease site categories. RESULTS: The average (±STD) net displacement of the SGRT shifts were 2.6 ± 3.4 mm, 2.6 ± 3.5 mm, and 3.0 ± 3.2 in the lateral, longitudinal, and vertical directions, respectively. For the treatment machine logs, the average net displacements in the lateral, longitudinal, and vertical directions were 2.7 ± 3.7 mm, 2.6 ± 3.7 mm, and 3.2 ± 3.6 mm. The average difference (Machine-SGRT) was -0.1 ± 1.8 mm, 0.2 ± 2.1 mm, and -0.5 ± 2.5 mm for the lateral, longitudinal, and vertical directions. On average, a movement of 5.8 ± 5.6 mm and 5.3 ± 4.9 mm was calculated prior to delivery for the CBCT and SGRT systems, respectively. The Pearson correlation coefficient between CBCT and SGRT shifts was r = 0.88. The mean and median difference between the treatment machine logs and SGRT log files was less than 1 mm for all sites. CONCLUSION: Surface imaging should be used to monitor and quantify patient movement during adaptive radiotherapy.


Subject(s)
Radiotherapy, Image-Guided , Spiral Cone-Beam Computed Tomography , Humans , Radiotherapy, Image-Guided/methods , Patient Positioning/methods , Radiotherapy Planning, Computer-Assisted/methods , Movement , Radiotherapy Dosage , Cone-Beam Computed Tomography/methods
16.
J Appl Clin Med Phys ; 24(10): e14058, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37289550

ABSTRACT

PURPOSE: To commission and assess the clinical performance of a new commercial surface imaging (SI) system by analyzing intra-fraction motion from the initial cohort of patients treated with frameless stereotactic radiosurgery (fSRS). METHODS: The IDENTIFYTM SI system was commissioned for clinical use on an Edge (Varian Medical Systems, Palo Alto, CA) linear accelerator. All patients who received intracranial radiotherapy with HyperArcTM (Varian Medical Systems, Palo Alto, CA) were immobilized with the EncompassTM (Qfix, Avondale, PA) thermoplastic mask and monitored for intra-fraction motion with SI. IDENTIFYTM log files were correlated with trajectory log files to correlate treatment parameters with SI-reported offsets. IDENTIFYTM reported offsets were correlated with gantry and couch angles to assess system performance for obstructed and clear camera field of view. Data were stratified by race to evaluate performance differences due to skin tone. RESULTS: All commissioning data were found to meet recommended tolerances. IDENTIFYTM was used to monitor intra-fraction motion on 1164 fractions from 386 patients. The median magnitude of translational SI reported offsets at the end of treatment was 0.27 mm. SI reported offsets were shown to increase when camera pods are blocked by the gantry with larger increases seen at non-zero couch angles. With camera obstruction, the median magnitude of the SI reported offset was 0.50 and 0.80 mm for White and Black patients, respectively. CONCLUSIONS: IDENTIFYTM performance during fSRS is comparable to other commercially available SI systems where offsets are shown to increase at non-zero couch angles and during camera pod blockage.


Subject(s)
Brain Neoplasms , Radiosurgery , Radiotherapy, Intensity-Modulated , Humans , Radiosurgery/methods , Patient Positioning/methods , Particle Accelerators , Phantoms, Imaging , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/radiotherapy
17.
Comput Biol Med ; 162: 107073, 2023 08.
Article in English | MEDLINE | ID: mdl-37290392

ABSTRACT

BACKGROUND: Respiratory signal detection is critical for 4-dimensional (4D) imaging. This study proposes and evaluates a novel phase sorting method using optical surface imaging (OSI), aiming to improve the precision of radiotherapy. METHOD: Based on 4D Extended Cardiac-Torso (XCAT) digital phantom, OSI in point cloud format was generated from the body segmentation, and image projections were simulated using the geometries of Varian 4D kV cone-beam-CT (CBCT). Respiratory signals were extracted respectively from the segmented diaphragm image (reference method) and OSI respectively, where Gaussian Mixture Model and Principal Component Analysis (PCA) were used for image registration and dimension reduction respectively. Breathing frequencies were compared using Fast-Fourier-Transform. Consistency of 4DCBCT images reconstructed using Maximum Likelihood Expectation Maximization algorithm was also evaluated quantitatively, where high consistency can be suggested by lower Root-Mean-Square-Error (RMSE), Structural-Similarity-Index (SSIM) value closer to 1, and larger Peak-Signal-To-Noise-Ratio (PSNR) respectively. RESULTS: High consistency of breathing frequencies was observed between the diaphragm-based (0.232 Hz) and OSI-based (0.251 Hz) signals, with a slight discrepancy of 0.019Hz. Using end of expiration (EOE) and end of inspiration (EOI) phases as examples, the mean±1SD values of the 80 transverse, 100 coronal and 120 sagittal planes were 0.967, 0,972, 0.974 (SSIM); 1.657 ± 0.368, 1.464 ± 0.104, 1.479 ± 0.297 (RMSE); and 40.501 ± 1.737, 41.532 ± 1.464, 41.553 ± 1.910 (PSNR) for the EOE; and 0.969, 0.973, 0.973 (SSIM); 1.686 ± 0.278, 1.422 ± 0.089, 1.489 ± 0.238 (RMSE); and 40.535 ± 1.539, 41.605 ± 0.534, 41.401 ± 1.496 (PSNR) for EOI respectively. CONCLUSIONS: This work proposed and evaluated a novel respiratory phase sorting approach for 4D imaging using optical surface signals, which can potentially be applied to precision radiotherapy. Its potential advantages were non-ionizing, non-invasive, non-contact, and more compatible with various anatomic regions and treatment/imaging systems.


Subject(s)
Four-Dimensional Computed Tomography , Respiration , Computer Simulation , Four-Dimensional Computed Tomography/methods , Phantoms, Imaging , Signal-To-Noise Ratio , Cone-Beam Computed Tomography/methods
18.
Indian J Plast Surg ; 56(2): 147-152, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37153340

ABSTRACT

Introduction In aesthetic surgery, we have a few evaluation tools that numerically and objectively measure the changes we make in patients. This article aimed to evaluate the nasal systematic analysis and compare findings between the three systems of nasal evaluation: photographs 2D, 3D surface imaging with the Kinect system, and 3D CT scan imaging. Methods We designed a longitudinal and descriptive prospective study with simple non-blind randomization. To compare the systematic nasal analysis between the three methods. If the findings are similar, all three methods would be useful in independent clinical scenarios. Results A total of 42 observations were included finding a minimum age of 21 with a mean of 28 years old. Also, 64% were female, 93% had adequate facial proportions, and 50% were Fitzpatrick III. For outcome statistics, we found differential nasal deviation between 3D images with a mean of 6.53 mm. While when comparing the nasal dorsum length, we found a statistical significance of p = 0.051. When comparing the nasal dorsum length index, we found no significant difference p = 0.32. Also, we did not find statistical significance when comparing the nasofrontal angle and tip rotation angle p = 1 for both. Conclusion We found that the population we serve has characteristics of Hispanic mestizo nose. The three methods seem to evaluate systematic nasal analysis in a very similar way, and any of them can be used depending on the scenario and the needs of plastic surgeons.

19.
Med Phys ; 50(7): 4505-4520, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37060328

ABSTRACT

BACKGROUND: Traditional methods of radiotherapy positioning have shortcomings such as fragile skin-markers, additional doses, and lack of information integration. Emerging technologies may provide alternatives for the relevant clinical practice. PURPOSE: To propose a noninvasive radiotherapy positioning system integrating augmented reality (AR) and optical surface, and to evaluate its feasibility in clinical workflow. METHODS: AR and structured light-based surface were integrated to implement the coarse-to-precise positioning through two coherent steps, the AR-based coarse guidance and the optical surface-based precise verification. To implement quality assurance, recognition of face and pattern was used for patient authentication, case association, and accessory validation in AR scenes. The holographic images reconstructed from simulation computed tomography (CT) images, guided the initial posture correction by virtual-real alignment. The point clouds of body surface were fused, with the calibration and pose estimation of structured light cameras, and segmented according to the preset regions of interest (ROIs). The global-to-local registration for cross-source point clouds was achieved to calculate couch shifts in six degrees-of-freedom (DoF), which were ultimately transmitted to AR scenes. The evaluation based on phantom and human-body (4 volunteers) included, (i) quality assurance workflow, (ii) errors of both steps and correlation analysis, (iii) receiver operating characteristic (ROC), (iv) distance characteristics of accuracy, and (v) clinical positioning efficiency. RESULTS: The maximum errors in phantom evaluation were 3.4 ± 2.5 mm in Vrt and 1.4 ± 1.0° in Pitch for the coarse guidance step, while 1.6 ± 0.9 mm in Vrt and 0.6 ± 0.4° in Pitch for the precise verification step. The Pearson correlation coefficients between precise verification and cone beam CT (CBCT) results were distributed in the interval [0.81, 0.85]. In ROC analysis, the areas under the curve (AUC) were 0.87 and 0.89 for translation and rotation, respectively. In human body-based evaluation, the errors of thorax and abdomen (T&A) were significantly greater than those of head and neck (H&N) in Vrt (2.6 ± 1.1 vs. 1.7 ± 0.8, p < 0.01), Lng (2.3 ± 1.1 vs. 1.4 ± 0.9, p < 0.01), and Rtn (0.8 ± 0.4 vs. 0.6 ± 0.3, p = 0.01) while relatively similar in Lat (1.8 ± 0.9 vs. 1.7 ± 0.8, p = 0.07). The translation displacement range, after coarse guidance step, required for high accuracy of the optical surface component of the integrated system was 0-42 mm, and the average positioning duration of the integrated system was significantly less than that of conventional workflow (355.7 ± 21.7 vs. 387.7 ± 26.6 s, p < 0.01). CONCLUSIONS: The combination of AR and optical surface has utility and feasibility for patient positioning, in terms of both safety and accuracy.


Subject(s)
Augmented Reality , Radiosurgery , Radiotherapy, Image-Guided , Humans , Patient Positioning/methods , Radiosurgery/methods , Cone-Beam Computed Tomography/methods , Tomography, X-Ray Computed , Radiotherapy, Image-Guided/methods , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging
20.
Sensors (Basel) ; 23(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36904614

ABSTRACT

The inspection of patients' soft tissues and the effects of various dental procedures on their facial physiognomy are quite challenging. To minimise discomfort and simplify the process of manual measuring, we performed facial scanning and computer measurement of experimentally determined demarcation lines. Images were acquired using a low-cost 3D scanner. Two consecutive scans were obtained from 39 participants, to test the scanner repeatability. An additional ten persons were scanned before and after forward movement of the mandible (predicted treatment outcome). Sensor technology that combines red, green, and blue (RGB) data with depth information (RGBD) integration was used for merging frames into a 3D object. For proper comparison, the resulting images were registered together, which was performed with ICP (Iterative Closest Point)-based techniques. Measurements on 3D images were performed using the exact distance algorithm. One operator measured the same demarcation lines directly on participants; repeatability was tested (intra-class correlations). The results showed that the 3D face scans were reproducible with high accuracy (mean difference between repeated scans <1%); the actual measurements were repeatable to some extent (excellent only for the tragus-pogonion demarcation line); computational measurements were accurate, repeatable, and comparable to the actual measurements. Three dimensional (3D) facial scans can be used as a faster, more comfortable for patients, and more accurate technique to detect and quantify changes in facial soft tissue resulting from various dental procedures.


Subject(s)
Face , Imaging, Three-Dimensional , Humans , Face/anatomy & histology , Cephalometry/methods , Imaging, Three-Dimensional/methods , Algorithms , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL