Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 897
Filter
1.
J Biomed Mater Res A ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360796

ABSTRACT

Surface treatments play an important role in enhancing the osseointegration of Titanium (Ti) and its alloys. This study introduces a method employing biomimetic hydroxyapatite (Hap) deposition guided by molecularly organized phospholipids, affixed to the metal implant surface. Using the Langmuir-Blodgett technique, phospholipids were deposited onto Ti-screws by using CaCl2 or CaCl2/SrCl2 aqueous solution in the subphase of a Langmuir trough in the target proportion (i.e. 10 and 90 mol% of Sr2+ in relation of Ca2+) followed by immersion in phosphate buffer and in supersaturated simulated body fluid. Coating composition and morphology were evaluated using infrared spectroscopy and scanning electron microscopy, respectively, while contact angle measurements assessed coating wettability and surface energy. Randomized screws were then implanted into the tibias of healthy and osteoporotic female rats (G1: Control-Machined, G2: Hap, G3: HapSr10, G4: HapSr90). Osseointegration, assessed 60 days post-implantation, included reverse torque, fluorochrome area, bone tissue-screw contact area, and linear extent of bone-screw contact. Results, grouped by surface treatment (Machined, Hap, HapSr10, HapSr90), revealed that the deposition of Hap, HapSr10, and HapSr90 resulted in thin and rough coatings composed of hydroxyapatite (Hap) on the screw surface with nanoscale pores. The coatings resulted in increased wettability and surface energy of Ti surfaces. The minerals are chemically similar to natural bone apatite as revealed by FTIR analysis. In vivo analyses indicated higher torque values for strontium-containing surfaces in the osteoporotic group (p = 0.02) and, in the control group superior torque for screw removal on the Hap surface (p = 0.023). Hydroxyapatite-treated surfaces enhance morphology, composition, and reactivity, promoting screw osseointegration in healthy and osteoporotic female rats. The incorporation of strontium into the mineral phase has been proposed to not only stimulate osteoblast activity but also reduce osteoclastic resorption, which may explain the improved outcomes observed here in experimental osteoporotic conditions.

2.
ChemSusChem ; : e202401304, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39265054

ABSTRACT

Despite being promoted as a superior Li-ion conductor, lithium lanthanum zirconium oxide (LLZO) still suffers from a number of shortcomings when employed as an active ceramic filler in composite polymer-ceramic solid electrolytes for rechargeable all-solid-state lithium metal batteries. One of the main limitations is the detrimental presence of Li2CO3 on the surface of LLZO particles, restricting Li-ion transport at the polymer-ceramic interfaces. In this work, a facile way to improve this interface is presented, by purposely engineering the LLZO particle surfaces for better compatibility with a PEO:LiTFSI solid polymer electrolyte matrix. It is shown that an surface treatment based on immersing LLZO particles in a boric acid solution can improve the LLZO surface chemistry, resulting in an enhancement in the ionic conductivity and cation transference number of the CPE with 20 wt.% of boron-treated LLZO particles compared to the analogous CPE with non-treated LLZO. Ultimately, an improved cycling performance and stability in Li // LiFePO4 cells was also demonstrated for the modified material.

3.
J Prosthodont ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305504

ABSTRACT

PURPOSE: To investigate the effects of different surface treatments and thermal cycling on the shear bond strength between 3D-printed teeth and denture bases. MATERIAL AND METHODS: For the shear bond strength (SBS) test, the specimens were the maxillary central incisors (11 × 9 × 7 mm) bonded on a cylindrical base (20 × 25 mm). The control group was heat-cured polymethylmethacrylate (PMMA) (N = 20). The printed group was divided into five subgroups (N = 20): no treatment, sandblasting with aluminum oxide (Al2O3), methyl methacrylate monomer, acetone, and adhesive with urethane dimethacrylate. Half of the samples were subjected to 2000 thermal cycling cycles, and all samples were subjected to the SBS test. The failure mode was established as adhesive, cohesive, or mixed through stereomicroscopic analysis. The surface roughness test (Sa) was performed using optical profilometry, and the rectangular specimens (14 × 14 × 2.5 mm) were divided into four groups according to the surface treatments (N = 7 per group). Paired T and Wilcoxon tests were conducted to perform comparisons within the same group. The Kruskal-Wallis and Dwass-Steel-Critchlow-Fligner post-hoc tests were conducted to compare the groups. RESULTS: Al2O3 sandblasting in the 3D-printed groups achieved high SBS values comparable to those of the control group in the thermal cycled (p = 0.962) and non-thermal cycled samples (p = 0.319). It was the only treatment capable of modifying the surface of the 3D-printed resin, thereby increasing the roughness (p = 0.016). CONCLUSIONS: Sandblasting is recommended to increase the bond strength between the tooth and denture bases.

4.
ACS Appl Mater Interfaces ; 16(38): 51630-51638, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39269916

ABSTRACT

Organometal halide perovskite single crystals (SCs) are the most promising candidates for the next generation of radiation detection materials. However, surface defects severely affect their detection performance and limit further applications. Here, we identified the surface defect types of FAPbBr3 SCs and employed phenethylammonium iodide (PEAI) solution to treat the crystal surface and to investigate their effects on ion migration, photoelectric performance, and X-ray detection performance. Our experimental results demonstrated that the surface defects, such as the metallic Pb and Br vacancies, can be effectively passivated by both the PEAI and the two-dimensional (2D) PEA2PbI4 layers. The PEAI layer can elongate the carrier lifetime, lower the trap density, and suppress ion migration in FAPbBr3 SCs. The 2D PEA2PbI4 layer can form a dense and full surface coverage, suppress ion migration, and lower the dark current of the SCs. The X-ray sensitivity of the PEAI-passivated FAPbBr3 SC detectors is 227.93 µCGyair-1 cm-2, which is an order of magnitude higher than that of the pristine FAPbBr3 SC detectors. This work demonstrates that surface treatment plays a critical role in the crystal quality and the X-ray detection performance of SCs.

5.
Bioengineering (Basel) ; 11(9)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39329666

ABSTRACT

This research investigates using Polyether ether ketone (PEEK) in dental prosthetics, focusing on enhancing the mechanical properties, adhesion capabilities, and environmental sustainability through AI-driven data analysis and advanced surface treatments. The objectives include improving PEEK's adhesion to dental types of cement, assessing its biocompatibility, and evaluating its environmental impact compared to traditional materials. The methodologies employed involve surface treatments such as plasma treatment and chemical etching, mechanical testing under ASTM standards, biocompatibility assessments, and lifecycle analysis. AI models predict and optimize mechanical properties based on extensive data. Significant findings indicate that surface-treated PEEK exhibits superior adhesion properties, maintaining robust mechanical integrity with no cytotoxic effects and supporting its use in direct contact with human tissues. Lifecycle analysis suggests PEEK offers a reduced environmental footprint due to lower energy-intensive production processes and recyclability. AI-driven analysis further enhances the material's performance prediction and optimization, ensuring better clinical outcomes. The study concludes that with improved surface treatments and AI optimization, PEEK is a promising alternative to conventional dental materials, combining enhanced performance with environmental sustainability, paving the way for broader acceptance in dental applications.

6.
Polymers (Basel) ; 16(18)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39339046

ABSTRACT

Atmospheric plasma jets generated from air or nitrogen using commercial sources with relatively high energy densities are commonly used for industrial applications related to surface treatments, especially to increase the wettability of polymers or to deposit thin films. The heat fluxes to which the substrates are subjected are typically in the order of 100-300 W/cm2, depending on the treatment conditions. The temperature rise in the treated polymer substrates can have critical consequences, such as a change in the surface crystallinity or even the surface degradation of the materials. In this work, we report the phase transitions of two semicrystalline industrial-grade polymer resins reinforced with glass fibers, namely polyphenylene sulfide (PPS) and polyphthalamide (PPA), subjected to plasma treatments, as well as the modeling of the associated heat transfer phenomena using COMSOL Multiphysics. Depending on the treatment time, the surface of PPS becomes more amorphous, while PPA becomes more crystalline. These results show that the thermal history of the materials must be considered when implementing surface engineering by this type of plasma discharge.

7.
Sci Rep ; 14(1): 22051, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333656

ABSTRACT

This study focused on sustainable and novel development of concrete through treated and untreated plastic waste aggregates. In this study, the surface of Elec-waste coarse aggregates was treated with sulfuric acid, marble dust coating, silica fume coating, and alkaline bleach. Elec-waste aggregates were used in concrete by replacing natural coarse aggregates in amounts of 10%, 20%, and 30%. The 10%, 20%, and 30% Elec-waste replacement ratios resulted in the compressive strength reduction of 8.97%, 27.99%, and 42.01%, respectively. The same percentage of Elec-waste aggregates reduced the splitting tensile strength by 21.77%, 35.89%, and 47.89%, respectively. However, the slump was observed to increase by 41.4%, 52.1%, and 68.8%, respectively. All the considered treatments enhanced the performance of Elec-waste aggregate concrete (E-WAC). Overall, the best improvement in the performance of E-WAC was imparted by silica fume coating, irrespective of the quantity of Elec-waste aggregates. The present study proposed an expression to estimate the reduction of the compressive strength of E-WAC. It was demonstrated that the equation by JCI-08 predicted splitting tensile strength of E-WAC close to experimental results.

8.
Article in English | MEDLINE | ID: mdl-39348081

ABSTRACT

This study aimed to evaluate the antimicrobial effect of coated orthodontic molar tubes (COMT) with zinc oxide nanoparticles (ZnO NPs) using an electrophoretic deposition method (EPD) and to evaluate the orthodontic molar tubes (OMT) bond failure rate. Seventy-two orthodontic molar tubes (OMTs) for second molars were divided into two groups 36 each; one group coated with ZnO NPs and the other control negative uncoated. The OMT was coated using the EPD method with ZnO NPs in a concentration of 10 g/l. The OMTs were randomly allocated using a split-mouth, cross-quadrant design. After 2 weeks of appliance placement, swabs were taken from the surface of the OMTs for microbial assessment against Streptococcus mutans, Lactobacillus acidophilus, and total bacterial counts; additionally, plaque and gingival indices were assessed. The patient was followed for 3 months to evaluate the bond failure rate. The COMT showed a statistically significant reduction in total bacterial accounts, S. mutans, and L. acidophilus compared to UOMT (P < 0.001). Furthermore, the plaque and gingival indices near COMT were significantly less than that of UOMT. The bond failure rate was not significant between the COMT and UOMT. The COMT with ZnO NPs has potent antibacterial activity against the tested pathogens with a reduction in the amount of plaque accumulation. The use of the EPD method was feasible without adverse effects on the orthodontic molar tubes bond failure rate.

9.
Front Oral Health ; 5: 1449833, 2024.
Article in English | MEDLINE | ID: mdl-39139446

ABSTRACT

Objectives: The aim of this study is to evaluate the effect of different surface treatments on the shear bond strength (SBS) of clear aligner attachments bonded to Bis-acryl provisional crowns. Methods: 120 cylindrical bisacrylic composite material (ProTemp type) specimens were prepared and divided into six groups (n = 20) based on surface treatment, control: (no treatment); super coarse grit diamond bur, carbide bur, alumina-blasting, non-thermal plasma treatment, and Er:YAG laser treatment. The features of treated surfaces were examined using scanning electron microscopy (SEM). A flowable composite resin (Transbond XT; 3M Unitek) was bonded to the specimens forming the attachment. Half of specimens were subjected to thermal cycling (5,000 cycles). SBS was measured before and after thermal cycling. Each specimen was loaded at the attachment/resin interface at a speed of 0.5 mm/min until failure. The nature of the failure was analyzed using the composite remnants index (CRI). Two-way ANOVA and Tukey HSD were used for data analysis α = 0.5. For CRI scores analysis, Kruskal-Wallis test and Dunn's multiple comparison were used as post-hoc test. Results: SEM analysis showed that all surface treatments altered surface properties and increase surface bonding area. The specimens treated with plasma, Er:YAG laser, and alumina-blasting had higher SBS values before and after thermal cycling. In comparison to control plasma, Er:YAG laser, and alumina-blasting showed a significant increase in SBS (P < 0.001) while carbide and diamond bur groups showed no significant differences (P > 0.05). Thermal cycling significantly decreased the SBS of control, carbide bur, diamond bur, and Er:YAG laser while no significant effect of alumina-blasting and plasma group. Er:YAG laser and plasma groups significantly exhibited more dominance for scores 2 and score 3 and the absence of score 0. Conclusion: Alumina-blasting, Er:YAG laser, or non-thermal plasma surface treatments increased the shear bond strength between clear aligner attachments and resin-based restorations.

10.
Clin Oral Investig ; 28(9): 473, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110133

ABSTRACT

PURPOSE: To investigate the effects of different surface treatments and thicknesses on the color, transparency, and surface roughness of ultra-transparent zirconia. METHODS: A total of 120 Katana ultra-translucent multi-layered zirconia specimens were divided into 12 groups according to the thickness (0.3, 0.5, and 0.7 mm) and surface treatment (control, airborne particle abrasion [APA], lithium disilicate coating, and glaze on). Color difference (ΔE00) and relative translucency parameter (RTP00) were calculated using a digital spectrophotometer. The surface roughness (Ra, Rq, Sa, and Sq) was measured using a non-contact profile scanner. The surface morphologies and microstructures of the samples were observed using a tungsten filament scanning electron microscope. Statistical analyses were performed by one-way and two-way analysis of variance (ANOVA) followed by post hoc multiple comparisons and Pearson's correlation (α = 0.05). RESULTS: The results showed that the surface treatment, ceramic thickness, and their interactions had significant effects on ΔE00 and RTP00 (p < 0.001). The surface treatment significantly altered the micromorphology and increased the surface roughness of the ceramic samples. APA exhibited the lowest transparency, largest color difference, and highest surface roughness. Zirconia with 0.3 mm and 0.7 mm thicknesses showed strong negative correlations between Sa and RTP00. CONCLUSIONS: The three internal surface treatments significantly altered the surface roughness, color difference, and transparency of ultra-transparent zirconia. As the thickness increased, the influence of the inner surface treatment on the color difference and transparency of zirconia decreased. CLINICAL IMPLICATIONS: For new zirconia internal surface treatment technologies, in addition to considering the enhancement effect on the bonding properties, the potential effects on the color and translucency of high-transparency zirconia should also be considered. Appropriately increasing the thickness of zirconia restorations helps minimize the effect of surface treatment on the optical properties.


Subject(s)
Color , Materials Testing , Microscopy, Electron, Scanning , Spectrophotometry , Surface Properties , Zirconium , Zirconium/chemistry , Dental Porcelain/chemistry , Dental Materials/chemistry , Dental Bonding/methods
11.
Sci Rep ; 14(1): 17831, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090240

ABSTRACT

Existing ice particle jet surface treatment technology is prone to ice particle adhesion during application, significantly affecting surface treatment efficiency. Based on the basic structure of the jet pump, the ice particle air jet surface treatment technology is proposed for the instant preparation and utilization of ice particles, solving the problem of ice particle adhesion and clogging. To achieve efficient utilization of ice particles and high-speed jetting, an integrated jet structure for ice particle ejection and acceleration was developed. The influence of the working nozzle position (Ld), expansion ratio (n), and acceleration nozzle diameter ratio (Dn) length-to-diameter ratio (Ln) on the ice particle ejection and acceleration was systematically studied. The structural parameters of the ejector were determined using the impact kinetic energy of ice particles as the comprehensive evaluation index, and the surface treatment test was conducted to verify the results. The study shows that under 2 MPa air pressure, the ejector nozzle parameters of n = 1.5, Dn = 4.0, Ld = 4, and Ln = 0 mm can effectively eject and accelerate the ice particles. The aluminum alloy plate depainting test obtained a larger paint removal radius and resulted in a smoother aluminum alloy plate surface, reducing the surface roughness from 3.194 ± 0.489 µm to 1.156 ± 0.136 µm. The immediate preparation and utilization of ice particles solved the problems of adhesion and storage in the engineering application of ice particle air jet technology, providing a feasible technical method in the field of material surface treatment.

12.
Cureus ; 16(7): e64699, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39156326

ABSTRACT

AIM: The study aims to assess the effect of surface treatments by chemical agents on the retentive strengths of crowns fabricated from polymethylmethacrylate (PMMA) reinforced with graphene nanoparticles adhesively bonded to abutments after thermocycling. SETTINGS AND DESIGN: In vitro comparative study. MATERIALS AND METHODS: This study is composed of four groups - one control, one treated with 99% pure etchant acetone solution, one treated with 15 wt% potassium hydrogen fluoride solution, and the last group treated with a combination of both solutions. RESULTS: The results showed that the mean load in Group A is 228.46±3.16, Group B is 252.57±7.14, Group C is 184.51±6.61, and Group D is 211.03±2.54. The mean score is highest for Group B followed by Group A and Group D, and it is least for Group C. One-way analysis of variance (ANOVA) detected highly significant differences (p<0.01) among the four groups. CONCLUSION: It can be concluded that acetone is the best chemical etchant solution for crowns fabricated from G-CAM discs (Graphenano Dental, Graphenano Nanotechnologies, Spain).

13.
J Prosthodont ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39188160

ABSTRACT

PURPOSE: The aim of the study was to investigate the effect of surface treatment and repair materials on the flexural strength of repaired 3D-printed denture base resins after thermal aging. MATERIALS AND METHODS: Bar-shape specimens (64 × 10 × 3.3 mm) were designed as intact (control) specimens while repair specimens were printed in sections with 2.5 mm space for repair material. Printing was performed with either ASIGA or NextDent denture base material. In each material, one group received no surface treatment, while other repair groups were subjected to one of three surface treatments: (1) monomer application, (2) aluminium oxide particles-abrasion, or (3) both methods (aluminum oxide particles-abrasion and monomer application). Pairs were fixed in a customized mold then repaired with either autopolymerizing acrylic resin or flowable composite (n = 9). Repaired specimens were incubated for 48 h at 37°C in distilled water and then subjected to thermal cycling (5000 cycles). A 3-point bending test was used to evaluate the flexural strength using a universal testing machine, and mode of failure determined followed by fractured surface analysis using scanning electron microscope. Data were analyzed using ANOVA and post hoc Tukey test (α = 0.05). RESULTS: Both resin materials showed a significant decrease in the flexural strength of repaired specimens when compared to control ones (p < 0.001). Groups with no surface treatment had significantly lower flexural strength than those with surface treatment (p < 0.001). Groups treated with monomer application, and with aluminum oxide particles abrasion plus monomer application had similar flexural strength values (p > 0.05), which were higher than those treated with aluminum oxide particles abrasion alone (p < 0.001). Specimens repaired with composite resin showed higher flexural strength than those repaired with auto-polymerized resin (p < 0.05) however, specimens treated with aluminum oxide particles abrasion alone had similar values for both repair materials (p = 0.95). Adhesive failure was dominant in all repaired groups with auto-polymerized while cohesive and mixed were dominant with composite repair groups. CONCLUSION: Surface treatment improved the repair strength of 3D-printed denture base resins. Using composite resin for repair shows better strength with dominant cohesive and mixed failure suggesting that surface treatment and composite repair are suitable procedures for 3D-printed denture base repair.

14.
J Prosthodont ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189693

ABSTRACT

PURPOSE: To evaluate the effect of different surface treatments and adhesive cementation on the miniflexural strength (MFS) of monolithic zirconia. MATERIALS AND METHODS: Two-hundred and forty (240) sintered bars of translucent zirconia (ZT) and ultra-translucent zirconia (ZUT) were obtained (8 mm ×2 mm ×1 mm). The bars were divided into 16 groups (n = 15) according to the factors "Zirconia" (ZT and ZUT), "Cementation" (Cem) and "surface treatment" (Ctrl:Control, Al:Aluminum oxide/Al2O3 50 µm, Si:Silica/SiO2 coated alumina particles oxide 30 µm, Gl:Glazing+hydrofluoric acid). Half of the bars received an adhesive layer application, followed by application of resin cement and light curing. The surface roughness was measured in non-cemented groups. All the bars were subjected to the MFS test (1.0 mm/min; 100 kgf). Scanning electron microscopy was used for qualitative analyses. MFS data (MPa) and roughness (µm) were statistically evaluated by three-way and two-way ANOVA respectively and Tukey's test (5%). RESULTS: The surface treatment and the interaction were significant for roughness. Glazing promoted less roughness compared to silicatization. Regarding MFS, only the zirconia and surface treatment factors were significant. For ZT, the sandblasted groups had an increase in MFS and glazing reduced it. There was no difference between the groups without cementation for the ZUT; however, ZUT.Si/Cem, and ZUT.Al/Cem obtained superior MFS among the cemented groups. CONCLUSIONS: Sandblasting increases the flexural strength for ZT, while glaze application tends to reduce it. Applying resin cement increases the flexural strength of ZUT when associated with sandblasting. Sandblasting protocols promote greater surface roughness.

15.
Polymers (Basel) ; 16(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39204568

ABSTRACT

Polyetheretherketone is a promising material for implants due to its good mechanical properties and excellent biocompatibility. Its accessibility to a wide range of applications is facilitated by the ability to process it with an easy-to-use manufacturing process such as fused filament fabrication. The elimination of disadvantages associated with the manufacturing process, such as a poor surface quality, is a main challenge to deal with. As part of the mass finishing process, centrifugal disc finishing has demonstrated good results in surface optimization, making it a promising candidate for the post-processing of additively manufactured parts. The objective of this study is to identify the key parameters of the centrifugal disc finishing process on the waviness of additively manufactured PEEK specimens, which has not been investigated previously. The waviness of the specimen was investigated by means of confocal laser scanning microscopy (CLSM), while weight loss was additionally tracked. Six parameters were investigated: type, amount and speed of media, use of compound, amount of water and time. Type of media, time and speed were found to significantly influence waviness reduction and weight loss. Surface electron microscopy images demonstrated the additional effects of deburring and corner rounding. Results on previous studies with specimens made of metal showed similar results. Further investigation is required to optimize waviness reduction and polish parts in a second post-processing step.

16.
Dent Mater ; 40(10): 1575-1583, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39068090

ABSTRACT

OBJECTIVES: This study aimed to use a carboxybetaine methacrylate (CBMA) copolymer solution to surface treat 3D printed clear aligners at different fabrication stages, to impart antifouling properties, and assess the surface treatment at various fabrication stages' impact on physico-mechanical characteristics. METHODS: Surface treatments using a blend of 2-hydroxyethyl methacrylate (HEMA) and CBMA, termed CCS, were performed at various stages of 3D printed clear aligner fabrication. Experimental groups, CB1, CB2, and CB3, were determined by the stage of surface treatment during post-processing. CB1, CB2, and CB3 received treatment before post-curing, after post-curing, and after post-processing, respectively. Untreated samples served as controls. Physical and mechanical properties were assessed through tensile testing, Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and UV-Vis spectroscopy. The surface was further characterized through scanning electron microscopy and contact angle measurements. The cytotoxicity was assessed with 7-day elution and agar diffusion assays. Lastly, bacterial biofilm resistance was evaluated using confocal laser scanning microscopy. Crystal violet assay was performed using Streptococcus mutans. RESULTS: Surface treatment during CB1 stage exerted the most significantly unfavorable influence on properties of the 3D printed aligner resin. CB2 samples showed the maximum preservation of translucency even after 7-day aging. CB2 and CB3 phases showed enhanced hydrophilicity of sample surfaces with reduced adhesion of multispecies biofilm and S. mutans. SIGNIFICANCE: Application of CCS surface treatment immediately after post-curing (CB2) can enhance the biofilm resistance of 3D printed clear aligners while maintaining high fidelity to optical translucency and constituent mechanical properties.


Subject(s)
Biofilms , Materials Testing , Methacrylates , Printing, Three-Dimensional , Surface Properties , Biofilms/drug effects , Methacrylates/chemistry , Betaine/chemistry , Betaine/pharmacology , Betaine/analogs & derivatives , Microscopy, Electron, Scanning , Streptococcus mutans/drug effects , Polymers/chemistry , Tensile Strength , Spectroscopy, Fourier Transform Infrared
17.
Heliyon ; 10(12): e32493, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975209

ABSTRACT

This in vitro study was to evaluate the effect of different non-thermal atmospheric pressure plasma (NTP) on shear bond strength (SBS) between yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and self-adhesive resin cement. In this study, The Y-TZP specimens were divided into 4 groups according to the surface treatment methods as follows: Control (no surface treatment), Sb (Sandblasting), AP(argon NTP), and CP(20 % oxygen and 80 % argon combination NTP). Y-TZP specimens were randomly selected from each group to observe and test the following indexes: scanning electron microscope to observe the surface morphology; atomic force microscope to detect the surface roughness; contact angle detector to detect the surface contact angle; energy spectrometer to analyze the surface elements. Then, resin cement (Rely X-U200) was bonded to human isolated teeth with Y-TZP specimens to measure SBS. The results showed that for the SE test, the NTP group was significantly higher than the control group (p < 0.05). The results of the SBS test showed that the SBS values of the NTP group were significantly higher than those of the other groups, regardless of the plasma treatment (p < 0.05). However, there was no significant difference between groups AP and CP in a test of SBS (p > 0.05). This study shows that non-thermal atmospheric pressure plasma can improve the shear bond strength of Y-TZP by increasing the surface energy. The addition of oxygen ratio to argon is more favorable to increase the shear bond strength and is worth further investigation.

18.
Materials (Basel) ; 17(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39063771

ABSTRACT

Measuring the flexural strength of restorative materials such as zirconia is crucial for providing proper indications for clinical applications and predicting performance. Great variations in specimen preparation for flexural strength measurements exist among laboratories. The aim was to evaluate how the processing method, surface treatment, and test method of the specimens affect the flexural strength of zirconia. Zirconia specimens (VITA YZ HT) (n = 270) were processed using CAD/CAM or were conventionally milled with three different surface treatments (machined, ground, polished) and were measured with three-point bending (non-chamfered/chamfered) or biaxial flexural strength test. Weibull statistics were conducted. The mean flexural strength values ranged from 612 MPa (conventional, machined, three-point bending non-chamfered) to 1143 MPa (CAD/CAM, polished, biaxial flexural strength). The highest reliability is achieved when specimens are prepared using thoroughly controllable processing with CAD/CAM and subsequently polished. Higher strength values are achieved with the biaxial flexural strength test method because the stress concentration in relation to the effective volume is smaller. Polishing reduces surface microcracks and therefore increases the strength values.

19.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(3): 359-364, 2024 Jun 01.
Article in English, Chinese | MEDLINE | ID: mdl-39049657

ABSTRACT

OBJECTIVES: This study aims to investigate bond strength between zirconia and resin cement through surface treatments with Er: YAG laser, Nd: YAG laser, and Si-Zr coating. METHODS: Seventy-five round pre-sintered zirconia discs with a diameter of 18 mm and a thickness of 1.5 mm were prepared by a powder compactor. Fifty discs were randomly divided into five groups of 10 discs each and were subjected to five surface treatments: no treatment (control group), sandblasting with alumina particles (sandblasting group), Er: YAG laser treatment (Er: YAG laser group), Nd:YAG laser treatment (Nd: YAG laser group), and Si-Zr coating treatment (Si-Zr coating group). The discs were then bonded to composite resin columns with resin cement. The shear bond strength of each group was tested with a universal tester. Roughness tester, scanning electron microscope (SEM), and energy dispersive spectroscopy were used to analyze surface performance. RESULTS: The bond strength of the Si-Zr coating group was higher than that of the remaining groups (P<0.05). The difference in bond strength between the sandblasting group and the Er: YAG laser group was not statistically significant (P>0.05), but both of them had higher bond strength than the Nd: YAG laser group (P<0.05). The Si-Zr coating group had the highest surface roughness (P<0.05). The surface roughness of the sandblasting, Er: YAG laser, and Nd: YAG laser groups was higher than that of the control group (P<0.05), but the difference among the three groups was not statistically significant (P>0.05). SEM observations showed irregular scratches on the surface of the sandblasting group and large pits with holes on the surface of the Er: YAG and Nd: YAG laser groups. In the Er: YAG laser group, the crystal structure was replaced by a smooth surface with a large amount of microcracks due to partial melting. Complex porous structures that comprised "island-like" structures and mass pores among the grains were observed on the surface of the Si-Zr coating. Only Zr, O, and Y were detected on the surfaces of the control, Er: YAG laser, and Nd: YAG laser groups. Al was found on the surface of the sandblasted group, and a higher proportion of Si was detected on the surface of the Si-Zr coating group. CONCLUSIONS: Er: YAG laser and Nd: YAG laser treatment on the zirconia ceramic surface could increase roughness and improve the bond strength to resin cement. Si-Zr coating treatment is an effective alternative for increasing the roughness and bond strength of zirconia surface and is superior to sandblasting and laser treatments.


Subject(s)
Ceramics , Lasers, Solid-State , Materials Testing , Surface Properties , Zirconium , Zirconium/chemistry , Shear Strength , Microscopy, Electron, Scanning , Dental Bonding , Composite Resins , Dental Stress Analysis , Silicon
20.
Jpn Dent Sci Rev ; 60: 198-210, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39027733

ABSTRACT

This systematic review evaluated the effect of different hydrofluoric acid (HF) etching regimens and a self-etch ceramic primer (SECP) on the flexural strength (FS) and fatigue failure load (FFL) of glass-ceramic materials.The identification of relevant studies was conducted by two authors in five databases: PubMED, Scopus, Web Of Science, LILACS and Virtual Health Library (BVS) until July 2022 with no year limit. The analysis was conducted in RevMan 5.4.1 Software (Cochrane Collaboration) using Random effect model at 5 %. The risk of bias of the included studies were assessed. From the 5349 articles identified, 34 were included for quantitative analysis. Meta-analysis showed that for predominantly glassy ceramics, etching with HF 5 % had no significant impact on FS, however, HF acid etching with concentrations greater than 5 % negatively impacted FS. For lithium disilicate glass-ceramics (LDGC) HF acid etching, negatively influenced FS, while increasing the FFL. HF etching negatively affected FS of hybrid ceramics. The self-etch ceramic primer and HF acid etching showed a similar impact on FFL and FS. This meta-analysis indicates that the impact of SECP and HF acid etching on the mechanical behavior of glass ceramics is material-dependent.

SELECTION OF CITATIONS
SEARCH DETAIL