Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
J Insect Physiol ; 120: 103973, 2020 01.
Article in English | MEDLINE | ID: mdl-31715141

ABSTRACT

In Lutzomyia longipalpis females, which are the main vectors of Leishmania infantum in the Americas, hematophagy is crucial for ovary development. The control of pH in the midgut during blood digestion is important to the functioning of the digestive enzymes, which release amino acids in the luminal compartment that are then transported through the enterocytes to the hemolymph for delivery to the ovary and other organs. In the present work, we investigated transport systems known as LuloPATs that are present in the midgut of L. longipalpis but not in other organs. These transporters achieve symport of amino acids with H+ ions, and one of them (LuloPAT1) is orthologous to a transporter described in Aedes aegypti. According to our results, the transcription levels of LuloPAT1 increased significantly immediately after a blood meal. Based on the variation of the fluorescence of fluorescein with the pH of the medium, we developed a technique that shows the acidification of the cytoplasm of gut cells when amino acids are cotransported with H+ from the lumen into the enterocytes. In our experiments, the midguts of the sandflies were dissected and opened longitudinally so that added amino acids could enter the enterocytes via the lumen (PAT carriers are apical). LuloPAT1 transporters are part of a complex of mechanisms that act synergistically to promote gut alkalinization as soon as blood intake by the vector occurs. In dissected but not longitudinally opened midguts, added amino acids could only enter through the basolateral region of enterocytes. However, alkalinization of the lumen was observed because the entry of some amino acids into the cytoplasm of enterocytes triggers a luminal alkalinization mechanism independent of LuloPATs. These findings provide new perspectives that will enable the characterization of the set of signaling pathways involved in pH regulation within the L. longipalpis midgut.


Subject(s)
Amino Acids/physiology , Protons , Psychodidae/physiology , Symporters/physiology , Animals , Gastrointestinal Tract/physiology
2.
An. acad. bras. ciênc ; 89(3,supl): 2181-2188, 2017. graf
Article in English | LILACS | ID: biblio-886776

ABSTRACT

ABSTRACT The objective of this study was to identify thyroid hormones and to examine their putative site of synthesis in Achatina fulica snails. For this purpose, radioimmunoassays were performed for T3 and T4 before and after long starvation with or without hemolymph deproteinization. Sodium/iodide symporter activity in vivo was analyzed through 125I administration with and without KClO4 pretreatment. Only T4 was detected, and its concentration decreased due to starvation or deproteinization. However, high-performance liquid chromatography analysis also showed the presence of T2 and T3 apart from T4, but rT3 was not detected in the A. fulica hemolymph. The sodium/iodide symporter activity was greater in cerebral ganglia than digestive gland, but KClO4 treatment did not inhibit iodide uptake in any of the tissues analyzed. Altogether, our data confirm for the first time the presence of thyroid hormones in A. fulica snails and suggest their participation in the metabolism control in this species, although the putative site of hormone biosynthesis remains to be elucidated.


Subject(s)
Animals , Snails/chemistry , Thyroxine/analysis , Thyroxine/metabolism , Biological Transport , Hemolymph , Chromatography, High Pressure Liquid , Sodium Chloride Symporters
SELECTION OF CITATIONS
SEARCH DETAIL