Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 256
Filter
1.
J Physiol ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373584

ABSTRACT

Sensory hair cells of the inner ear utilize specialized ribbon synapses to transmit sensory stimuli to the central nervous system. This transmission necessitates rapid and sustained neurotransmitter release, which depends on a large pool of synaptic vesicles at the hair-cell presynapse. While previous work in neurons has shown that kinesin motor proteins traffic synaptic material along microtubules to the presynapse, the mechanisms of this process in hair cells remain unclear. Our study demonstrates that the kinesin motor protein Kif1a, along with an intact microtubule network, is essential for enriching synaptic vesicles at the presynapse in hair cells. Through genetic and pharmacological approaches, we disrupt Kif1a function and impair microtubule networks in hair cells of the zebrafish lateral-line system. These manipulations led to a significant reduction in synaptic-vesicle populations at the presynapse in hair cells. Using electron microscopy, in vivo calcium imaging, and electrophysiology, we show that a diminished supply of synaptic vesicles adversely affects ribbon-synapse function. Kif1aa mutants exhibit dramatic reductions in spontaneous vesicle release and evoked postsynaptic calcium responses. Furthermore, kif1aa mutants exhibit impaired rheotaxis, a behaviour reliant on the ability of hair cells in the lateral line to respond to sustained flow stimuli. Overall, our results demonstrate that Kif1a-mediated microtubule transport is critical to enrich synaptic vesicles at the active zone, a process that is vital for proper ribbon-synapse function in hair cells. KEY POINTS: Kif1a mRNAs are present in zebrafish hair cells. Loss of Kif1a disrupts the enrichment of synaptic vesicles at ribbon synapses. Disruption of microtubules depletes synaptic vesicles at ribbon synapses. Kif1aa  mutants have impaired ribbon-synapse and sensory-system function.

2.
Food Chem Toxicol ; 193: 115009, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39304082

ABSTRACT

Trace metal Cu and carbonaceous airborn particulate matter (PM) are dangerous neuropollutants. Here, the ability of Cu2+ to modulate the neurotoxicity caused by water-suspended wood smoke PM preparations (SPs) and vice versa was examined using presynaptic rat cortex nerve terminals. Interaction of Cu2+ and SPs, changes of particle size and surface properties were shown in the presence of Cu2+ using microscopy, DLS, and IR spectroscopy. In nerve terminals, Cu2+ and SPs per se elevated the ambient levels of excitatory and inhibitory neurotransmitters L-[14C]glutamate and [3H]GABA, respectively. During combined application, Cu2+ significantly enhanced a SPs-induced increase in the ambient levels of both neurotransmitters, thereby demonstrating a cumulative synergistic effect and significant interference in the neurotoxic threat associated with Cu2+and SPs. In fluorimetric measurements, Cu2+ and SPs also demonstrated cumulative synergistic effects on the membrane potential, mitochondrial potential, synaptic vesicle acidification and ROS generation. Therefore, synergistic effects of Cu2+ and SPs on the most crucial presynaptic characteristics and neurohazard of multiple pollutants through excitatory/inhibitory imbalance, disruption of the membrane and mitochondrial potential, vesicle acidification and ROS generation were revealed. Increased expansion and burden of neuropathology may result from underestimation of synergistic interference of the neurotoxic effects of Cu2+ and carbonaceous smoke PM.

3.
J Neurochem ; 168(9): 3188-3208, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39091022

ABSTRACT

Following exocytosis, the recapture of plasma membrane-stranded vesicular proteins into recycling synaptic vesicles (SVs) is essential for sustaining neurotransmission. Surface clustering of vesicular proteins has been proposed to act as a 'pre-assembly' mechanism for endocytosis that ensures high-fidelity retrieval of SV cargo. Here, we used single-molecule imaging to examine the nanoclustering of synaptotagmin-1 (Syt1) and synaptic vesicle protein 2A (SV2A) in hippocampal neurons. Syt1 forms surface nanoclusters through the interaction of its C2B domain with SV2A, which are sensitive to mutations in this domain (Syt1K326A/K328A) and SV2A knockdown. SV2A co-clustering with Syt1 is reduced by blocking SV2A's cognate interaction with Syt1 (SV2AT84A). Surprisingly, impairing SV2A-Syt1 nanoclustering enhanced the plasma membrane recruitment of key endocytic protein dynamin-1, causing accelerated Syt1 endocytosis, altered intracellular sorting and decreased trafficking of Syt1 to Rab5-positive endocytic compartments. Therefore, SV2A and Syt1 are segregated from the endocytic machinery in surface nanoclusters, limiting dynamin recruitment and negatively regulating Syt1 entry into recycling SVs.


Subject(s)
Endocytosis , Hippocampus , Membrane Glycoproteins , Nerve Tissue Proteins , Synaptic Vesicles , Synaptotagmin I , Synaptic Vesicles/metabolism , Synaptotagmin I/metabolism , Synaptotagmin I/genetics , Endocytosis/physiology , Animals , Rats , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Hippocampus/metabolism , Neurons/metabolism , Cell Membrane/metabolism , Cells, Cultured
4.
J Physiol ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141823

ABSTRACT

Dynamins are GTPases required for pinching vesicles off the plasma membrane once a critical curvature is reached during endocytosis. Here, we probed dynamin function in central synapses by depleting all three dynamin isoforms in postnatal hippocampal neurons down to negligible levels. We found a decrease in the propensity of evoked neurotransmission as well as a reduction in synaptic vesicle numbers. Recycling of synaptic vesicles during spontaneous or low levels of evoked activity were largely impervious to dynamin depletion, while retrieval of synaptic vesicle components at higher levels of activity was partially arrested. These results suggest the existence of balancing dynamin-independent mechanisms for synaptic vesicle recycling at central synapses. Classical dynamin-dependent mechanisms are not essential for retrieval of synaptic vesicle proteins after quantal single synaptic vesicle fusion, but they become more relevant for membrane retrieval during intense, sustained neuronal activity. KEY POINTS: Loss of dynamin 2 does not impair synaptic transmission. Loss of all three dynamin isoforms mostly affects evoked neurotransmission. Excitatory synapse function is more susceptible to dynamin loss. Spontaneous neurotransmission is only mildly affected by loss of dynamins. Single synaptic vesicle endocytosis is largely dynamin independent.

5.
J Neurosci ; 44(31)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38951039

ABSTRACT

The release of neurotransmitters (NTs) at central synapses is dependent on a cascade of protein interactions, specific to the presynaptic compartment. Among those dedicated molecules, the cytosolic complexins play an incompletely defined role as synaptic transmission regulators. Complexins are multidomain proteins that bind soluble N-ethylmaleimide sensitive factor attachment protein receptor complexes, conferring both inhibitory and stimulatory functions. Using systematic mutagenesis and comparing reconstituted in vitro membrane fusion assays with electrophysiology in cultured neurons from mice of either sex, we deciphered the function of the N-terminus of complexin (Cpx) II. The N-terminus (amino acid 1-27) starts with a region enriched in hydrophobic amino acids (1-12), which binds lipids. Mutants maintaining this hydrophobic character retained the stimulatory function of Cpx, whereas exchanges introducing charged residues perturbed both spontaneous and evoked exocytosis. Mutants in the more distal region of the N-terminal domain (amino acid 11-18) showed a spectrum of effects. On the one hand, mutation of residue A12 increased spontaneous release without affecting evoked release. On the other hand, replacing D15 with amino acids of different shapes or hydrophobic properties (but not charge) not only increased spontaneous release but also impaired evoked release. Most surprising, this substitution reduced the size of the readily releasable pool, a novel function for Cpx at mammalian synapses. Thus, the exact amino acid composition of the Cpx N-terminus fine-tunes the degree of spontaneous and evoked NT release.


Subject(s)
Nerve Tissue Proteins , Synaptic Vesicles , Animals , Synaptic Vesicles/metabolism , Synaptic Vesicles/genetics , Mice , Male , Female , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/chemistry , Mutation , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/chemistry , Membrane Fusion/physiology , Membrane Fusion/genetics , Cells, Cultured , Phenotype , Neurons/metabolism , Synaptic Transmission/genetics , Synaptic Transmission/physiology , Mice, Inbred C57BL , Exocytosis/physiology , Exocytosis/genetics
6.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38866497

ABSTRACT

Synapsins are highly abundant presynaptic proteins that play a crucial role in neurotransmission and plasticity via the clustering of synaptic vesicles. The synapsin III isoform is usually downregulated after development, but in hippocampal mossy fiber boutons, it persists in adulthood. Mossy fiber boutons express presynaptic forms of short- and long-term plasticity, which are thought to underlie different forms of learning. Previous research on synapsins at this synapse focused on synapsin isoforms I and II. Thus, a complete picture regarding the role of synapsins in mossy fiber plasticity is still missing. Here, we investigated presynaptic plasticity at hippocampal mossy fiber boutons by combining electrophysiological field recordings and transmission electron microscopy in a mouse model lacking all synapsin isoforms. We found decreased short-term plasticity, i.e., decreased facilitation and post-tetanic potentiation, but increased long-term potentiation in male synapsin triple knock-out (KO) mice. At the ultrastructural level, we observed more dispersed vesicles and a higher density of active zones in mossy fiber boutons from KO animals. Our results indicate that all synapsin isoforms are required for fine regulation of short- and long-term presynaptic plasticity at the mossy fiber synapse.


Subject(s)
Mice, Knockout , Mossy Fibers, Hippocampal , Neuronal Plasticity , Presynaptic Terminals , Synapsins , Animals , Synapsins/metabolism , Synapsins/genetics , Mossy Fibers, Hippocampal/physiology , Male , Neuronal Plasticity/physiology , Presynaptic Terminals/physiology , Presynaptic Terminals/metabolism , Mice, Inbred C57BL , Mice , Synaptic Vesicles/metabolism , Synaptic Vesicles/ultrastructure , Excitatory Postsynaptic Potentials/physiology
7.
bioRxiv ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38903095

ABSTRACT

Sensory hair cells of the inner ear utilize specialized ribbon synapses to transmit sensory stimuli to the central nervous system. This sensory transmission necessitates rapid and sustained neurotransmitter release, which relies on a large pool of synaptic vesicles at the hair-cell presynapse. Work in neurons has shown that kinesin motor proteins traffic synaptic material along microtubules to the presynapse, but how new synaptic material reaches the presynapse in hair cells is not known. We show that the kinesin motor protein Kif1a and an intact microtubule network are necessary to enrich synaptic vesicles at the presynapse in hair cells. We use genetics and pharmacology to disrupt Kif1a function and impair microtubule networks in hair cells of the zebrafish lateral-line system. We find that these manipulations decrease synaptic-vesicle populations at the presynapse in hair cells. Using electron microscopy, along with in vivo calcium imaging and electrophysiology, we show that a diminished supply of synaptic vesicles adversely affects ribbon-synapse function. Kif1a mutants exhibit dramatic reductions in spontaneous vesicle release and evoked postsynaptic calcium responses. Additionally, we find that kif1a mutants exhibit impaired rheotaxis, a behavior reliant on the ability of hair cells in the lateral line to respond to sustained flow stimuli. Overall, our results demonstrate that Kif1a-based microtubule transport is critical to enrich synaptic vesicles at the active zone in hair cells, a process that is vital for proper ribbon-synapse function.

8.
Angew Chem Int Ed Engl ; 63(39): e202406677, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-38825572

ABSTRACT

The microtubule-associated protein tau participates in neurotransmission regulation via its interaction with synaptic vesicles (SVs). The precise nature and mechanics of tau's engagement with SVs, especially regarding alterations in vesicle dynamics, remain a matter of discussion. We report an electrochemical method using a synapse-mimicking nanopipette to monitor vesicle dynamics induced by tau. A model vesicle of ~30 nm is confined within a lipid-modified nanopipette orifice with a comparable diameter to mimic the synaptic lipid environment. Both tau and phosphorylated tau (p-tau) present two-state dynamic behavior in this biomimetic system, showing typical ionic current oscillation, induced by lipid-tau interaction. The results indicate that p-tau has a stronger affinity to the lipid vesicles in the confined environment, blocking the vesicle movement to a higher degree. Taken together, this method bridges a gap for sensing synaptic vesicle dynamics in a confined lipid environment, mimicking vesicle movement near the synaptic membrane. These findings contribute to understanding how different types of tau protein regulate synaptic vesicle motility and to underlying its functional and pathological behaviours in disease.


Subject(s)
Electrochemical Techniques , Synaptic Vesicles , tau Proteins , tau Proteins/metabolism , tau Proteins/chemistry , Synaptic Vesicles/metabolism , Synaptic Vesicles/chemistry , Humans , Phosphorylation
9.
BMC Biol ; 22(1): 142, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926759

ABSTRACT

BACKGROUND: The VPS50 protein functions in synaptic and dense core vesicle acidification, and perturbations of VPS50 function produce behavioral changes in Caenorhabditis elegans. Patients with mutations in VPS50 show severe developmental delay and intellectual disability, characteristics that have been associated with autism spectrum disorders (ASDs). The mechanisms that link VPS50 mutations to ASD are unknown. RESULTS: To examine the role of VPS50 in mammalian brain function and behavior, we used the CRISPR/Cas9 system to generate knockouts of VPS50 in both cultured murine cortical neurons and living mice. In cultured neurons, KO of VPS50 did not affect the number of synaptic vesicles but did cause mislocalization of the V-ATPase V1 domain pump and impaired synaptic activity, likely as a consequence of defects in vesicle acidification and vesicle content. In mice, mosaic KO of VPS50 in the hippocampus altered synaptic transmission and plasticity and generated robust cognitive impairments. CONCLUSIONS: We propose that VPS50 functions as an accessory protein to aid the recruitment of the V-ATPase V1 domain to synaptic vesicles and in that way plays a crucial role in controlling synaptic vesicle acidification. Understanding the mechanisms controlling behaviors and synaptic function in ASD-associated mutations is pivotal for the development of targeted interventions, which may open new avenues for therapeutic strategies aimed at ASD and related conditions.


Subject(s)
Mice, Knockout , Synaptic Vesicles , Animals , Mice , Behavior, Animal/physiology , Brain/metabolism , Neurons/metabolism , Neurons/physiology , Synapses/metabolism , Synapses/physiology , Synaptic Transmission , Synaptic Vesicles/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
10.
Elife ; 122024 May 07.
Article in English | MEDLINE | ID: mdl-38713200

ABSTRACT

The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.


Subject(s)
Hippocampus , Neurons , Synapsins , alpha-Synuclein , Animals , Humans , Mice , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/chemistry , Cells, Cultured , Hippocampus/metabolism , Neurons/metabolism , Protein Binding , Protein Domains , Synapses/metabolism , Synapsins/metabolism , Synapsins/genetics , Synaptic Vesicles/metabolism
11.
Chemistry ; 30(36): e202400890, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38687053

ABSTRACT

It is well-known that people suffering from hyperglycemia have a higher propensity to develop Parkinson's disease (PD). One of the most plausible mechanisms linking these two pathologies is the glycation of neuronal proteins and the pathological consequences of it. α-Synuclein, a key component in PD, can be glycated at its fifteen lysine. In fact, the end products of this process have been detected on aggregated α-synuclein isolated from in vivo. However, the consequences of glycation are not entirely clear, which are of crucial importance to understand the mechanism underlying the connection between diabetes and PD. To better clarify this, we have here examined how methylglyoxal (the most important carbonyl compound found in the cytoplasm) affects the conformation and aggregation propensity of α-synuclein, as well as its ability to cluster and fuse synaptic-like vesicles. The obtained data prove that methylglyoxal induces the Lys-Lys crosslinking through the formation of MOLD. However, this does not have a remarkable effect on the averaged conformational ensemble of α-synuclein, although it completely depletes its native propensity to form soluble oligomers and insoluble amyloid fibrils. Moreover, methylglyoxal has a disrupting effect on the ability of α-synuclein to bind, cluster and fusion synaptic-like vesicles.


Subject(s)
Pyruvaldehyde , alpha-Synuclein , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Pyruvaldehyde/chemistry , Pyruvaldehyde/metabolism , Humans , Parkinson Disease/metabolism , Protein Aggregates/drug effects , Protein Conformation , Glycosylation , Lysine/chemistry , Amyloid/chemistry , Amyloid/metabolism
12.
Elife ; 122024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502163

ABSTRACT

Neurotransmission at synapses is mediated by the fusion and subsequent endocytosis of synaptic vesicle membranes. Actin has been suggested to be required for presynaptic endocytosis but the mechanisms that control actin polymerization and its mode of action within presynaptic nerve terminals remain poorly understood. We combine optical recordings of presynaptic membrane dynamics and ultrastructural analysis with genetic and pharmacological manipulations to demonstrate that presynaptic endocytosis is controlled by actin regulatory diaphanous-related formins mDia1/3 and Rho family GTPase signaling in mouse hippocampal neurons. We show that impaired presynaptic actin assembly in the near absence of mDia1/3 and reduced RhoA activity is partly compensated by hyperactivation of Rac1. Inhibition of Rac1 signaling further aggravates impaired presynaptic endocytosis elicited by loss of mDia1/3. Our data suggest that interdependent mDia1/3-Rho and Rac1 signaling pathways cooperatively act to facilitate synaptic vesicle endocytosis by controlling presynaptic F-actin.


Subject(s)
Actins , rho GTP-Binding Proteins , Animals , Mice , Signal Transduction , Synaptic Transmission , Endocytosis
13.
Trends Pharmacol Sci ; 45(5): 385-387, 2024 May.
Article in English | MEDLINE | ID: mdl-38429134

ABSTRACT

Vesicular monoamine transporter (VMAT)-2 has a crucial role in the neurotransmission of biogenic amines. Recently, Dalton et al., Pidathala et al., Wu et al., and Wang et al. individually reported cryo-electron microscopy (EM) structures of human VMAT2, offering opportunities for developing improved therapeutics and deep insights into the functioning of this protein.


Subject(s)
Cryoelectron Microscopy , Drug Development , Vesicular Monoamine Transport Proteins , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , Vesicular Monoamine Transport Proteins/metabolism , Humans , Animals
14.
Genetics ; 227(1)2024 05 07.
Article in English | MEDLINE | ID: mdl-38467475

ABSTRACT

Asymmetric transport of cargo across axonal branches is a field of active research. Mechanisms contributing to preferential cargo transport along specific branches in vivo in wild type neurons are poorly understood. We find that anterograde synaptic vesicles preferentially enter the synaptic branch or pause at the branch point in Caenorhabditis elegans Posterior Lateral Mechanosensory neurons. The synaptic vesicle anterograde kinesin motor UNC-104/KIF1A regulates this vesicle behavior at the branch point. Reduced levels of functional UNC-104 cause vesicles to predominantly pause at the branch point and lose their preference for turning into the synaptic branch. SAM-4/Myrlysin, which aids in recruitment/activation of UNC-104 on synaptic vesicles, regulates vesicle behavior at the branch point similar to UNC-104. Increasing the levels of UNC-104 increases the preference of vesicles to go straight toward the asynaptic end. This suggests that the neuron optimizes UNC-104 levels on the cargo surface to maximize the fraction of vesicles entering the branch and minimize the fraction going to the asynaptic end.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Kinesins , Nerve Tissue Proteins , Synaptic Vesicles , Animals , Synaptic Vesicles/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Kinesins/metabolism , Kinesins/genetics , Neurons/metabolism
15.
J Cell Sci ; 137(7)2024 04 01.
Article in English | MEDLINE | ID: mdl-38477340

ABSTRACT

Axonal transport in neurons is essential for cargo movement between the cell body and synapses. Caenorhabditis elegans UNC-104 and its homolog KIF1A are kinesin-3 motors that anterogradely transport precursors of synaptic vesicles (pre-SVs) and are degraded at synapses. However, in C. elegans, touch neuron-specific knockdown of the E1 ubiquitin-activating enzyme, uba-1, leads to UNC-104 accumulation at neuronal ends and synapses. Here, we performed an RNAi screen and identified that depletion of fbxb-65, which encodes an F-box protein, leads to UNC-104 accumulation at neuronal distal ends, and alters UNC-104 net anterograde movement and levels of UNC-104 on cargo without changing synaptic UNC-104 levels. Split fluorescence reconstitution showed that UNC-104 and FBXB-65 interact throughout the neuron. Our theoretical model suggests that UNC-104 might exhibit cooperative cargo binding that is regulated by FBXB-65. FBXB-65 regulates an unidentified post-translational modification (PTM) of UNC-104 in a region beside the cargo-binding PH domain. Both fbxb-65 and UNC-104, independently of FBXB-65, regulate axonal pre-SV distribution, transport of pre-SVs at branch points and organismal lifespan. FBXB-65 regulates a PTM of UNC-104 and the number of motors on the cargo surface, which can fine-tune cargo transport to the synapse.


Subject(s)
Axonal Transport , Caenorhabditis elegans Proteins , F-Box Proteins , Kinesins , Animals , Axonal Transport/physiology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , F-Box Proteins/metabolism , Kinesins/metabolism , Nerve Tissue Proteins/metabolism , Pleckstrin Homology Domains , Protein Processing, Post-Translational
16.
J Cell Sci ; 137(6)2024 03 15.
Article in English | MEDLINE | ID: mdl-38348894

ABSTRACT

Dense core vesicles (DCVs) and synaptic vesicles are specialised secretory vesicles in neurons and neuroendocrine cells, and abnormal release of their cargo is associated with various pathophysiologies. Endoplasmic reticulum (ER) stress and inter-organellar communication are also associated with disease biology. To investigate the functional status of regulated exocytosis arising from the crosstalk of a stressed ER and DCVs, ER stress was modelled in PC12 neuroendocrine cells using thapsigargin. DCV exocytosis was severely compromised in ER-stressed PC12 cells and was reversed to varying magnitudes by ER stress attenuators. Experiments with tunicamycin, an independent ER stressor, yielded similar results. Concurrently, ER stress also caused impaired DCV exocytosis in insulin-secreting INS-1 cells. Molecular analysis revealed blunted SNAP25 expression, potentially attributed to augmented levels of ATF4, an inhibitor of CREB that binds to the CREB-binding site. The effects of loss of function of ATF4 in ER-stressed cells substantiated this attribution. Our studies revealed severe defects in DCV exocytosis in ER-stressed cells for the first time, mediated by reduced levels of key exocytotic and granulogenic switches regulated via the eIF2α (EIF2A)-ATF4 axis.


Subject(s)
Neurons , Synaptic Vesicles , Rats , Animals , Neurons/metabolism , Synaptic Vesicles/metabolism , Exocytosis/physiology , Secretory Vesicles/metabolism , Endoplasmic Reticulum Stress
17.
Neuroscience ; 539: 66-75, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38220128

ABSTRACT

Current evidence suggests that glial cells provide C3 carbon sources to fuel neuronal activity; however, this notion has become challenged by biosensor studies carried out in acute brain slices or in vivo, showing that neuronal activity does not rely on the import of astrocyte-produced L-lactate. Rather, stimulated neurons become net lactate exporters, as it was also shown in Drosophila neurons, in which astrocyte-provided lactate returns as lipid droplets to be stored in glial cells. In this view, we investigate whether exogenously supplied monocarboxylates can support Drosophila motoneuron neurotransmitter release (NTR). By assessing the excitatory post-synaptic current (EPSC) amplitude under voltage-clamp as NTR indicative, we found that both pyruvate and L-lactate, as the only carbon sources in the synapses bathing-solution, cause a large transient NTR enhancement, which declines to reach a synaptic depression state, from which the synapses do not recover. The FM1-43 pre-synaptic loading ability, however, is maintained under monocarboxylate, suggesting that SV cycling should not contribute to the synaptic depression state. The NTR recovery was reached by supplementing the monocarboxylate medium with sucrose. However, monocarboxylate addition to sucrose medium does not enhance NTR, but it does when the disaccharide concentration becomes too reduced. Thus, when pyruvate concentrations become too reduced, exogenously supplied L-lactate could be converted to pyruvate and metabolized by the neural mitochondria, triggering the NTR enhancement. SIGNIFICANCE STATEMENT: The question of whether monocarboxylic acids can fuel the Drosophila motoneuron NTR was challenged. Our findings show that exogenously supplied monocarboxylates trigger a large transient synaptic enhancement just under extreme glycolysis reduction but fail to maintain NTR under sustained synaptic demand, still at low frequency stimulation, driven to the synapses to a synaptic depression state. Glycolysis activation, by adding sucrose to the monocarboxylate bath solution, restores the motoneuron NTR ability, giving place to a hexoses role in SV recruitment. Moreover these results suggest exogenously supplied C3 carbon sources could have an additional role beyond providing energetic support for neural activity.


Subject(s)
Drosophila , Synapses , Animals , Drosophila/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Motor Neurons/metabolism , Pyruvic Acid/pharmacology , Pyruvic Acid/metabolism , Lactates/metabolism , Carbon/metabolism , Sucrose/metabolism
18.
Comput Struct Biotechnol J ; 23: 347-357, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38205155

ABSTRACT

In contrast to humans, lampreys spontaneously recover their swimming capacity after a complete spinal cord injury (SCI). This recovery process involves the regeneration of descending axons. Spontaneous axon regeneration in lampreys has been mainly studied in giant descending neurons. However, the regeneration of neurochemically distinct descending neuronal populations with small-caliber axons, as those found in mammals, has been less studied. Cholecystokinin (CCK) is a regulatory neuropeptide found in the brain and spinal cord that modulates several processes such as satiety, or locomotion. CCK shows high evolutionary conservation and is present in all vertebrate species. Work in lampreys has shown that all CCKergic spinal cord axons originate in a single neuronal population located in the caudal rhombencephalon. Here, we investigate the spontaneous regeneration of CCKergic descending axons in larval lampreys following a complete SCI. Using anti-CCK-8 immunofluorescence, confocal microscopy and lightning adaptive deconvolution, we demonstrate the partial regeneration of CCKergic axons (81% of the number of axonal profiles seen in controls) 10 weeks after the injury. Our data also revealed a preference for regeneration of CCKergic axons in lateral spinal cord regions. Regenerated CCKergic axons exhibit colocalization with synaptic vesicle marker SV2, indicative of functional synaptic connections. We also extracted swimming dynamics in injured animals by using DeepLabCut. Interestingly, the degree of CCKergic reinnervation correlated with improved swimming performance in injured animals, suggesting a potential role in locomotor recovery. These findings open avenues for further exploration into the role of specific neuropeptidergic systems in post-SCI spinal locomotor networks.

19.
Biochem Biophys Rep ; 37: 101614, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38188363

ABSTRACT

SNAP25 (synaptosome-associated protein of 25 kDa) is a core SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) protein; and the interaction between SNAP25 and other SNARE proteins is essential for synaptic vesicle exocytosis. Identified as a SNAP25 interacting protein, SIP30 (SNAP25 interacting protein at 30 kDa) has been shown to modulate neuropathic pain behavior, and is potentially involved in the cellular process of vesicle exocytosis. Previous study demonstrated that using a vesicle secretion assay in PC12 cells, anti-SIP30 siRNA reduced vesicle exocytosis. We investigated vesicle exocytosis from PC12 cells with FM1-43 fluorescence dye, and demonstrated that anti-SIP30 siRNA reduced the pool of releasable vesicles and the rate of vesicle exocytosis, without affecting the endocytosis and recycling of the exocytosed vesicles. The results show that SIP30 is involved in vesicle exocytosis, suggesting a potential mechanism of SIP30 modulation of neuropathic pain.

20.
Elife ; 122024 Jan 05.
Article in English | MEDLINE | ID: mdl-38180320

ABSTRACT

Recent research suggests that in central mammalian synapses, active zones contain several docking sites acting in parallel. Before release, one or several synaptic vesicles (SVs) are thought to bind to each docking site, forming the readily releasable pool (RRP). Determining the RRP size per docking site has important implications for short-term synaptic plasticity. Here, using mouse cerebellar slices, we take advantage of recently developed methods to count the number of released SVs at single glutamatergic synapses in response to trains of action potentials (APs). In each recording, the number of docking sites was determined by fitting with a binomial model the number of released SVs in response to individual APs. After normalization with respect to the number of docking sites, the summed number of released SVs following a train of APs was used to estimate of the RRP size per docking site. To improve this estimate, various steps were taken to maximize the release probability of docked SVs, the occupancy of docking sites, as well as the extent of synaptic depression. Under these conditions, the RRP size reached a maximum value close to two SVs per docking site. The results indicate that each docking site contains two distinct SV-binding sites that can simultaneously accommodate up to one SV each. They further suggest that under special experimental conditions, as both sites are close to full occupancy, a maximal RRP size of two SVs per docking site can be reached. More generally, the results validate a sequential two-step docking model previously proposed at this preparation.


Subject(s)
Cerebellum , Models, Statistical , Animals , Mice , Action Potentials , Binding Sites , Synapses , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL