Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 11: 1171495, 2023.
Article in English | MEDLINE | ID: mdl-37152284

ABSTRACT

The reef-building coral Acropora is a broadcast spawning hermaphrodite including more than 110 species in the Indo-Pacific. In addition, many sympatric species show synchronous spawning. The released gametes need to mate with conspecifics in the mixture of the gametes of many species for their species boundaries. However, the mechanism underlying the species recognition of conspecifics at fertilization remains unknown. We hypothesized that rapid molecular evolution (positive selection) in genes encoding gamete-composing proteins generates polymorphic regions that recognize conspecifics in the mixture of gametes from many species. We identified gamete proteins of Acropora digitifera using mass spectrometry and screened the genes that support branch site models that set the "foreground" branches showing strict fertilization specificity. ADAM10, ADAM17, Integrin α9, and Tetraspanin4 supported branch-site model and had positively selected site(s) that produced polymorphic regions. Therefore, we prepared antibodies against the proteins of A. digitifera that contained positively selected site(s) to analyze their functions in fertilization. The ADAM10 antibody reacted only with egg proteins of A. digitifera, and immunohistochemistry showed ADAM10 localized around the egg surface. Moreover, the ADAM10 antibody inhibited only A. digitifera fertilization but not the relative synchronous spawning species A. papillare. This study indicates that ADAM10 has evolved to gain fertilization specificity during speciation and contributes to species boundaries in this multi-species, synchronous-spawning, and species-rich genus.

2.
Mol Ecol ; 32(23): 6474-6488, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35852023

ABSTRACT

Synchronous multispecific coral spawning generally occurs annually and forms an integral part of the coral life cycle. Apart from spawning times and species participation, however, much else remains unknown. Here, we applied environmental DNA (eDNA) metabarcoding to study two tropical reef sites of contrasting coral cover before, during and after coral spawning. Using coral-ITS2 and vertebrate-12S markers, we evaluated eDNA as an alternative monitoring tool by assessing its capabilities in detecting spawning species and tracking relative abundances of coral and fish eDNA. Over 3 years, elevated eDNA coral signals during the event (proportional read increase of up to five-fold) were observed, detecting a total of 38 coral and 133 fish species with all but one of the coral species visually observed to be spawning. This is also the first demonstration that eDNA metabarcoding can be used to infer the diurnal partitioning of night- and day-time spawning, spawning in coral species overlooked by visual surveys, and the associated changes in fish trophic structures as an indicator of spawning events. Our study paves the way for applied quantitative eDNA metabarcoding approaches to better study ephemeral and important biological events.


Subject(s)
Anthozoa , DNA, Environmental , Animals , Anthozoa/genetics , DNA Barcoding, Taxonomic , Fishes/genetics , Environmental Monitoring , Biodiversity , Coral Reefs , Ecosystem
3.
J Biol Rhythms ; 38(2): 148-158, 2023 04.
Article in English | MEDLINE | ID: mdl-36461677

ABSTRACT

Many marine organisms synchronously spawn at specific times to ensure the success of external fertilization in the ocean. Corals are famous examples of synchronized spawning at specific lunar phases, and two distinct spawning patterns have been observed in two dominant taxa: merulinid corals spawn at regular lunar phases, several days after the full moon, whereas Acropora corals spawn at more irregular lunar phases around the full moon. Although it has been suggested that the two coral taxa have different responses to moonlight and seawater temperature, their spawning times have never been analyzed by integrating the two environmental factors, resulting in an incomplete understanding of the regulatory mechanisms of spawning. In this study, we developed a new predictive model of coral spawning days by integrating moonlight and temperature effects based on the external coincidence model for the lunar cycle. We performed model fitting using a 10-year monitoring record of coral spawning time in Taiwan. Our model successfully demonstrated the synergistic effects of moonlight and temperature on coral spawning time (days) and provided two testable hypotheses to explain the different spawning patterns regarding the preparation (maturation) process for spawning and the sensitivity to moonlight at different circadian phases: (1) Acropora corals may have an earlier onset and longer period of preparation for spawning than merulinid corals; and (2) merulinid corals may use moonlight signals near sunset, while Acropora corals may have a similar onset at approximately midnight. This is the first study to indicate the difference in circadian phase-dependent moonlight sensitivities between coral taxa, providing a basis for underlying coral spawning mechanisms for rhythmic studies.


Subject(s)
Anthozoa , Animals , Anthozoa/physiology , Moon , Circadian Rhythm , Light , Reproduction
4.
Biochem Biophys Res Commun ; 501(1): 80-84, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29689267

ABSTRACT

Synchronous spawning as mass reproduction is well known to occur in many hermatypic corals, which is one of the mysterious life birth events. However, its contributing mechanism has not yet been clarified. This study placed focus on elucidating a neurotransmitter as endocrine signals that contribute to the synchronous spawning. First, the determination method of the neurotransmitters in coral was established by LC/MS in the selective ion mode together with a solid phase extraction method. As a result, the similar contents of the neurotransmitters for dopamine (DA), adrenaline (AD) and noradrenaline (NR) were detected in both the hermatypic corals of Acropora intermedia and Acropora digitifera. More interestingly, these neurotransmitters increased through the reproductive event during the synchronous spawning of A. intermedia, particularly, remarkable changes in the NR and DA were observed. In addition, hydrogen peroxide is known as the spawning stimulant and the metabolic by-product of the neurotransmitters, which was exposed to A. digitifera, then the neurotransmitters increased as well as those of the synchronization of spawning. All of the results suggested that the neurotransmitters contribute to the synchronous spawning in the hermatypic corals.


Subject(s)
Anthozoa/physiology , Invertebrate Hormones/physiology , Neurotransmitter Agents/physiology , Animals , Chromatography, Liquid , Dopamine/analysis , Dopamine/physiology , Epinephrine/analysis , Epinephrine/physiology , Invertebrate Hormones/analysis , Neurotransmitter Agents/analysis , Norepinephrine/analysis , Norepinephrine/physiology , Reproduction/physiology , Solid Phase Extraction , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...