Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Pharmaceutics ; 15(7)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37513985

ABSTRACT

Human papillomavirus types 16 and 18 cause the majority of cervical cancers worldwide. Despite the availability of three prophylactic vaccines based on virus-like particles (VLP) of the major capsid protein (L1), these vaccines are unable to clear an existing infection. Such infected persons experience an increased risk of neoplastic transformation. To overcome this problem, this study proposes an alternative synthetic long peptide (SLP)-based vaccine for persons already infected, including those with precancerous lesions. This new vaccine was designed to stimulate both CD8+ and CD4+ T cells, providing a robust and long-lasting immune response. The SLP construct includes both HLA class I- and class II-restricted epitopes, identified from IEDB or predicted using NetMHCPan and NetMHCIIPan. None of the SLPs were allergenic nor toxic, based on in silico studies. Population coverage studies provided 98.18% coverage for class I epitopes and 99.81% coverage for class II peptides in the IEDB world population's allele set. Three-dimensional structure ab initio prediction using Rosetta provided good quality models, which were assessed using PROCHECK and QMEAN4. Molecular docking with toll-like receptor 2 identified potential intrinsic TLR2 agonist activity, while molecular dynamics studies of SLPs in water suggested good stability, with favorable thermodynamic properties.

2.
Cancer Treat Rev ; 109: 102429, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35759856

ABSTRACT

Therapeutic vaccines are currently at the forefront of medical innovation. Various endeavors have been made to develop more consolidated approaches to producing nucleic acid-based vaccines, both DNA and mRNA vaccines. These innovations have continued to propel therapeutic platforms forward, especially for mRNA vaccines, after the successes that drove emergency FDA approval of two mRNA vaccines against SARS-CoV-2. These vaccines use modified mRNAs and lipid nanoparticles to improve stability, antigen translation, and delivery by evading innate immune activation. Simple alterations of mRNA structure- such as non-replicating, modified, or self-amplifying mRNAs- can provide flexibility for future vaccine development. For protein vaccines, the use of long synthetic peptides of tumor antigens instead of short peptides has further enhanced antigen delivery success and peptide stability. Efforts to identify and target neoantigens instead of antigens shared between tumor cells and normal cells have also improved protein-based vaccines. Other approaches use inactivated patient-derived tumor cells to elicit immune responses, or purified tumor antigens are given to patient-derived dendritic cells that are activated in vitro prior to reinjection. This review will discuss recent developments in therapeutic cancer vaccines such as, mode of action and engineering new types of anticancer vaccines, in order to summarize the latest preclinical and clinical data for further discussion of ongoing clinical endeavors in the field.


Subject(s)
COVID-19 , Cancer Vaccines , Neoplasms , Antigens, Neoplasm , COVID-19/prevention & control , COVID-19 Vaccines , Cancer Vaccines/therapeutic use , Humans , Liposomes , Nanoparticles , Neoplasms/drug therapy , Peptides , SARS-CoV-2
3.
Front Immunol ; 13: 680559, 2022.
Article in English | MEDLINE | ID: mdl-35154089

ABSTRACT

Human cytomegalovirus (HCMV) is an ubiquitous herpesvirus that can cause serious morbidity and mortality in immunocompromised or immune-immature individuals. A vaccine that induces immunity to CMV in these target populations is therefore highly needed. Previous attempts to generate efficacious CMV vaccines primarily focused on the induction of humoral immunity by eliciting neutralizing antibodies. Current insights encourage that a protective immune response to HCMV might benefit from the induction of virus-specific T cells. Whether addition of antiviral T cell responses enhances the protection by antibody-eliciting vaccines is however unclear. Here, we assessed this query in mouse CMV (MCMV) infection models by developing synthetic vaccines with humoral immunity potential, and deliberately adding antiviral CD8+ T cells. To induce antibodies against MCMV, we developed a DNA vaccine encoding either full-length, membrane bound glycoprotein B (gB) or a secreted variant lacking the transmembrane and intracellular domain (secreted (s)gB). Intradermal immunization with an increasing dose schedule of sgB and booster immunization provided robust viral-specific IgG responses and viral control. Combined vaccination of the sgB DNA vaccine with synthetic long peptides (SLP)-vaccines encoding MHC class I-restricted CMV epitopes, which elicit exclusively CD8+ T cell responses, significantly enhanced antiviral immunity. Thus, the combination of antibody and CD8+ T cell-eliciting vaccines provides a collaborative improvement of humoral and cellular immunity enabling enhanced protection against CMV.


Subject(s)
Antibodies, Viral/blood , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/prevention & control , Cytomegalovirus Vaccines/immunology , Cytomegalovirus/immunology , Vaccines, DNA/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Cytomegalovirus Infections/immunology , Epitopes/immunology , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary/methods , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Mice, Inbred C57BL , Specific Pathogen-Free Organisms , Vaccination , Vaccines, DNA/administration & dosage , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
4.
J Control Release ; 315: 114-125, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31672626

ABSTRACT

Recent studies have shown a high potency of protein-based vaccines for cell-mediated cancer immunotherapy. However, due to their poor cellular uptake, efficient immune responses with soluble protein antigens are often not observed. As a result of superior cellular uptake, nanogels loaded with antigenic peptides were investigated in this study as carrier systems for cancer immunotherapy. Different synthetic long peptides (SLPs) containing the CTL and CD4+ T-helper (Help) epitopes were synthesized and covalently conjugated via disulfide bonds to the polymeric network of cationic dextran nanogels. Cationic nanogels with a size of 210 nm, positive zeta potential (+24 mV) and high peptide loading content (15%) showed triggered release of the loaded peptides under reducing conditions. An in vitro study demonstrated the capability of cationic nanogels to maturate dendritic cells (DCs). Importantly, covalently SLP-loaded nanogels adjuvanted with poly(I:C) showed superior CD8+ T cell responses compared to soluble peptides and nanogel formulations with physically loaded peptides both in vitro and in vivo. In conclusion, covalently SLPs-loaded cationic nanogels are a promising system to provoke immune responses for therapeutic cancer vaccination.


Subject(s)
Cancer Vaccines/administration & dosage , Immunotherapy/methods , Nanogels , Peptides/administration & dosage , Adjuvants, Immunologic/administration & dosage , Animals , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Cations , Dendritic Cells/immunology , Female , Mice , Mice, Inbred C57BL , Ovalbumin/immunology , Particle Size , Peptides/immunology , Poly I-C/immunology
5.
BMC Cancer ; 19(1): 540, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31170937

ABSTRACT

BACKGROUND: Despite considerable efforts at developing therapeutic vaccines for cancer, clinical translation of preclinical successes has been challenging, largely due to the difficulty of inducing strong and sustained cytotoxic T lymphocyte (CTL) responses in patients. Several peptide-based cancer vaccines have failed to show sustainable tumor regression in the clinic, possibly because of a lack of optimization of both the adjuvant and antigen components of the preparations. Here, we aimed to develop and optimize a vaccine format utilizing a synthetic long peptide (SLP) containing the human papilloma virus 16 (HPV16) E7 antigen, with a centrally located defined MHC class I epitope, and evaluate its immunogenicity and efficacy in combination with various adjuvant formulations. METHODS: E731-73 SLP was tested alone or in combination with toll-like receptor (TLR)3, TLR4, TLR7/8 and TLR9 agonists and formulated in oil-in-water (o/w) or water-in-oil (w/o) emulsions to determine a vaccine format inducing a robust CD8 T cell response in murine models. Once a lead vaccine format was determined, we examined its ability to inhibit tumor growth in the murine TC-1 model that expresses HPV16 E7 antigen. RESULTS: We identified the TLR9 agonist CpG formulated in a squalene-based o/w emulsion as the most potent adjuvant, inducing the expansion of multifunctional antigen specific CD8 T cells with cytolytic potential. We also demonstrated that SLP E731-73 + CpG + o/w emulsion vaccine can provide prophylactic and more importantly, therapeutic benefit in the TC-1 murine tumor model. CONCLUSIONS: Our results demonstrate that the novel vaccine format E7 SLP + CpG delivered in an o/w emulsion holds potential for the promotion of strong CTL responses and tumor eradication and encourages further development of peptide/adjuvant vaccines in cancer immunotherapy strategies.


Subject(s)
Cancer Vaccines/immunology , CpG Islands/immunology , Emulsions/chemistry , Papillomavirus E7 Proteins/immunology , Papillomavirus Vaccines/immunology , T-Lymphocytes, Cytotoxic/immunology , Vaccination/methods , Vaccines, Subunit/immunology , Adjuvants, Immunologic , Animals , Cell Line, Tumor , Disease Models, Animal , Epitopes/immunology , Female , Histocompatibility Antigens Class I/immunology , Immunologic Memory , Mice , Mice, Inbred C57BL , Oils/chemistry , Papillomavirus E7 Proteins/chemical synthesis , Toll-Like Receptor 9/agonists , Toll-Like Receptor 9/immunology , Tumor Burden , Vaccines, Synthetic/immunology , Water/chemistry
6.
Front Immunol ; 10: 294, 2019.
Article in English | MEDLINE | ID: mdl-30863405

ABSTRACT

Cross-presenting Xcr1+CD8α DCs are attractive APCs to target for therapeutic cancer vaccines, as they are able to take up and process antigen from dying tumor cells for their MHCI-restricted presentation to CD8 T cells. To this aim, we developed fusion proteins made of the Xcr1 ligand Xcl1 fused to an OVA synthetic long peptide (SLP) and IgG1 Fc fragment. We demonstrated the specific binding and uptake of the Xcl1 fusion proteins by Xcr1+ DCs. Most importantly, their potent adjuvant effect on the H-2Kb/OVA specific T cell response was associated with a sustained tumor control even against the poorly immunogenic B16-OVA melanoma tumor. The increased tumor protection correlated with higher tumor infiltration of antigen-specific CD8+ T cells, increased IFNγ production and degranulation potential. Altogether, these results demonstrate that therapeutic cancer vaccines may be greatly improved by the combination of SLP antigen and Xcl1 fusion proteins.


Subject(s)
Cancer Vaccines/immunology , Chemokines, C/immunology , Dendritic Cells/immunology , Melanoma, Experimental/therapy , Ovalbumin/immunology , Recombinant Fusion Proteins/immunology , Adjuvants, Immunologic/administration & dosage , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CHO Cells , Cancer Vaccines/administration & dosage , Chemokines, C/genetics , Chemokines, C/metabolism , Cricetinae , Cricetulus , Dendritic Cells/metabolism , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin/genetics , Ovalbumin/metabolism , Peptide Fragments/genetics , Peptide Fragments/immunology , Peptide Fragments/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Vaccination/methods , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
7.
Oncoimmunology ; 8(4): e1560919, 2019.
Article in English | MEDLINE | ID: mdl-30906653

ABSTRACT

There is now a consensus that efficient peptide vaccination against cancer requires that peptides should (i) be exclusively presented by professional APC and (ii) stimulate both CD4 and CD8-specific T cell responses. To this aim, in recent trials, patients were vaccinated with pools of synthetic long peptides (SLP) (15-30 aa long) composed of a potential class I epitope(s) elongated at both ends with native antigen sequences to also provide a potential class II epitope(s). Using MELOE-1 as a model antigen, we present an alternative strategy consisting in linking selected class I and class II epitopes with an artificial cathepsin-sensitive linker to improve epitope processing and presentation by DC. We provide evidence that some linker sequences used in our artificial SLPs (aSLPs) could increase up to 100-fold the cross-presentation of class I epitopes to CD8-specific T cell clones when compared to cross-presentation of the corresponding native long peptide. Presentation of class II epitopes were only slightly increased. We confirmed this increased cross-presentation after in vitro stimulation of PBMC from healthy donors with aSLP and assessment of CD8-specific responses and also in vivo following aSLP vaccination of HLA*A0201/HLA-DRB0101 transgenic mice. Finally, we provide some evidence that vaccination with aSLP could inhibit the growth of transplanted tumors in mice. Our data thus support the use of such aSLPs in future cancer vaccination trials to improve anti-tumor CD8 T cell responses and therapeutic efficacy.

8.
Oncoimmunology ; 7(12): e1511506, 2018.
Article in English | MEDLINE | ID: mdl-30524907

ABSTRACT

Peptide-based anticancer vaccination aims at stimulating an immune response against one or multiple tumor-associated antigens (TAAs) following immunization with purified, recombinant or synthetically engineered epitopes. Despite high expectations, the peptide-based vaccines that have been explored in the clinic so far had limited therapeutic activity, largely due to cancer cell-intrinsic alterations that minimize antigenicity and/or changes in the tumor microenvironment that foster immunosuppression. Several strategies have been developed to overcome such limitations, including the use of immunostimulatory adjuvants, the co-treatment with cytotoxic anticancer therapies that enable the coordinated release of damage-associated molecular patterns, and the concomitant blockade of immune checkpoints. Personalized peptide-based vaccines are also being explored for therapeutic activity in the clinic. Here, we review recent preclinical and clinical progress in the use of peptide-based vaccines as anticancer therapeutics.Abbreviations: CMP: carbohydrate-mimetic peptide; CMV: cytomegalovirus; DC: dendritic cell; FDA: Food and Drug Administration; HPV: human papillomavirus; MDS: myelodysplastic syndrome; MHP: melanoma helper vaccine; NSCLC: non-small cell lung carcinoma; ODD: orphan drug designation; PPV: personalized peptide vaccination; SLP: synthetic long peptide; TAA: tumor-associated antigen; TNA: tumor neoantigen.

9.
Pharm Res ; 35(11): 207, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30209623

ABSTRACT

PURPOSE: Personalized peptide-based cancer vaccines will be composed of multiple patient specific synthetic long peptides (SLPs) which may have various physicochemical properties. To formulate such SLPs, a flexible vaccine delivery system is required. We studied whether cationic liposomes are suitable for this purpose. METHODS: Fifteen SIINFEKL T cell epitope-containing SLPs, widely differing in hydrophobicity and isoelectric point, were separately loaded in cationic liposomes via the dehydration-rehydration method. Particle size and polydispersity index (PDI) were measured via dynamic light scattering (DLS), and zeta potential with laser Doppler electrophoresis. Peptide loading was fluorescently determined and the immunogenicity of the formulated peptides was assessed in co-cultures of dendritic cells (DCs) and CD8+ T-cells in vitro. RESULTS: All SLPs were loaded in cationic liposomes by using three different loading method variants, depending on the SLP characteristics. The fifteen liposomal formulations had a comparable size (< 200 nm), PDI (< 0.3) and zeta potential (22-30 mV). Cationic liposomes efficiently delivered the SLPs to DCs that subsequently activated SIINFEKL-specific CD8+ T-cells, indicating improved immunological activity of the SLPs. CONCLUSION: Cationic liposomes can accommodate a wide range of different SLPs and are therefore a potential delivery platform for personalized cancer vaccines.


Subject(s)
Cancer Vaccines/administration & dosage , Drug Carriers/chemistry , Epitopes, T-Lymphocyte , Liposomes/chemistry , Oligopeptides/administration & dosage , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/chemistry , Cancer Vaccines/immunology , Cations , Drug Compounding , Drug Liberation , Fluorescent Dyes/chemistry , Humans , Lymphocyte Activation , Oligopeptides/chemistry , Oligopeptides/immunology , Ovalbumin/chemistry , Particle Size , Peptide Fragments/chemistry , Peptide Library , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/chemistry , Vaccines, Subunit/immunology
10.
Mol Immunol ; 93: 115-124, 2018 01.
Article in English | MEDLINE | ID: mdl-29175591

ABSTRACT

Immune complexes are potent mediators of cellular immunity and have been extensively studied for their disease mediating properties in humans and for their role in anti-cancer immunity. However, a viable approach to use antibody-complexed antigen as vehicle for specific immunotherapy has not yet reached clinical use. Since virtually all people have endogenous antibodies against tetanus toxoid (TTd), such commonly occurring antibodies are promising candidates to utilize for immune modulation. As an initial proof-of-concept we investigated if anti-tetanus IgG could induce potent cross-presentation of a conjugate with SIINFEKL, a MHC class I presented epitope of ovalbumin (OVA), to TTd. This protein conjugate enhanced OVA-specific CD8+ T cell responses when administrated to seropositive mice. Since TTd is poorly defined, we next investigated whether a synthetic peptide-peptide conjugate, with a chemically defined linear B cell epitope of tetanus toxin (TTx) origin, could improve cellular immune responses. Herein we identify one linear B cell epitope, here after named MTTE thru a screening of overlapping peptides from the alpha and beta region of TTx, and by assessment of the binding of pooled IgG, or individual human IgG from high-titer TTd vaccinated donors, to these peptides. Subsequently, we developed a chemical protocol to synthesize defined conjugates containing multiple copies of MTTE covalently attached to one or more T cell epitopes of choice. To demonstrate the potential of the above approach we showed that immune complexes of anti-MTTE antibodies with MTTE-containing conjugates are able to induce DC and T cell activation using model antigens.


Subject(s)
Cross-Priming/immunology , Ovalbumin/immunology , Tetanus Toxoid/immunology , Amino Acid Sequence , Animals , Antigen-Antibody Complex/immunology , Dendritic Cells/immunology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte/immunology , H-2 Antigens/immunology , Humans , Hybridomas , Immunoconjugates/immunology , Immunoglobulin G/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Peptide Fragments/immunology , Tetanus Toxoid/chemistry , Vaccination
11.
Front Immunol ; 8: 144, 2017.
Article in English | MEDLINE | ID: mdl-28265272

ABSTRACT

There is an imperative need for effective preventive vaccines against human cytomegalovirus as it poses a significant threat to the immunologically immature, causing congenital disease, and to the immune compromised including transplant recipients. In this study, we examined the efficacy of synthetic long peptides (SLPs) as a CD4+ and CD8+ T cell-eliciting preventive vaccine approach against mouse CMV (MCMV) infection. In addition, the use of agonistic OX40 antibodies to enhance vaccine efficacy was explored. Immunocompetent C57BL/6 mice were vaccinated in a prime-boost vaccination regiment with SLPs comprising various MHC class I- and II-restricted peptide epitopes of MCMV-encoded antigens. Enforced OX40 stimulation resulted in superior MCMV-specific CD4+ as CD8+ T cell responses when applied during booster SLP vaccination. Vaccination with a mixture of SLPs containing MHC class II epitopes and OX40 agonistic antibodies resulted in a moderate reduction of the viral titers after challenge with lytic MCMV infection. Markedly, the combination of SLP vaccines containing both MHC class I and II epitopes plus OX40 activation during booster vaccination resulted in polyfunctional (i.e., IFN-γ+, TNF+, IL-2+) CD4+ and CD8+ T cell responses that were even higher in magnitude when compared to those induced by the virus, and this resulted in the best containment of virus dissemination. Our results show that the induction of strong T cell responses can be a fundamental component in the design of vaccines against persistent viral infections.

12.
J Control Release ; 226: 98-106, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26876760

ABSTRACT

Nanoparticulate formulations for synthetic long peptide (SLP)-cancer vaccines as alternative to clinically used Montanide ISA 51- and squalene-based emulsions are investigated in this study. SLPs were loaded into TLR ligand-adjuvanted cationic liposomes and PLGA nanoparticles (NPs) to potentially induce cell-mediated immune responses. The liposomal and PLGA NP formulations were successfully loaded with up to four different compounds and were able to enhance antigen uptake by dendritic cells (DCs) and subsequent activation of T cells in vitro. Subcutaneous vaccination of mice with the different formulations showed that the SLP-loaded cationic liposomes were the most efficient for the induction of functional antigen-T cells in vivo, followed by PLGA NPs which were as potent as or even more than the Montanide and squalene emulsions. Moreover, after transfer of antigen-specific target cells in immunized mice, liposomes induced the highest in vivo killing capacity. These findings, considering also the inadequate safety profile of the currently clinically used adjuvant Montanide ISA-51, make these two particulate, biodegradable delivery systems promising candidates as delivery platforms for SLP-based immunotherapy of cancer.


Subject(s)
Cancer Vaccines/administration & dosage , Immunity, Cellular , Lactic Acid/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , Peptides/administration & dosage , Polyglycolic Acid/chemistry , Vaccines, Synthetic/administration & dosage , Amino Acid Sequence , Animals , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/chemistry , Cancer Vaccines/immunology , Cations/chemistry , Female , Immunization , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/therapy , Ovalbumin/administration & dosage , Ovalbumin/chemistry , Ovalbumin/immunology , Peptides/chemistry , Peptides/immunology , Polylactic Acid-Polyglycolic Acid Copolymer , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology
13.
Oncoimmunology ; 4(4): e974411, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26137405

ABSTRACT

Malignant cells express antigens that can be harnessed to elicit anticancer immune responses. One approach to achieve such goal consists in the administration of tumor-associated antigens (TAAs) or peptides thereof as recombinant proteins in the presence of adequate adjuvants. Throughout the past decade, peptide vaccines have been shown to mediate antineoplastic effects in various murine tumor models, especially when administered in the context of potent immunostimulatory regimens. In spite of multiple limitations, first of all the fact that anticancer vaccines are often employed as therapeutic (rather than prophylactic) agents, this immunotherapeutic paradigm has been intensively investigated in clinical scenarios, with promising results. Currently, both experimentalists and clinicians are focusing their efforts on the identification of so-called tumor rejection antigens, i.e., TAAs that can elicit an immune response leading to disease eradication, as well as to combinatorial immunostimulatory interventions with superior adjuvant activity in patients. Here, we summarize the latest advances in the development of peptide vaccines for cancer therapy.

14.
Immun Inflamm Dis ; 3(2): 82-93, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26029368

ABSTRACT

Vaccines delivering T cell immunogen HIVconsv vectored by plasmid DNA, non-replicating simian adenovirus and non-replicating modified vaccinia virus Ankara (MVA) are under clinical evaluation in phase I/IIa trials in UK, Europe, and Africa. While these vaccines aim to induce effector T cell responses specific for HIV-1, we here characterized the humoral responses induced by HIVconsv administration to macaques using six different vaccine modalities: plasmid DNA, human adenovirus serotype 5, simian adenovirus serotype 63, MVA, Semliki Forest virus replicons, and adjuvanted overlapping synthetic long peptides (SLP). We found that only the SLP formulation, but none of the genetic vaccine platforms induced antibodies recognizing linear HIVconsv epitopes, median 32/46 SLP.HIVconsv peptides. These antibodies bound to 15-mer and SLP peptides, recombinant gp120 and trimeric gp140 of HIV-1 Bal, YU2, JRFL, and UG037, but failed to react with HIV-1 Bal and IIIB virions and HIV-1 Bal- and IIIB-infected human cells, and consequently failed to induce neutralizing antibodies. The HIVconsv immunogen contains conserved regions derived from Gag, Pol, Vif, and Env proteins of HIV-1, and antibodies induced by the SLP.HIVconsv vaccination resulted in positive signals in routine HIV-1 tests. Thus, only HIVconsv delivered by SLP resulted in seroconversion, an observation that provides important guidance for recruiting volunteers into future clinical trials. Furthermore, our data confirms that vaccine delivery by SLP induces humoral as well as cellular immune responses and could be considered for inclusion in future vaccine regimens where this is required.

15.
Oncoimmunology ; 3(7): e947892, 2014.
Article in English | MEDLINE | ID: mdl-25610736

ABSTRACT

Aiming to increase the potency of synthetic long peptide (SLP)-based cancer vaccines, the Toll-like receptor 2 (TLR2) ligand Pam3CSK4 was conjugated in a chemically defined fashion to SLPs harbouring both cytotoxic T lymphocyte (CTL) and T helper epitopes. We recently showed that these SLP-conjugates induce strong antitumor immunity in murine cancer models.

SELECTION OF CITATIONS
SEARCH DETAIL