Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 579
Filter
1.
Klin Onkol ; 38(1): 34-39, 2024.
Article in English | MEDLINE | ID: mdl-39183549

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) is one of the most common cancers in the head and neck squamous cell cancer group. The increasing frequency of oral carcinomas and their late-stage appearance is a major worldwide health concern. MicroRNAs (miRNAs) appear to play an important role in cancer growth and progression, according to growing data, whereas no information is available regarding miR-7113-3p and miR-6721-5p involvement in OSCC. In this article, the expression of MAP2K1, miR-7113-3p, and miR-6721-5p was examined for possible bio-logical functions in the advancement of oral squamous cell carcinoma. MATERIAL AND METHODS: We used quantitative real-time PCR (to examine the mRNA expression of MAP2K1, miR-7113-3p, and miR-6721-5p in fresh frozen OSCC tissues and adjacent normal fresh frozen tissues from 30 patients, and we investigated their relationship with clinical parameters. RESULTS: MAP2K1 expression was found to be dramatically increased in tumor tissues than in normal tissues, whereas miR7113-3p and miR-6721-5p expression was significantly decreased. Furthermore, a statistical correlation of P = 0.04 was also observed between increased MAP2K1 expression and perineural invasion. Additionally, we noted that the downregulation of miR-7113-3p appears to correlate positively with overexpression of MAP2K1 (P = 0.0218), and a negative correlation was observed between downregulation of miR-6721-5p and overexpression of MAP2K1 (P = 0.7771). CONCLUSION: Based on these findings, miR-7113-3p and miR-6721-5p might be prospective bio-markers for OSCC patients, and could be utilized to detect OSCC at an early stage for future dia-gnosis. MAP2K1 overexpression has been linked to the development of OSCC and perineural invasion.


Subject(s)
Gene Expression Regulation, Neoplastic , MicroRNAs , Mouth Neoplasms , Tumor Microenvironment , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , MicroRNAs/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism
2.
Curr Biol ; 34(15): 3582-3590.e4, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39047735

ABSTRACT

The white shark (Carcharodon carcharias) (Linnaeus, 1758), an iconic apex predator occurring in all oceans,1,2 is classified as Vulnerable globally3-with global abundance having dropped to 63% of 1970s estimates,4-and as Critically Endangered in Europe.5 Identification of evolutionary significant units and their management are crucial for conservation,6 especially as the white shark is facing various but often region-specific anthropogenic threats.7,8,9,10,11 Assessing connectivity in a cosmopolitan marine species requires worldwide sampling and high-resolution genetic markers.12 Both are lacking for the white shark, with studies to date typified by numerous but geographically limited sampling, and analyses relying largely on relatively small numbers of nuclear microsatellites,13,14,15,16,17,18,19 which can be plagued by various genotyping artefacts and thus require cautious interpretation.20 Sequencing and computational advances are finally allowing genomes21,22,23 to be leveraged into population studies,24,25,26,27 with datasets comprising thousands of single-nucleotide polymorphisms (SNPs). Here, combining target gene capture (TGC)28 sequencing (89 individuals, 4,000 SNPs) and whole-genome re-sequencing (17 individuals, 391,000 SNPs) with worldwide sampling across most of the distributional range, we identify three genetically distinct allopatric lineages (North Atlantic, Indo-Pacific, and North Pacific). These diverged 100,000-200,000 years ago during the Penultimate Glaciation, when low sea levels, different ocean currents, and water temperatures produced significant biogeographic barriers. Our results show that without high-resolution genomic analyses of samples representative of a species' range,12 the true extent of diversity, presence of past and contemporary barriers to gene flow, subsequent speciation, and local evolutionary events will remain enigmatic.


Subject(s)
Sharks , Sharks/genetics , Sharks/classification , Animals , Genome , Polymorphism, Single Nucleotide , Phylogeny , White
3.
Genet Test Mol Biomarkers ; 28(7): 281-288, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949978

ABSTRACT

Objective: To investigate the association between ACTN4 gene mutation and primary nephrotic syndrome (PNS) in children in Guangxi Autonomous Region, China. Methods: The high-throughput sequencing technology was used to sequence ACTN4 gene in 155 children with PNS in Guangxi Autonomous Region in China, with 98 healthy children serving as controls. Twenty-three exon-specific capture probes targeting ACTN4 were designed and used to hybridize with the genomic DNA library. The targeted genomic region DNA fragments were enriched and sequenced. The protein levels of ACTN4 in both case and control groups were quantified using ELISA method. Results: Bioinformatics analysis revealed five unique ACTN4 mutations exclusively in patients with PNS, including c.1516G>A (p.G506S) on one exon in 2 patients, c.1442 + 10G>A at the splice site in 1 patient, c.1649A>G (p.D550G) on exon in 1 patient, c.2191-4G>A at the cleavage site in 2 patients, and c.2315C>T (p.A772V) on one exon in 1 patient. The c.1649A>G (p.D550G) and c.2315C>T (p.A772V) were identified from the same patient. Notably, c.1649A>G (p.D550G) represents a novel mutation in ACTN4. In addition, three other ACTN4 polymorphisms occurred in both case and control groups, including c.162 + 6C>T (1 patient in case group and 2 patients in control group), c.572 + 11G>A (1 patient in case group and 2 patients in control group), and c.2191-5C>T (4 patients in the case group and 3 patients in control group). The serum ACTN4 concentration in the case group was markedly higher, averaging 544.7 ng/mL (range: 264.6-952.6 ng/mL), compared with 241.20 ng/mL (range: 110.75-542.35 ng/mL) in the control group. Conclusion: Five ACTN4 polymorphisms were identified among children with PNS in Guangxi Autonomous Region, China, including the novel mutation c.1649A>G. The lower serum levels of α-actinin-4 in the case group suggest that this protein might play a protective role in PNS.


Subject(s)
Actinin , Nephrotic Syndrome , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Actinin/genetics , Case-Control Studies , China/epidemiology , Exons/genetics , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing/methods , Mutation , Nephrotic Syndrome/genetics , East Asian People/genetics
4.
Mar Biotechnol (NY) ; 26(4): 810-826, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39046591

ABSTRACT

This study aimed to investigate the inherent molecular regulatory mechanisms of Ruditapes philippinarum in response to extremely high-temperature environments and to enhance the sustainable development of the R. philippinarum aquaculture industry. In this study, we established a differential expression profile of miRNA under acute heat stress and identified a total of 46 known miRNAs and 80 novel miRNAs, three of which were detected to be significantly differentially expressed. We analyzed the functions of target genes regulated by differentially expressed miRNAs (DEMs) of R. philippinarum. The findings of the KEGG enrichment analysis revealed that 29 enriched pathways in the group were subjected to acute heat stress. Notably, fatty acid metabolism, FoxO signaling pathway, TGF-ß signaling pathway, and ubiquitin-mediated proteolysis were found to play significant roles in response to acute heat stress. We established a regulatory map of DEMs and their target genes in response to heat stress and constructed the miRNA-mRNA regulation network. This study provides valuable insights into the response of R. philippinarum to high temperature, helping to understand its underlying molecular regulatory mechanisms under high-temperature stress.


Subject(s)
Bivalvia , Gene Expression Regulation , Heat-Shock Response , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Bivalvia/genetics , Bivalvia/metabolism , Heat-Shock Response/genetics , Hot Temperature , Gene Expression Profiling , RNA, Messenger/metabolism , RNA, Messenger/genetics , Signal Transduction
5.
Plant Physiol Biochem ; 214: 108908, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38976942

ABSTRACT

Drought stress strongly affects crop yield. Although knowledge of long non-coding RNAs (lncRNAs) has been updated continuously and rapidly, information about lncRNAs in drought resistance regulation is extremely limited in sorghum. Here, lncRNA-sequencing was performed with seedlings of a sorghum cultivar (Jinza29) under three water control treatments to investigate the mechanism of lncRNAs responsible for drought resistance in sorghum. A total of 377 differentially expressed lncRNAs (DElncRNAs) were identified. We also predicted 4322 and 2827 transcripts as potential cis-target and trans-target genes for drought-responsive lncRNAs, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that those target genes exhibited marked enrichment into "oxidoreductase activity", "signal transducer activity", "DNA repair", "photosynthesis", "glutathione metabolism", and "phenylpropanoid biosynthesis" and other terms associated with abiotic stress resistance. Moreover, several lncRNAs were estimated to modulate the expression of other genes related to stress response and photosynthetic carbon metabolism. Additionally, we found 107 DElncRNAs that might be candidate target mimics for 56 miRNAs. LncRNAs play important roles in drought adaptation of sorghum through interacting with protein-encoding genes. The obtained results provided novel insights into the biological characteristics of lncRNAs and offered potential regulatory factors for genetically enhancing drought resistance in sorghum.


Subject(s)
Droughts , Gene Expression Regulation, Plant , RNA, Long Noncoding , Sorghum , Sorghum/genetics , Sorghum/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Plant/genetics , Genome, Plant/genetics , Stress, Physiological/genetics , Gene Ontology
6.
Animals (Basel) ; 14(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39061594

ABSTRACT

The liver of chickens is essential for maintaining physiological activities and homeostasis. This study aims to investigate the specific function and molecular regulatory mechanism of microRNA-122 (miR-122), which is highly expressed in chicken liver. A lentivirus-mediated overexpression vector of miR-122 was constructed and used to infect 12-day-old female Qingyuan Partridge chickens. Transcriptome sequencing analysis was performed to identify differentially expressed genes in the liver. Overexpression of miR-122 resulted in 776 differentially expressed genes (DEGs). Enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed associations with lipid metabolism, cellular senescence, cell adhesion molecules, and the MAPK signaling pathway. Eight potential target genes of miR-122 (ARHGAP32, CTSD, LBH, PLEKHB2, SEC14L1, SLC2A1, SLC6A14, and SP8) were identified through miRNA target prediction platforms and literature integration. This study provides novel insights into the molecular regulatory mechanisms of miR-122 in chicken liver, highlighting its role in key biological processes and signaling pathways. These discoveries enhance our understanding of miR-122's impact on chicken liver function and offer valuable information for improving chicken production performance and health.

7.
Int J Mol Sci ; 25(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39062941

ABSTRACT

Wheat is one of the most important food crops globally, and understanding the regulation of grain size is crucial for wheat breeding to achieve a higher grain yield. MicroRNAs (miRNAs) play vital roles in plant growth and development. However, the miRNA-mediated mechanism underlying grain size regulation remains largely elusive in wheat. Here, we report the characterization and functional validation of a miRNA, TamiR397a, associated with grain size regulation in wheat. The function of three TaMIR397 homoeologs was determined through histochemical ß-glucuronidase-dependent assay. MiRNA expression was detected using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and the function of TamiR397a was validated through its transgenic overexpression and repression in wheat. It was found that TaMIR397-6A and TaMIR397-6B encode active TamiR397a. The expression profiling indicated that TamiR397a was differentially expressed in various tissues and gradually up-regulated during grain filling. The inhibition of TamiR397a perturbed grain development, leading to a decrease in grain size and weight. Conversely, the overexpression of TamiR397a resulted in increased grain size and weight by accelerating the grain filling process. Transcriptome analysis revealed that TamiR397a regulates a set of genes involved in hormone response, desiccation tolerance, regulation of cellular senescence, seed dormancy, and seed maturation biological processes, which are important for grain development. Among the down-regulated genes in the grains of the TamiR397a-overexpressing transgenic plants, 11 putative targets of the miRNA were identified. Taken together, our results demonstrate that TamiR397a is a positive regulator of grain size and weight, offering potential targets for breeding wheat with an increased grain yield.


Subject(s)
Edible Grain , Gene Expression Regulation, Plant , MicroRNAs , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Polyploidy , Plants, Genetically Modified/genetics , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999954

ABSTRACT

Plants are subjected to abiotic stresses throughout their developmental period. Abiotic stresses include drought, salt, heat, cold, heavy metals, nutritional elements, and oxidative stresses. Improving plant responses to various environmental stresses is critical for plant survival and perpetuation. WRKY transcription factors have special structures (WRKY structural domains), which enable the WRKY transcription factors to have different transcriptional regulatory functions. WRKY transcription factors can not only regulate abiotic stress responses and plant growth and development by regulating phytohormone signalling pathways but also promote or suppress the expression of downstream genes by binding to the W-box [TGACCA/TGACCT] in the promoters of their target genes. In addition, WRKY transcription factors not only interact with other families of transcription factors to regulate plant defence responses to abiotic stresses but also self-regulate by recognising and binding to W-boxes in their own target genes to regulate their defence responses to abiotic stresses. However, in recent years, research reviews on the regulatory roles of WRKY transcription factors in higher plants have been scarce and shallow. In this review, we focus on the structure and classification of WRKY transcription factors, as well as the identification of their downstream target genes and molecular mechanisms involved in the response to abiotic stresses, which can improve the tolerance ability of plants under abiotic stress, and we also look forward to their future research directions, with a view of providing theoretical support for the genetic improvement of crop abiotic stress tolerance.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Transcription Factors , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/genetics , Plants/metabolism
9.
Int Immunopharmacol ; 138: 112577, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38955029

ABSTRACT

AIM OF THE STUDY: To study the cross-border regulation of immunity and energy metabolism by ginseng miRNA156, and to provide a new perspective for further exploring the possibility of ginseng miRNA156 as a pharmacodynamic substance. MATERIALS AND METHODS: Combined with the previous research results of our research group, miRNA156 with high expression in blood sequencing of intragastrically administered with ginseng decoction was selected. Bioinformatics analysis was performed on the selected differential miRNA156. The target genes of differential miRNA156 were mainly enriched in metabolic, immune and other signaling pathways. According to the analysis results, the experimental part will use qi deficiency fatigue model and RAW264.7 cells. The contents of lactic acid (LA), creatine kinase (CK), blood urea nitrogen (BUN), lactate dehydrogenase (LD), liver glycogen (LG), muscle glycogen (MG), interleukin 4 (IL-4), matrix metallo-proteinase 9 (MMP-9), superoxide dismutase (SOD), malondialdehyde, phosphor-enolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6pase), nitric oxide (NO) and tumor necrosis factor-α (TNF-α) were measured after administration of miRNA156. RESULTS: Ginseng miRNA156 can accelerate the removal of metabolic waste during exercise. Increase the glycogen reserve in, provide energy for the body, regulate the activity of key gluconeogenesis enzyme phosphorus, improve the energy metabolism system of, and enhance the endurance of fatigue mice. The contents of matrix metalloproteinase 9, superoxide dismutase and malondialdehyde were affected, and the content of TNF-α in the supernatant of RAW264.7 cells was significantly increased, which had certain antioxidant capacity and potential immunomodulatory effects. CONCLUSION: Ginseng miRNA156 has a certain regulatory effect on the energy metabolism and immune function of mice, which makes it possible to regulate the cross-species regulation of ginseng miRNA in theory, provides ideas for ginseng miRNA to become a new pharmacodynamic substance.


Subject(s)
Energy Metabolism , MicroRNAs , Panax , Animals , Panax/genetics , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Energy Metabolism/genetics , RAW 264.7 Cells , Male , Fatigue/genetics , Liver/metabolism , Liver/immunology , Glycogen/metabolism
10.
BMC Genomics ; 25(1): 696, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014336

ABSTRACT

BACKGROUND: The marbling trait of cattle muscles, being a key indicator, played an important role in evaluating beef quality. Two breeds of cattle, namely a high-marbling (Angus) and a low-marbling (Nanyang) one, with their cattle muscles selected as our samples for transcriptome sequencing, were aimed to identify differentially expressed long non-coding RNAs (lncRNAs) and their targets associated with the marbling trait. RESULTS: Transcriptome sequencing identified 487 and 283 differentially expressed mRNAs and lncRNAs respectively between the high-marbling (Angus) and low-marbling (Nanyang) cattle muscles. Twenty-seven pairs of differentially expressed lncRNAs-mRNAs, including eighteen lncRNAs and eleven target genes, were found to be involved in fat deposition and lipid metabolism. We established a positive correlation between fourteen up-regulated (NONBTAT000849.2, MSTRG.9591.1, NONBTAT031089.1, MSTRG.3720.1, NONBTAT029718.1, NONBTAT004228.2, NONBTAT007494.2, NONBTAT011094.2, NONBTAT015080.2, NONBTAT030943.1, NONBTAT021005.2, NONBTAT021004.2, NONBTAT025985.2, and NONBTAT023845.2) and four down-regulated (NONBTAT000850.2, MSTRG.22188.3, MSTRG.22188.4, and MSTRG.22188.5) lncRNAs and eleven genes related to adiponectin family protein (ADIPOQ), cytochrome P450 family (CYP4V2), 3-hydroxyacyl-CoA dehydratase family (HACD4), kinesin family (KIF5C), lipin family (LPIN2), perilipin family (PLIN1), prostaglandin family (PTGIS), solute carrier family (SLC16A7, SLC2213, and SLCO4C1), and containing a transmembrane domain protein family (VSTM1). CONCLUSIONS: These candidate genes and lncRNAs can be regarded as being responsible for regulating the marbling trait of cattle. lncRNAs along with the variations in intramuscular fat marbling established a foundation for elucidating the genetic basis of high marbling in cattle.


Subject(s)
RNA, Long Noncoding , RNA, Messenger , Animals , Cattle/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , Transcriptome , Muscle, Skeletal/metabolism
11.
Theriogenology ; 226: 243-252, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38943899

ABSTRACT

This study examined how the vitrification of pig blastocysts using either the superfine open pulled straw (SOPS) or Cryotop method affects the expression profile of embryonic microRNA (miRNA) transcriptomes, as well as its relation to changes in the expression of target genes (TGs). Surgically collected pig blastocysts were vitrified using either the SOPS method (n = 60; 4-6 embryos/device) or the Cryotop system (n = 60; 20 embryos/device). Embryos were cultured in vitro for 24 h after warming. Fresh blastocysts (n = 60) cultured for 24 h served as controls. After in vitro culture, five pools of eight viable blastocysts from each group were prepared for miRNA expression analysis based on a microarray approach. Then, biological interpretation of miRNAs profiles and integrative analysis of miRNA and mRNA transcriptome data were performed. Survival after 24 h of in vitro culture was similar (>96 %) for both the vitrification systems and the control group (100 %). Compared with the controls, the SOPS-vitrified blastocysts had 94 (one upregulated and 93 downregulated) differentially expressed (DE) miRNAs, and the Cryotop-vitrified blastocysts had 174 DE miRNAs (one upregulated and 173 downregulated). One DE miRNA (miR-503) in the SOPS group and three DE miRNAs (miR-7139-3p, miR-214 and miR-885-3p) in the Cryotop group were annotated for Sus scrofa. The integrative analysis showed that 27 and 61 DE TGs were regulated by the DE miRNAs in blastocysts vitrified with the SOPS and Cryotop systems, respectively. The TGs enriched one pathway (the TGF-ß signaling pathway) for the SOPS system and four pathways (HIF-1, Notch, ascorbate and aldarate metabolism and glycosphingolipid biosynthesis-ganglio series) for the Cryotop system. In summary, vitrification via the SOPS and Cryotop systems dysregulates miRNAs, with slight differences between methods. The altered miRNAs identified in this study were related mainly to cell proliferation, apoptosis, and the response to cell stress. Further studies are needed to clarify the consequences of dysregulation of miRNAs involved in the TGF-ß (SOPS-vitrified blastocyst) and Notch (Cryotop-vitrified blastocyst) signaling pathways, particularly if they can affect embryonic development.


Subject(s)
Cryopreservation , MicroRNAs , Transcriptome , Vitrification , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Swine/embryology , Cryopreservation/veterinary , Embryo Culture Techniques/veterinary , Gene Expression Regulation, Developmental , Blastocyst/metabolism , Embryo, Mammalian/metabolism
12.
Comput Struct Biotechnol J ; 23: 1877-1885, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38707542

ABSTRACT

Transcription factors (TFs) are major contributors to gene transcription, especially in controlling cell-specific gene expression and disease occurrence and development. Uncovering the relationship between TFs and their target genes is critical to understanding the mechanism of action of TFs. With the development of high-throughput sequencing techniques, a large amount of TF-related data has accumulated, which can be used to identify their target genes. In this study, we developed TFTG (Transcription Factor and Target Genes) database (http://tf.liclab.net/TFTG), which aimed to provide a large number of available human TF-target gene resources by multiple strategies, besides performing a comprehensive functional and epigenetic annotations and regulatory analyses of TFs. We identified extensive available TF-target genes by collecting and processing TF-associated ChIP-seq datasets, perturbation RNA-seq datasets and motifs. We also obtained experimentally confirmed relationships between TF and target genes from available resources. Overall, the target genes of TFs were obtained through integrating the relevant data of various TFs as well as fourteen identification strategies. Meanwhile, TFTG was embedded with user-friendly search, analysis, browsing, downloading and visualization functions. TFTG is designed to be a convenient resource for exploring human TF-target gene regulations, which will be useful for most users in the TF and gene expression regulation research.

13.
Br Poult Sci ; 65(4): 394-402, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38738875

ABSTRACT

1. Skeletal muscle is an important component of chicken carcass. In chickens, the number of muscle fibres is fixed during the embryonic period, and muscle development during the embryonic period determines the muscle development potential after hatching.2. Beijing-You (BY) and Cornish (CN) chickens show completely different growth rates and body types, and two breeds were used in this study to explore the role of lncRNAs in muscle development during different chicken embryonic periods. A systematic analysis of lncRNAs and mRNAs were conducted in the pectoral muscle tissues of BY and CN chickens at embryonic days 11 (ED11), 13 (ED13), 15 (ED15), 17 (ED17), and 1-day-old (D1) using RNA-seq. A total of 4,104 differentially expressed transcripts (DETs) were identified among the five stages, including 2,359 lncRNAs and 1,745 mRNAs.3. The number of DETs between the two breeds at ED17 (1,658 lncRNAs and 1,016 mRNAs) was much higher than the total number of DET at all the other stages (692 lncRNAs and 729 mRNAs), indicating that the two breeds show the largest difference in gene regulation at ED17.4. Correlation analysis was performed for all differentially expressed lncRNAs and mRNAs during the five periods. Forty-three, cis interaction pairs of lncRNA-mRNA related to chicken muscle development were predicted. The expression of four pairs was verified, and the results showed MSTRG.12395.2-FGFBP2 and MSTRG.18590.6-FMOD were significantly up-regulated in CN at ED11 compared to BY and might be important candidate genes for embryonic muscle development.


Subject(s)
Chickens , Gene Expression Profiling , Muscle Development , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Chickens/genetics , Chickens/growth & development , Muscle Development/genetics , Gene Expression Profiling/veterinary , Chick Embryo , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation, Developmental , Transcriptome , Pectoralis Muscles
14.
J Adv Res ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38735387

ABSTRACT

INTRODUCTION: Psychiatric disorders present a substantial global public health burden with limited drug options. The gut-brain axis connects inflammatory bowel diseases and psychiatric disorders, which often have comorbidities. While some evidence hints at anti-inflammatory drugs aiding in treating psychiatric conditions, the specific effects of intestinal anti-inflammatory drugs remain unclear. OBJECTIVES: This study investigates the causal effect of intestinal anti-inflammatory drug targets on psychiatric disorders. We hypothesize that these drug targets may offer new insights into the treatment and prevention of such disorders. Additionally, we explore gut microbiota's mediating role between drug target genes and psychiatric disorders. METHODS: We performed two-sample Mendelian randomization (MR) using summary data from existing expression quantitative trait loci (eQTL) and protein QTL in the brain, along with public genome-wide association studies of disease. We also explored gut microbiota's mediating effect. The statistics encompassed six psychiatric disorders involving 9,725-500,199 individuals. Colocalization analysis enhanced the MR evidence. RESULTS: We uncovered a causal link between TPMT (a target of olsalazine) expression in the amygdala and bipolar disorder (BD) risk (odds ratio [OR] = 1.08; P = 4.29 × 10-4). This association was observed even when the sigmoid colon and whole blood eQTL were considered as exposures. Colocalization analysis revealed a shared genetic variant (rs11751561) between TPMT expression and BD, with a posterior probability of 61.6 %. Interestingly, this causal effect was influenced by a decrease in the gut microbiota abundance of the genus Roseburia (effect proportion = 10.05 %). Moreover, elevated ACAT1 expression was associated with higher obsessive-compulsive disorder risk (OR = 1.62; P = 3.64 × 10-4; posterior probability = 3.1 %). CONCLUSION: These findings provide novel targets for the treatment of psychiatric disorders, underscore the potential of repurposing olsalazine, and emphasize the importance of TPMT and ACAT1 in future drug development.

15.
Front Genet ; 15: 1371441, 2024.
Article in English | MEDLINE | ID: mdl-38818039

ABSTRACT

Background: Prostate cancer (PCa) is one of the most prevalent malignancies affecting the male life cycle. The incidence and mortality of prostate cancer are also increasing every year. Detection of MicroRNA expression in serum to diagnose prostate cancer and determine prognosis is a very promising non-invasive modality. Materials and method: A total of 224 study participants were included in our study, including 112 prostate cancer patients and 112 healthy adults. The experiment consisted of three main phases, namely, the screening phase, the testing phase, and the validation phase. The expression levels of serum miRNAs in patients and healthy adults were detected using quantitative reverse transcription-polymerase chain reaction. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were used to evaluate the diagnostic ability, specificity, and sensitivity of the candidate miRNAs. Result: Eventually, three miRNAs most relevant to prostate cancer diagnosis were selected, namely, miR-106b-5p, miR-129-1-3p and miR-381-3p. We used these three miRNAs to construct a diagnostic panel with very high diagnostic potential for prostate cancer, which had an AUC of 0.912 [95% confidence interval (CI): 0.858 to 0.950; p < 0.001; sensitivity = 91.67%; specificity = 79.76%]. In addition, the three target genes (DTNA, GJB1, and TRPC4) we searched for are also expected to be used for prostate cancer diagnosis and treatment in the future.

16.
Reprod Biomed Online ; 49(1): 103856, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657291

ABSTRACT

RESEARCH QUESTION: Does the observed correlation between dyslipidaemia and endometriosis indicate a bidirectional causal association? DESIGN: Bidirectional Mendelian randomization was used to investigate the causal association between lipid traits and endometriosis. Drug-target Mendelian randomization was used to explore potential drug-target genes for managing endometriosis. In cases where lipid-mediated effects via specific drug targets were significant, aggregate analyses, such as summary-data-based Mendelian randomization and colocalization methods, were introduced to validate the outcomes. Mediation analyses supplemented these evaluations. RESULTS: The bidirectional Mendelian randomization results suggested that genetically predicted triglyceride (OR 1.15, 95% CI 1.08-1.23), high-density lipoprotein cholesterol (OR 0.87, 95% CI 0.81-0.94), low-density lipoprotein cholesterol (OR 1.20, 95% CI 1.06-1.34) and apolipoprotein A (OR 0.90, 95% CI 0.83-0.96) concentrations were causally associated with endometriosis. Reverse Mendelian randomization results revealed that genetically proxied endometriosis was causally associated with triglyceride concentration (OR 1.02, 95% CI 1.01-1.02). In drug-target Mendelian randomization, genetic mimicry in proprotein convertase subtilisin/kexin type 9 (PCSK9) (OR 1.40, 95% CI 1.13-1.72), apolipoprotein B (APOB) (OR 1.49, 95% CI 1.21-1.86) and angiopoietin-related protein 3 (ANGPTL3) (OR 1.57, 95% CI 1.14-2.16) was significantly associated with the risk of endometriosis stages 1-2. CONCLUSION: There is a potential bidirectional causal association between endometriosis and dyslipidaemia. Genetic mimicry of PCSK9, APOB and ANGPTL3 is associated with the risk of early-stage endometriosis. The development of lipid-lowering drugs to treat endometriosis is of potential clinical interest.


Subject(s)
Endometriosis , Mendelian Randomization Analysis , Humans , Female , Endometriosis/genetics , Endometriosis/drug therapy , Dyslipidemias/genetics , Dyslipidemias/drug therapy , Dyslipidemias/epidemiology , Hypolipidemic Agents/therapeutic use , Proprotein Convertase 9/genetics , Lipids/blood , Triglycerides/blood , Genetic Predisposition to Disease
17.
Planta ; 259(6): 128, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639776

ABSTRACT

MAIN CONCLUSION: Differential expression of 128 known and 111 novel miRNAs in the panicle of Nagina 22 under terminal drought stress targeting transcription factors, stress-associated genes, etc., enhances drought tolerance and helps sustain agronomic performance under terminal drought stress. Drought tolerance is a complex multigenic trait, wherein the genes are fine-tuned by coding and non-coding components in mitigating deleterious effects. MicroRNA (miRNA) controls gene expression at post-transcriptional level either by cleaving mRNA (transcript) or by suppressing its translation. miRNAs are known to control developmental processes and abiotic stress tolerance in plants. To identify terminal drought-responsive novel miRNA in contrasting rice cultivars, we constructed small RNA (sRNA) libraries from immature panicles of drought-tolerant rice [Nagina 22 (N 22)] and drought-sensitive (IR 64) cultivars grown under control and terminal drought stress. Our analysis of sRNA-seq data resulted in the identification of 169 known and 148 novel miRNAs in the rice cultivars. Among the novel miRNAs, 68 were up-regulated while 43 were down-regulated in the panicle of N 22 under stress. Interestingly, 31 novel miRNAs up-regulated in N 22 were down-regulated in IR 64, whereas 4 miRNAs down-regulated in N 22 were up-regulated in IR 64 under stress. To detect the effects of miRNA on mRNA expression level, transcriptome analysis was performed, while differential expression of miRNAs and their target genes was validated by RT-qPCR. Targets of the differentially expressed miRNAs include transcription factors and stress-associated genes involved in cellular/metabolic/developmental processes, response to abiotic stress, programmed cell death, photosynthesis, panicle/seed development, and grain yield. Differential expression of the miRNAs could be validated in an independent set of the samples. The findings might be useful in genetic improvement of drought-tolerant rice.


Subject(s)
MicroRNAs , Oryza , MicroRNAs/genetics , MicroRNAs/metabolism , Oryza/physiology , Droughts , Gene Expression Profiling , Stress, Physiological/genetics , Transcription Factors/genetics , RNA, Messenger/metabolism , Gene Expression Regulation, Plant , Transcriptome/genetics
18.
Anticancer Res ; 44(5): 1973-1981, 2024 May.
Article in English | MEDLINE | ID: mdl-38677740

ABSTRACT

BACKGROUND/AIM: A role for cold-shock domain (CSD) proteins in abnormal cell proliferation has been suggested in the literature. The aim of this study was to investigate the effect of hepatocyte growth factor (HGF)-induced up-regulation of CSD protein A (CSDA) expression on vascular endothelial growth factor (VEGF) expression and its role in gastric cancer cell invasion and proliferation. MATERIALS AND METHODS: We assessed effects on two gastric cancer cell lines using reverse transcription-polymerase chain reaction, western blotting, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and CSDA knockdown with short hairpin RNA. RESULTS: Hepatocyte growth factor (HGF) elevates CSDA levels in gastric cancer cell lines. To elucidate the mechanism by which HGF prompts CSDA expression and its impact on vascular endothelial growth factor (VEGF), we applied the Mitogen Activated Protein Kinase (MAPK) inhibitor PD098059 and conducted analyses using western blot. Following the administration of PD098059, a reduction in the protein levels of HGF-stimulated VEGF was observed. Additionally, silencing of CSDA resulted in diminished levels of both VEGF and phosphorylated extracellular signal-regulated kinase (ERK). The suppression of CSDA also led to reduced HGF-induced cell proliferation and diminished invasive capabilities in vitro. Furthermore, our research pinpointed a potential activator protein-1 (AP-1) binding site within the VEGF promoter zone, validating its activity via chromatin immunoprecipitation assays. Electrophoretic mobility shift assays further disclosed that HGF-induced CSDA augmentation correlates with an increase in AP-1 binding to VEGF. CONCLUSION: CSDA is crucial for the proliferation of gastric cancer cells, and the inhibition of this protein could impede the advancement of gastric cancer.


Subject(s)
Cell Proliferation , Hepatocyte Growth Factor , Proteinase Inhibitory Proteins, Secretory , Stomach Neoplasms , Vascular Endothelial Growth Factor A , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Neoplasm Metastasis , Cell Movement/drug effects , Neoplasm Invasiveness
19.
Arch Pharm (Weinheim) ; 357(7): e2300756, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38501877

ABSTRACT

The nuclear receptors hepatocyte nuclear factor 4α (HNF4α) and retinoic acid receptor-related orphan receptor-ß (RORß) are ligand-regulated transcription factors and potential drug targets for metabolic disorders. However, there is a lack of small molecular, selective ligands to explore the therapeutic potential in further detail. Here, we report the discovery of greater celandine (Chelidonium majus) isoquinoline alkaloids as nuclear receptor modulators: Berberine is a selective RORß inverse agonist and modulated target genes involved in the circadian clock, photoreceptor cell development, and neuronal function. The structurally related chelidonine was identified as a ligand for the constitutively active HNF4α receptor, with nanomolar potency in a cellular reporter gene assay. In human liver cancer cells naturally expressing high levels of HNF4α, chelidonine acted as an inverse agonist and downregulated genes associated with gluconeogenesis and drug metabolism. Both berberine and chelidonine are promising tool compounds to further investigate their target nuclear receptors and for drug discovery.


Subject(s)
Berberine , Chelidonium , Hepatocyte Nuclear Factor 4 , Isoquinolines , Humans , Berberine/pharmacology , Berberine/chemistry , Berberine/chemical synthesis , Ligands , Hepatocyte Nuclear Factor 4/metabolism , Hepatocyte Nuclear Factor 4/genetics , Chelidonium/chemistry , Isoquinolines/pharmacology , Isoquinolines/chemistry , Isoquinolines/chemical synthesis , Benzophenanthridines/pharmacology , Benzophenanthridines/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Structure-Activity Relationship , Hep G2 Cells , Dose-Response Relationship, Drug , Molecular Structure , Cell Line, Tumor , Chelidonium majus
20.
Curr Neuropharmacol ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38372284

ABSTRACT

Psychiatric disorders are complex, multifactorial illnesses. It is challenging for us to understand the underlying mechanism of psychiatric disorders. In recent years, the morbidity of psychiatric disorders has increased yearly, causing huge economic losses to the society. Although some progress, such as psychotherapy drugs and electroconvulsive therapy, has been made in the treatment of psychiatric disorders, including depression, anxiety, bipolar disorder, obsessive-compulsive and autism spectrum disorders, antidepressants and psychotropic drugs have the characteristics of negative effects and high rate of relapse. Therefore, researchers continue to seek suitable interventions. cAMP response element binding protein (CREB) belongs to a protein family and is widely distributed in the majority of brain cells that function as a transcription factor. It has been demonstrated that CREB plays an important role in neurogenesis, synaptic plasticity, and neuronal growth. This review provides a 10-year update of the 2013 systematic review on the multidimensional roles of CREB-mediated transcriptional signaling in psychiatric disorders. We also summarize the classification of psychiatric disorders and elucidate the involvement of CREB and related downstream signalling pathways in psychiatric disorders. Importantly, we analyse the CREB-related signal pathways involving antidepressants and antipsychotics to relieve the pathological process of psychiatric disorders. This review emphasizes that CREB signalling may have a vast potential to treat psychiatric disorders like depression. Furthermore, it would be helpful for the development of potential medicine to make up for the imperfection of current antidepressants and antipsychotics.

SELECTION OF CITATIONS
SEARCH DETAIL