Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Animals (Basel) ; 13(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37835610

ABSTRACT

The objectives of the present study were as follows: (a) to describe the prevalence of irregular findings on teatcups in milking parlours with dairy sheep and goats after the post-milking cleaning procedures had been completed, (b) to associate staphylococcal isolation from teatcups with the presence with irregular findings and (c) to identify predictors of the presence of irregular findings on teatcups. The teatcups in the milking parlour of 255 sheep and 66 goat farms were macroscopically evaluated for the presence of irregular findings immediately after the completion of cleaning of the parlour. In total, 1115 and 303 teatcups, respectively, were assessed. A detailed interview with the farmer served to record the characteristics of the milking parlour and obtain information about husbandry and health management variables in the farm. Teatcups with macroscopically evident irregular findings were observed in 150 milking parlours (46.7%). Overall, 593 teatcups (41.8%) were found with macroscopically evident irregular findings. Dirt, milk residues and cracks or tears were recorded in the teatcups of 90.0%, 36.0% and 12.7% of parlours with irregular findings. Staphylococci were more frequently isolated from teatcups with irregular findings than from undamaged ones: from 37.4% (222/593) versus 12.8% (106/825). They were more frequently isolated from teatcups with milk residues (39.4%) and teatcups with dirt (39.0%). Via multivariable analysis, the following three variables emerged as significant predictors of presence of teatcups with irregular findings: the daily number of milking sessions, month into the lactation period at sampling and number of available milking units per animal position. The study provides, for the first time internationally, an appraisal of the frequency of problematic teatcups in the milking parlours of small ruminant farms. The analysis of predictors has provided a focus for specific management aspects, where interventions need to be performed, in order to improve the situation in farms with problems. The consequent increased staphylococcal burden on teatcups with irregular findings points to the increased risk of intramammary infections in such cases.

2.
Antibiotics (Basel) ; 12(9)2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37760724

ABSTRACT

The objectives of this work are (a) to describe staphylococci on the teatcups of milking parlours in goat farms and identify predictors for the presence of staphylococcal isolates on the teatcups, (b) to evaluate relationships with total bacterial counts and somatic cell counts in bulk-tank milk, and (c) to establish patterns of susceptibility to antibiotics for the staphylococcal isolates and identify predictors for the recovery of resistant isolates. In a cross-sectional study of 66 goat farms across Greece, swab samples were collected from 303 teatcups (upper and lower part) for staphylococcal recovery, identification, and assessment of biofilm formation. Details regarding health management on the farms (including conditions in the milking parlour) and the socio-demographic characteristics of farmers were collected by means of a structured questionnaire. A total of 87 contaminated teatcups (28.7%) were found on 35 goat farms (53.0%). Staphylococci were more frequently recovered from the upper than the lower part of teatcups: 73 versus 43 teatcups, respectively. After identification, 67 staphylococcal isolates (i.e., excluding similar isolates) were recovered from the teatcups; Staphylococcus aureus, Staphylococcus capitis, and Staphylococcus equorum predominated. Of these isolates, 82.1% were biofilm-forming. In multivariable analysis, the annual incidence of clinical mastitis in the herd emerged as the only significant factor associated with the isolation of staphylococci from the teatcups. Of the 67 isolates, 23 (34.3%) were resistant to at least one antibiotic, and 14 (22.4%) were multi-resistant. Resistance was found most commonly against penicillin and ampicillin (22.4% of isolates), fosfomycin (17.9%), clindamycin (14.9%), erythromycin, and tetracycline (13.4%). In multivariable analysis, the annual incidence of clinical mastitis in the herd and the use of detergent for parlour cleaning emerged as significant factors associated with the isolation of staphylococci resistant to antibiotics.

3.
Bioengineering (Basel) ; 10(1)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36671653

ABSTRACT

The growth of two isolates of Staphylococcus epidermidis (one that was forming biofilm and one that was not) on new or used teatcups made of silicone for use in milking parlours for sheep, was assessed for 24 h after the application by smearing on the surface of the teatcup. Staphylococci were applied by smearing on an area of 0.0003142 (3.142 × 10−4) m2 on material obtained from the teatcups and their growth and expansion further on were monitored for 24 h at varying ambient conditions: temperature 21 °C or 31 °C and humidity 60% or 80%. No differences were evident between the two isolates in the frequency of recoveries in any of the conditions tested (p > 0.75 for all comparisons). Recovery rates were higher in humidity 80% compared to humidity 60%: 1678/2016 (83.2%) versus 1282/2016 (63.6%) (p < 0.0001), and in temperature 31 °C compared to temperature 21 °C: 1525/2016 (75.6%) versus 1435/2016 (71.2%) (p = 0.001). Recovery rates were also higher from new teatcups compared to used ones only in humidity 60%: 744/1008 (73.8%) versus 538/1008 (53.4%) (p < 0.0001). Humidity 80% was associated with higher speed of linear dissemination of the isolates on teatcup surface compared to humidity 60%: 0.000000640 (6.40 × 10−7) m s−1 versus 0.000000322 (3.22 × 10−7) m s−1 (+98.8%) (p < 0.0001); no such association was seen with higher temperature: 0.000000509 (5.09 × 10−7) m s−1 versus 0.000000453 (4.53 × 10−7) m s−1 for temperature 31 °C and 21 °C (+12.4%) (p = 0.29). As part of precision livestock farming, differing approaches can be instituted in accord with varying climatic conditions in different farms, as well as within the same farm with the change of seasons.

4.
Microorganisms ; 9(4)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921135

ABSTRACT

The growth of two Staphylococcus epidermidis isolates (one biofilm-forming and one not) on teatcups for cattle (made of rubber) or sheep (made of silicone) were assessed in nine multiplicates for 24 h post-smearing on the teatcup surface. Staphylococci were smeared on an area of 0.0003142 m2 on the material and their growth and expansion further on were monitored for 24 h. There were no differences in the frequency of recoveries between the two isolates (p > 0.82 for all comparisons). There were more recoveries from sheep teatcups than from cattle teatcups: 1280/1728 (74.1%) versus 942/1728 (54.5%), for both isolates (p < 0.0001). Significance was observed only 6 h to 15 h after smearing (p < 0.0001 for all comparisons). The median speed of linear dissemination of the isolates was 0.00000021 m s-1 on cattle teatcups and 0.00000033 m s-1 on sheep teatcups (p < 0.0001). The increased growth and faster expansion of staphylococci on silicone teatcups raise important points from a clinical viewpoint. The model could be used in the testing of staphylococcal growth in the material of milking parlours in various conditions.

5.
Pathogens ; 10(4)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33804878

ABSTRACT

There is a paucity of information regarding staphylococcal populations on teatcups of milking parlours in sheep and goat farms. The objectives were to describe the populations of staphylococci on teatcups in milking parlours in sheep or goat farms in two field investigations throughout Greece and to potentially associate the findings with the use of anti-staphylococcal mastitis vaccinations in the farms visited during the two investigations. In a cross-sectional (255 sheep and 66 goat farms across Greece) and a longitudinal (12 sheep farms, four samplings, throughout lactation) study, swab samples were collected from 1418 teatcups (upper and lower part) for staphylococcal recovery, identification and assessment of biofilm-formation. A total of 328 contaminated teatcups (23.1%) were found in 105 sheep (41.2%) and 35 goat (53.0%) farms. Staphylococci were more frequently recovered from the upper than the lower part of teatcups: 269 versus 139 teatcups, respectively. After identification, 253 staphylococcal isolates were found: Staphylococcus aureus, Staphylococcus equorum, Staphylococcus lentus, and Staphylococcus capitis predominated. Of these isolates, 87.4% were biofilm-forming. The proportion of contaminated teatcups was smaller in farms where vaccination against anti-staphylococcal mastitis in general or vaccination specifically against mastitis caused specifically by biofilm-forming staphylococcal strains was applied, 19.7% or 10.9%, respectively, versus 25.5% in farms without vaccination. In the longitudinal study, contaminated teatcups were identified in 28 (58.3%) sampling occasions, with staphylococci being recovered more frequently from their upper part. The same species as in the cross-sectional study predominated. Of these isolates, 61.9% were biofilm-forming. In farms where vaccination against mastitis caused specifically by biofilm-forming staphylococcal strains was applied, the proportion of contaminated teatcups was smaller: 20.4% versus 48.3% in farms without vaccination. There were no differences in proportions of contaminated teatcups between sampling occasions. In conclusion, the great majority of staphylococci recovered from teatcups of milking parlours in sheep and goat farms included biofilm-forming isolates. Reduced staphylococcal isolation was noted in farms where anti-staphylococcal vaccination was performed; this was possibly the effect of reduced excretion of staphylococci in the milk of vaccinated animals.

6.
J Dairy Sci ; 104(1): 532-538, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33189272

ABSTRACT

This research followed our previous experimental and simulation work on the effect of different teatcup removal settings based on the rolling average milk flowrate and on milking duration at the quarter and udder levels. The aims of this experiment were to (1) quantify the differences in quarter milking duration in a pasture-based automatic milking system and (2) test the effect of increasing the milk flowrate at which teatcups are removed on the last milking quarter on udder milking duration, box time, milk production rate, and somatic cell count (SCC). Milking duration is an important component of efficiency and profitability in conventional and automatic milking systems. Additionally, quarters within an udder have significantly different milk yields and milking durations. This study used data from April to May 2018 of a pasture-based automatic milking system to evaluate quarter milking duration differences between quarters of an udder. Subsequently, we experimentally evaluated the use of 2 percentage-based teatcup removal settings applied to the last milking quarter (i.e., the last quarter with a teatcup still attached) on milking duration, box time, milk production rate, and SCC. The teatcup removal settings were at 30 or 50% of the last quarter's rolling average milk flowrate, while the other quarters remained at the 30% level. The selection of the quarter that would receive the more aggressive teatcup removal setting was determined by identifying the last quarter with a teatcup attached in every milking. Sixty-nine cows were divided into 2 groups that each received 1 of the 2 treatments for a 1-wk period and then switched to the other treatment for a second week. For the months of April and May 2018, quarter milking duration was significantly different between the quarter with the longest and the second longest milking duration within an udder. The quarter with the longest milking duration was milked on average 49 s longer than the quarter with second longest milking duration. However, in 36% of the milkings, the quarter with the longest milking duration was different from that of the previous milking. In the experimental part of this study, we saw no differences in milking duration, box time, milk production rate, or SCC between the 30 and 50% teatcup removal setting applied to the last milking quarter. Further research on using a variation of this percentage-based setting to target the quarter with the average longest milking duration or using an absolute milk flowrate switch-point or a maximum milking duration setting on the last quarter for reducing cow milking duration and box time is warranted.


Subject(s)
Cattle , Dairying/methods , Milk , Animals , Cell Count/veterinary , Female , Lactation , Mammary Glands, Animal , Time Factors
7.
J Dairy Sci ; 102(9): 8423-8430, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31326171

ABSTRACT

In automatic milking systems (AMS), it is important to maximize the amount of milk harvested per day to increase profitability. One strategy to achieve this goal is to reduce the time it takes to milk each cow. Several studies in conventional milking systems have shown that milking time can be reduced by increasing the milk flow rate at which the teatcup is removed. One study analyzed the effect of increasing the milk flow switch point on milking time in a confinement AMS. No research has been conducted on teatcup removal settings in pasture-based automatic milking systems. Furthermore, not all AMS remove the teatcups based on absolute milk flow rate (kg/min); hence, it is important to study alternative strategies. The aim of this experiment was to measure the effect of 3 novel teatcup removal strategies on box time (time in the AMS), milking time, somatic cell count (SCC), and milk production rate of cows milked in a pasture-based automatic milking system. Each teatcup removal strategy in this study was applied for a period of 1 wk to 1 of 3 groups of cows and then switched to the following group until cows had transitioned through all treatments. The teatcup removal strategies consisted of removing the teatcup when the quarter flow rate fell below 20% of the quarter rolling average milk flow rate (TRS20), when quarter milk flow rate was below 30% of the rolling average milk flow rate (TRS30), and when quarter milk flow rate dropped below 50% of the rolling average milk flow rate (TRS50). A limit prevented teatcup removal if the calculated milk flow rate for teatcup removal was above 0.5 kg/min. This limit was in place for all treatments; however, it only affected the TRS50 treatment. The TRS30 strategy had 9-s shorter milking time and 11-s shorter box time than the TRS20 removal strategy. The TRS50 strategy had 8-s shorter milking time and 9-s shorter box time than the TRS20 teatcup removal strategy. There was no significant difference in milking time or box time between the TRS30 and TRS50 teatcup removal strategies, probably due to the large variability in milk flow rate at teatcup removal. The TRS20 and TRS30 strategies did not differ in SCC or milk production rate. The 0.5 kg/min limit, which affected roughly 25% of milkings in the TRS50 treatment, may have distorted the effect that this setting had on milk time, box time, milk production rate, or SCC. The difference in box time for the TRS30 and TRS50 strategies could allow for more than 3 extra milkings per day.


Subject(s)
Dairying/methods , Lactation/physiology , Milk/cytology , Animals , Cattle , Cell Count , Dairying/instrumentation , Female , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL