Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Microbiol ; 23(1): 329, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932695

ABSTRACT

The emergence of tigecycline-resistant tet(X2/X3/X4/X5) genes poses a new threat to the efficacy of anti-infective therapy and the safety of our food and environment. To control the transfer of such genes, a sensitive and rapid molecular method is warranted to detect tet(X2/X3/X4/X5) genes in clinical isolates. Herein, we established a loop-mediated isothermal amplification (LAMP) assay to rapidly detect tet(X2/X3/X4/X5) genes, and the results were assessed by chromogenic visualization. The specificity and sensitivity of the primers during the LAMP assay for the simultaneous detection of tet(X2/X3/X4/X5) genes were determined in this study. All 48 clinical strains without tet(X2/X3/X4/X5) genes yielded negative results during the LAMP assay, substantiating the high specificity of the LAMP primers. The detection thresholds of this assay were 1.5 × 102 CFU/ml and 0.2 fg/uL corresponding to a 10 to 100-fold and 100-fold increase in sensitivity compared to polymerase chain reaction (PCR) assays. Out of 52 bacterial strains tested, using PCR as a reference, our research revealed that the LAMP assay demonstrated a sensitivity and specificity of 100%. To sum up, our novel approach has huge prospects for application in the simultaneous detection of tet(X2/X3/X4/X5) genes and can be applied to detect other drug-resistance genes.


Subject(s)
Bacteria , Nucleic Acid Amplification Techniques , Tigecycline , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction , Bacteria/genetics , Anti-Bacterial Agents , Microbial Sensitivity Tests , Plasmids
2.
Microb Drug Resist ; 29(12): 541-551, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37733298

ABSTRACT

Purpose: Chryseobacterium indologenes is a clinically relevant microorganism that has been on the rise, with multidrug-resistant (MDR) strains being reported. C. indologenes carrying tet(X2) has been demonstrated to be resistant to the antibiotic tigecycline, yet, sensitive to all other members of the tetracycline family. This inconsistency in resistance prompts an inquiry into the contribution of tet(X2) to tigecycline resistance in C. indologenes. Materials and Methods: In this study, we report on a comprehensive analysis of the genomic mechanisms underlying tigecycline resistance in a MDR C. indologenes strain (CI3125) that was resistant to tigecycline but sensitive to tetracycline, doxycycline, and minocycline. We used whole-genome sequencing, quantitative reverse transcription PCR, Western blot, antibiotic-degrading tests, and efflux pump inhibiting tests to reveal the mechanism of tigecycline resistance in C. indologenes and elucidate the inconsistency in the antibiotic resistance mechanism for the tetracycline family. Results: Our findings demonstrate that CI3125 carries 60 antibiotic resistance genes distributed on 6 different genetic islands (GIs), with the potential for horizontal transfer. Notably, the tet(X2) gene is located on GI06 of CI3125. Genetic environment analysis of tet(X2) showed that all tet(X2) genes in Flavobacterium and Bacteroides share a conservative and functional ribosome-binding site upstream. Contrary to expectation, our RT-qPCR showed that tet(X2) was not transcribed in CI3125, and Western blot suggested the absence of tet(X2) protein in CI3125. Rather, we demonstrate that minimum inhibitory concentration values for tigecycline decreased two- to eight-folds in the presence of five different efflux pump inhibitors [1-(1-naphthyl- methyl)-piperazine, phenyl-arginine-ß-naphthylamide, verapamil, reserpine, and carbonyl cyanide 3-chlorophenylhydrazone]. This finding provides evidence for the involvement of efflux pumps in tigecycline resistance, which is likely to be a universal mechanism among C. indologenes. Our study proposes that the inconsistency in resistance to the tetracycline family in CI3125 may be ascribed to the silence of tet(X2) and the functions of efflux pumps for tigecycline. Conclusions: Overall, our results highlight the importance of genomic approaches in understanding the underlying mechanisms of antibiotic resistance in clinically relevant microorganisms. While tet(X2) in CI3125 is silent, our findings suggest that it may be horizontally spread through GIs. Hence, our findings have significant implications for the management of C. indologenes infections in clinical settings.


Subject(s)
Anti-Bacterial Agents , Minocycline , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Minocycline/pharmacology
3.
Emerg Microbes Infect ; 9(1): 1843-1852, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32731802

ABSTRACT

Tigecycline is one of the last-resort antibiotics to treat severe infections. Recently, tigecycline resistance has sporadically emerged with an increasing trend, and Tet(X) family represents a new resistance mechanism of tigecycline. In this study, a novel chromosome-encoded tigecycline resistance gene, tet(X14), was identified in a tigecycline-resistant and colistin-resistant Empedobacter stercoris strain ES183 recovered from a pig fecal sample in China. Tet(X14) shows 67.14-96.39% sequence identity to the other variants [Tet(X) to Tet(X13)]. Overexpression of Tet(X14) in Escherichia coli confers 16-fold increase in tigecycline MIC (from 0.125 to 2 mg/L), which is lower than that of Tet(X3), Tet(X4) and Tet(X6). Structural modelling predicted that Tet(X14) shared a high homology with the other 12 variants with RMSD value from 0.003 to 0.055, and Tet(X14) can interact with tetracyclines by a similar pattern as the other Tet(X)s. tet(X14) and two copies of tet(X2) were identified on a genome island with abnormal GC content carried by the chromosome of ES183, and no mobile genetic elements were found surrounding, suggesting that tet(X14) might be heterologously obtained by ES183 via recombination. Blasting in Genbank revealed that Tet(X14) was exclusively detected on the chromosome of Riemerella anatipestifer, mainly encoded on antimicrobial resistance islands. E. stercoris and R. anatipestifer belong to the family Flavobacteriaceae, suggesting that the members of Flavobacteriaceae maybe the major reservoir of tet(X14). Our study reports a novel chromosome-encoded tigecycline resistance gene tet(X14). The expanded members of Tet(X) family warrants the potential large-scale dissemination and the necessity of continuous surveillance for tet(X)-mediated tigecycline resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Flavobacteriaceae/drug effects , Flavobacteriaceae/genetics , Tetracycline Resistance/genetics , Tigecycline/pharmacology , Animals , China , Drug Resistance, Multiple, Bacterial/genetics , Feces/microbiology , Genome, Bacterial/genetics , Microbial Sensitivity Tests , Swine , Swine Diseases/virology
4.
Virulence ; 11(1): 49-56, 2020 12.
Article in English | MEDLINE | ID: mdl-31885319

ABSTRACT

A growing number of tet(X)-type tigecycline resistance determinants [tet(X1) to tet(X5)] constitutes an expanding family of tetracycline-inactivating enzymes, posing a potential risk to global public health. Here, we report the development of an efficient multiplex PCR method to detect the family of tet(X) variants. This method is successfully applied in the screen and validation of tet(X) genes in the field and clinic bacterial samples. In addition, we found that the formerly proposed tet(X1) is a premature truncated version by the inappropriate annotation, and fixed this error. Overall, it might be the first genetic tool for the detection of different Tet(X) members.


Subject(s)
Genes, Bacterial/genetics , Multiplex Polymerase Chain Reaction/methods , Tetracycline Resistance/genetics , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/genetics , Sensitivity and Specificity , Tigecycline
SELECTION OF CITATIONS
SEARCH DETAIL