Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.253
Filter
1.
Small ; : e2405276, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092684

ABSTRACT

Halide perovskites are of great interest due to their exceptional optical and optoelectronic properties. However, thermal conductivity of many halide perovskites remains unexplored. In this study, an ultralow lattice thermal conductivity κL (0.24 W m-1 K-1 at 300 K) is reported and its weak temperature dependence (≈T-0.27) in an all-inorganic vacancy-ordered halide perovskite, Cs3Bi2Br9. The intrinsically ultralow κL can be attributed to the soft low-lying phonon modes with strong anharmonicity, which have been revealed by combining experimental heat capacity and Raman spectroscopy measurements, and first-principles calculations. It is shown that the highly anharmonic phonons originate from the Bi 6s2 lone pair expression with antibonding states of Bi 6s and Br 4p orbitals driven by the dynamic BiBr6 octahedral distortion. Theoretical calculations reveal that these low-energy phonons are mostly contributed by large Br motions induced dynamic distortion of BiBr6 octahedra and large Cs rattling motions, verified by the synchrotron X-ray pair distribution function analysis. In addition, the weak temperature dependence of κL can be traced to the wave-like tunneling of phonons, induced by the low-lying phonon modes. This work reveals the strong anharmonicity and wave-like tunneling of low-energy phonons for designing efficient vacancy-ordered halide perovskites with intrinsically low κL.

2.
Sci Rep ; 14(1): 18554, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122858

ABSTRACT

Crystallization occurs as dissolved substances gradually solidify into crystal layers within a liquid, which can increase the capability of fluids to transfer heat. In this study, the growth of crystal layer in nanofluids produced from carbon-based effervescent tablets was examined. The tablets were fabricated by combining multi-walled carbon nanotubes (MWCNTs), sodium dodecyl sulfate (SDS), sodium phosphate monobasic (NaH2PO4), and sodium carbonate (Na2CO3). The effervescent tablets were formulated with MWCNTs, NaH2PO4, and Na2CO3 at a weight ratio of 1:5.1:2.26, respectively. These tablets were then immersed in distilled water (DW) and seawater (SW) to produce 0.05 vol.% to 0.15 vol.% MWCNT suspensions. Then, the dispersion stability, thermal conductivity, and crystal layer growth of the nanofluids were characterized. The results showed that the DW-based nanofluids were more stable than their SW-based counterparts. Additionally, the 0.05 vol.% DW-based suspension exhibited greater long-term stability than those of the 0.15 vol.% suspensions, whereas the SW-based nanofluid exhibited the opposite behaviour. The greatest increases in thermal conductivity were 3.29% and 3.13% for 0.15 vol.% MWCNTs in DW and SW, respectively. The crystallization process occurred in nanofluids that contained more than 0.05 vol.% MWCNTs and exhibited a greater growth rate in SW-based suspensions with high effervescent agent concentrations.

3.
Materials (Basel) ; 17(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39124295

ABSTRACT

Thermochromic phase change materials (TPCMs) are gaining increasing interest among scientists. These multifunctional materials can store thermal energy but also, at the same time, during the phase transition, they can change colour. Thermal conductivity is also extremely important for this type of material, which is why various additives are used for this purpose. This work aimed to study the properties of thermochromic phase change materials with an inorganic modifier. Stearic acid, behenyl alcohol, and bromocresol purple were used as thermochromic system components, while boron nitride particles were used as an additive. The key tests for such systems are thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), which allow determining the thermal stability of the materials (at around 170 °C) and phase transition parameters (thermal energy storage of 300 J/g in the range of 40-75 °C). The thermochromic properties were tested, and satisfactory results were obtained. In the end, laser flash analysis (LFA) tests indicated that boron nitride improves the thermal conductivity of the organic thermochromic phase change material by almost 30%. The results showed that the tested materials have great potential as thermochromic phase change materials for thermal energy storage.

4.
Materials (Basel) ; 17(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39124375

ABSTRACT

Chromium-plated diamond/copper composite materials, with Cr layer thicknesses of 150 nm and 200 nm, were synthesized using a vacuum hot-press sintering process. Comparative analysis revealed that the thermal conductivity of the composite material with a Cr layer thickness of 150 nm increased by 266%, while that with a Cr layer thickness of 200 nm increased by 242%, relative to the diamond/copper composite materials without Cr plating. This indicates that the introduction of the Cr layer significantly enhanced the thermal conductivity of the composite material. The thermal properties of the composite material initially increased and subsequently decreased with rising sintering temperature. At a sintering temperature of 1050 °C and a diamond particle size of 210 µm, the thermal conductivity of the chromium-plated diamond/copper composite material reached a maximum value of 593.67 W∙m-1∙K-1. This high thermal conductivity is attributed to the formation of chromium carbide at the interface. Additionally, the surface of the diamond particles in contact with the carbide layer exhibited a continuous serrated morphology due to the interface reaction. This "pinning effect" at the interface strengthened the bonding between the diamond particles and the copper matrix, thereby enhancing the overall thermal conductivity of the composite material.

5.
Materials (Basel) ; 17(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39124391

ABSTRACT

The internal pore structural characteristics and microbubble distribution features of concrete have a significant impact on its frost resistance, but their size is relatively small compared to aggregates, making them difficult to visually represent in the mesoscopic numerical model of concrete. Therefore, based on the ice-crystal phase transition mechanism of pore water and the theory of fine-scale inclusions, this paper establishes an estimation model for effective thermal conductivity and permeability coefficients that can reflect the distribution characteristics of the internal pore size and the content of microbubbles in porous media and explores the evolution mechanism of effective thermal conductivity and permeability coefficients during the freezing process. The segmented Gaussian integration method is adopted for the calculation of integrals involving pore size distribution curves. In addition, based on the concept that the fracture phase represents continuous damage, a switching model for the permeability coefficient is proposed to address the fundamental impact of frost cracking on permeability. Finally, the proposed estimation models for thermal conductivity and permeability are applied to the cement mortar and the interface transition zone (ITZ), and a thermal-hydraulic-mechanical coupling finite element model of concrete specimens at the mesoscale based on the fracture phase-field method is established. After that, the frost-cracking mechanism in ordinary concrete samples during the freezing process is explored, as well as the mechanism of microbubbles in relieving pore pressure and the adverse effect of accelerated cooling on frost cracking. The results show that the cracks first occurred near the aggregate on the concrete sample surface and then extended inward along the interface transition zone, which is consistent with the frost-cracking scenario of concrete structures in cold regions.

6.
Macromol Rapid Commun ; : e2400527, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137308

ABSTRACT

With the widespread application of highly integrated electronic devices, the urgent development of multifunctional polymer-based composite materials with high electromagnetic interference shielding effectiveness (EMI SE) and thermal conductivity capabilities is critically essential. Herein, a graphene/carbon felt/polyimide (GCF/PI) composite is prepared through constructing 3D van der Waals heterostructure by heating carbon felt and graphene at high temperature. The GCF-3/PI composite exhibits the highest through-plane thermal conductivity with 1.31 W·m-1·K-1, when the content of carbon felt and graphene is 14.1 and 1.4 wt.%, respectively. The GCF-3/PI composite material achieves a thermal conductivity that surpasses pure PI by 4.9 times. Additionally, GCF-3/PI composite shows an outstanding EMI SE of 69.4 dB compared to 33.1 dB for CF/PI at 12 GHz. The 3D van der Waals heterostructure constructed by carbon felt and graphene sheets is conducive to the formation of continuous networks, providing fast channels for the transmission of phonons and carriers. This study provides a guidance on the impact of 3D van der Waals heterostructures on the thermal and EMI shielding properties of composites.

7.
Macromol Rapid Commun ; : e2400356, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137315

ABSTRACT

The optimization of flame retardancy and thermal conductivity in epoxy resin (EP), utilized in critical applications such as mechanical components and electronics packaging, is a significant challenge. This study introduces a novel, ultrasound-assisted self-assembly technique to create a dual-functional filler consisting of carbon nanotubes and ammonium polyphosphate (CNTs@APP). This method, leveraging dynamic ligand interactions and strategic solvent selection, allows for precise control over the assembly and distribution of CNTs on APP surfaces, distinguishing it from conventional blending approaches. The integration of 7.5 wt.% CNTs@APP10 into EP nanocomposites results in substantial improvements in flame retardancy, as evidenced by a limiting oxygen index (LOI) value of 31.8% and achievement of the UL-94 V-0 rating. Additionally, critical fire hazard indicators, including total heat release (THR), total smoke release (TSR), and the peak intensity of CO yield (PCOY), are significantly reduced by 45.9% to 77.5%. This method also leads to a remarkable 3.6-fold increase in char yield, demonstrating its game-changing potential over traditional blending techniques. Moreover, despite minimal CNTs addition, thermal conductivity is notably enhanced, showing a 53% increase. This study introduces a novel approach in the development of multifunctional EP nanocomposites, offering potential for wide range of applications.

8.
Article in English | MEDLINE | ID: mdl-39137951

ABSTRACT

Anisotropic cellulose nanofiber (CNF) foams represent the state-of-the-art in renewable insulation. These foams consist of large (diameter >10 µm) uniaxially aligned macropores with mesoporous pore-walls and aligned CNF. The foams show anisotropic thermal conduction, where heat transports more efficiently in the axial direction (along the aligned CNF and macropores) than in the radial direction (perpendicular to the aligned CNF and macropores). Here we explore the impact on axial and radial thermal conductivity upon depositing a thin film of reduced graphene oxide (rGO) on the macropore walls in anisotropic CNF foams. To obtain rGO films on the foam walls we developed liquid-phase self-assembly to deposit rGO in a layer-by-layer fashion. Using electron and ion microscopy, we thoroughly characterized the resulting rGO-CNF foams and confirmed the successful deposition of rGO. These hierarchical rGO-CNF foams show lower radial thermal conductivity (λr) across a wide range of relative humidity compared to CNF control foams. Our work therefore demonstrates a potential method for improved thermal insulation in anisotropic CNF foams and introduces versatile self-assembly for postmodification of such foams.

9.
Sci Rep ; 14(1): 18733, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134601

ABSTRACT

Improper waste management is causing global environmental problems. Waste glass may have adverse impacts on the ecosystem. While a substantial amount of soda-lime glass bottle (SGB) undergoes recycling to create new glass items, a significant volume still ends up in landfills. Therefore, the aim of this study was to explore the potential use of SGB in foamed concrete (FC) production as an aggregate replacement. SGB was substituted for sand in different weight fractions, ranging from 5 to 50%. The fresh state, mechanical, thermal, pore structure, and transport properties were examined. The findings showed a significant enhancement in the FC's mechanical properties when SGB replaced 20% of sand. The compressive, flexural, and splitting tensile strengths exhibited a rise of up to 17.7, 39.4, and 43.8%, respectively. The findings also demonstrated that the addition of SGB improved the thermal conductivity, sorptivity, water absorption, and porosity. The scanning electron microscopy analysis indicated that the inclusion of 20% SGB caused a substantial decrease in void diameter and enhanced its uniformity. A comparison was made between the experimental data and predictions of the mechanical properties using various models of international standards, such as IS 456, ACI 318, NZS-3101, EC-02, AS 3600, and CEB-FIB, along with several references in the literature. The findings implied a strong correlation between the strength properties. The outcomes of this research offer valuable insights into both the possible advantages and constraints of using SGB in FC. Furthermore, this extensive laboratory investigation may serve as a guideline for future study and aid in the advancement of greener and more environmentally friendly FC alternatives.

10.
Nanomaterials (Basel) ; 14(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39120364

ABSTRACT

Polymeric composites with boron nitride nanosheets (BNNs), which are thermally conductive yet electrically insulating, have been pursued for a variety of technological applications, especially those for thermal management in electronic devices and systems. Highlighted in this review are recent advances in the effort to improve in-plane thermal transport performance in polymer/BNNs composites and also the growing research activities aimed at composites of enhanced cross-plane or isotropic thermal conductivity, for which various filler alignment strategies during composite fabrication have been explored. Also highlighted and discussed are some significant challenges and major opportunities for further advances in the development of thermally conductive composite materials and their mechanistic understandings.

11.
Nanomaterials (Basel) ; 14(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39120377

ABSTRACT

This brief review covers the thermoelectric properties of one-dimensional materials, such as nanowires and nanotubes. The highly localised peaks of the electronic density of states near the Fermi levels of these nanostructured materials improve the Seebeck coefficient. Moreover, quantum confinement leads to discrete energy levels and a modified density of states, potentially enhancing electrical conductivity. These electronic effects, coupled with the dominance of Umklapp phonon scattering, which reduces thermal conductivity in one-dimensional materials, can achieve unprecedented thermoelectric efficiency not seen in two-dimensional or bulk materials. Notable advancements include carbon and silicon nanotubes and Bi3Te2, Bi, ZnO, SiC, and Si1-xGex nanowires with significantly reduced thermal conductivity and increased ZT. In all these nanowires and nanotubes, efficiency is explored as a function of the diameter. Among these nanomaterials, carbon nanotubes offer mechanical flexibility and improved thermoelectric performance. Although carbon nanotubes theoretically have high thermal conductivity, the improvement of their Seebeck coefficient due to their low-dimensional structure can compensate for it. Regarding flexibility, economic criteria, ease of fabrication, and weight, carbon nanotubes could be a promising candidate for thermoelectric power generation.

12.
Nanomaterials (Basel) ; 14(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39120414

ABSTRACT

The development of pressure ulcers, associated with increased temperature and moisture in specific areas of the body, and the risk of microbial infections in patients lying in a static position for prolonged periods of time represents a serious issue in medicine. In order to prevent the formation of pressure ulcers, this work aims to present advanced nanostructured coatings developed by three research groups. Nanometric silver, ash and functionalized torrefied biomass were the basis for the treatment of wound dressings to improve thermal conductivity and antimicrobial properties of the conventional cotton gauzes. Each treatment was performed according to its own optimized method. The treated fabrics were characterized in terms of antimicrobial properties, heat transfer, morphology and hydrophobic behavior. The results demonstrated the effectiveness of the deposition treatments also in synergistic actions. In particular, the antibacterial efficacy was improved in all the samples by the addition of silver treatment, and the thermal conductivity was enhanced by around 58% with nanometric ashes. A further step of the study involved the designing of two multilayer systems evaluated using circuit models for determining the total thermal conductivity. In this way, both systems were designed with the aim to guarantee simultaneous efficacy: high antibacterial and hydrophilic properties at the skin level and more hydrophobic and conductive behaviors toward the external environment.

13.
Polymers (Basel) ; 16(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125147

ABSTRACT

Isocyanates are critical components that affect the crosslinking density and structure of polyurethane (PU) foams. However, due to the cost and hazardous nature of the precursor for isocyanate synthesis, there is growing interest in reducing their usage in polyurethane foam production-especially in rigid PU foams (RPUF) where isocyanate is used in excess of the stoichiometric ratio. In this study, lignin-containing nanocellulose fibrils (LCNF) were explored as mechanical reinforcements for RPUF with the goal of maintaining the mechanical performance of the foam while using less isocyanate. Different amounts of LCNF (0-0.2 wt.%) were added to the RPUF made using isocyanate indices of 1.1, 1.05, 1.0, and 0.95. Results showed that LCNF served as a nucleating agent, significantly reducing cell size and thermal conductivity. LCNF addition increased the crosslinking density of RPUF, leading to enhanced compressive properties at an optimal loading of 0.1 wt.% compared to unreinforced foams at the same isocyanate index. Furthermore, at the optimal loading, LCNF-reinforced foams made at lower isocyanate indices showed comparable stiffness and strength to unreinforced foams made at higher isocyanate indices. These results highlight the reinforcing potential of LCNF in rigid polyurethane foams to improve insulation and mechanical performance with lower isocyanate usage.

14.
Polymers (Basel) ; 16(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39125165

ABSTRACT

The development of thermally conductive polymer/boron nitride (BN) composites with excellent electrically insulating properties is urgently demanded for electronic devices. However, the method of constructing an efficient thermally conductive network is still challenging. In the present work, heterostructured multi-walled carbon nanotube-boron nitride (MWCNT-BN) hybrids were easily prepared using an electrostatic self-assembly method. The thermally conductive network of the MWCNT-BN in the thermoplastic polyurethane (TPU) matrix was achieved by the electrospinning and stack-molding process. As a result, the in-plane thermal conductivity of TPU composite films reached 7.28 W m-1 K-1, an increase of 959.4% compared to pure TPU films. In addition, the Foygel model showed that the MWCNT-BN hybrid filler could largely decrease thermal resistance compared to that of BN filler and further reduce phonon scattering. Finally, the excellent electrically insulating properties (about 1012 Ω·cm) and superior flexibility of composite film make it a promising material in electronic equipment. This work offers a new idea for designing BN-based hybrids, which have broad prospects in preparing thermally conductive composites for further practical thermal management fields.

15.
Sci Rep ; 14(1): 18593, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127766

ABSTRACT

The Mercury Sulphohalides have attracted significant attention in the fields of solar cells and thermoelectric applications. This study delves into the fundamental characteristics, including structural, elasticity, electronic behavior, phonon stability, optical properties, and transport features of AgHgSZ (Z = Br, I) through computational simulations based on Density Functional Theory (DFT) using WIEN2k software. Meticulous calculations of the phonon band structure ensure dynamic stability. The semiconductor nature with indirect band gaps (1.833 eV and 1.832 eV) for Mercury Sulphohalides (Br, I), as revealed by their band structures, suggests diverse photovoltaic and transport applications. Mechanical assessments show stable ductility for AgHgSBr and brittleness for AgHgSI, along with anisotropy and resistance to scratching. Optical properties exhibit anisotropy and significant UV absorption. Analysis of effective masses, exciton binding energy, and exciton Bohr radius suggests low exciton binding energy and classification under Mott-Wannier excitons. Positive thermopower results indicate holes as the predominant charge carriers in AgHgSBr and AgHgSI materials. Moreover, essential thermoelectric factors are examined, revealing the compounds' potential for thermoelectric applications. Notably, the figure of merit (ZT) at 300 K for AgHgSBr and AgHgSI are calculated to be 0.41 and 0.13, respectively. While these values are low at 300 K, they indicate promising potential for thermoelectric applications at higher temperatures. In summary, this investigation provides valuable understanding into the photovoltaic and thermoelectric properties of AgHgSZ (Z = Br, I) materials, potentially paving the way for further exploration in this domain.

16.
Small Methods ; : e2400441, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39118580

ABSTRACT

The structured processing of graphite is complex and challenging, in which expanded graphite plays a crucial role. Given its superior physical and chemical properties, expanded graphite finds extensive application in diverse domains such as electrochemistry and thermal management. However, the traditional preparation process is inconvenient in effectively meeting the design requirements on the macro and micro scales, which presents a challenge for the structured processing of expanded graphite materials. Here, an innovative method is first proposed for the controllable preparation of expanded graphite microspheres. Inspired by the explosion process of popcorn, the controlled gas release inside the natural flake graphite during chemical expansion is regulated by fuming sulfuric acid, realizing the controllable preparation of expanded graphite microspheres. Subsequently, sulfur trioxide can also intensify the degree of oxidation on the surface of the microspheres. The controllable microsphere morphology endows the composite with good isotropic network bonding, with considerable thermal conductivity of 1.703 W m-1 K-1 at low loading of 10 wt.% and reliable cyclic stability. This work opens up a new way for the morphology control of expanded graphite and provides a novel design thought for the physical and chemical structure control of carbon materials in the future.

17.
Nano Lett ; 24(32): 9990-9997, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39101516

ABSTRACT

Liquid crystal elastomers (LCEs), consisting of polymer networks and liquid crystal mesogens, show a reversible phase change under thermal stimuli. However, the kinetic performance is limited by the inherently low thermal conductivity of the polymers. Transforming amorphous bulk into a fiber enhances thermal conductivity through the alignment of polymer chains. Challenges are present due to their rigid networks, while cross-links are crucial for deformation. Here, we employ hydrodynamic alignment to orient the LCE domains assisted by controlled in situ cross-linking and to remarkably reduce the diameter to submicrons. We report that the intrinsic thermal conductivity of LCE fibers at room temperature reaches 1.44 ± 0.32 W/m-K with the sub-100 nm diameter close to the upper limit determined in the quasi-1D regime. Combining the outstanding thermal conductivity and thin diameters, we anticipate these fibers to exhibit a rapid response and high force output in thermomechanical systems. The fabrication method is expected to apply to other cross-linked polymers.

18.
Sci Rep ; 14(1): 17272, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068193

ABSTRACT

Apparent thermal conductivity of soil (λ) as a function of soil water content (θ), i.e., λ(θ) is needed to determine the heat flow in soil. The function of λ(θ) can be used in heat and water flow models for simplicity. The objective of this study was to develop a sigmoidal model based on logistic equation for entire range of soil water contents and a wide range of soil textures that can be used in simulation of heat and water flow in respected modes. Further, performance of the developed sigmoidal model along with two other models in literature was evaluated. In the proposed sigmoidal model, the constants of this model are estimated based on empirical multivariate equations by using soil sand content and bulk density. The sigmoidal model was validated with good accuracy for a wide range of soil textures, as the relationship between the measured and predicted λ showed slope and intercept values of nearly 1.0 and 0.0, respectively. Comparison of the results obtained by sigmoidal model with those obtained from Johansen and Lu et al. models indicated that, the sigmoidal model was superior to the other two models in prediction of λ for a wide range of soil textures and soil water contents. Furthermore, comparison with a recently proposed model by Xiong et al. indicated that our sigmoidal model is superior. Therefore, our developed sigmoidal model can be used in heat and water flow models to predict the soil temperature and heat flow.

19.
Biomimetics (Basel) ; 9(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39056884

ABSTRACT

Considering that global awareness for sustainable development has risen to face environmental damages, different building materials have been considered from a mechanical perspective. In this sense, considering the richness of South America regarding its woods, the Guayacan and the Ecuadorian oak timbers have not been previously characterized. The present research has performed mechanical, thermal, and moisture content characterizations to acknowledge the benefits of considering these materials for the building industries. In this sense, Guayacan has been shown to have lower thermal conductivity, making it ideal for thermal insulation; the oak from Manabi showed the best compressive strength; while the oak from El Oro stands with the best tensile strength; and the oak from Loja showed the best modulus of elasticity. On the other hand, all the materials were compared by multicriteria decision methods to select the best, by using the COPRAS method driven by the objective entropy-weighted method, showing that the oak from Loja is the best choice considering the advantage that presents with the modulus of elasticity. In this sense, it is concluded that regarding the mechanical properties, there is not much difference for the compression, bending, and tensile strength; nevertheless, for the modulus of elasticity the oak from Loja stands out, making it a factor to be considered in the selection of a wood for building applications that is corroborated through multicriteria decision methods.

20.
Molecules ; 29(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39064891

ABSTRACT

Using density functional theory combined with the first principles calculation method of non-equilibrium Green's function (NEGF-DFT), we studied the thermoelectric (TE) characteristics of one-dimensional γ-graphdiyne nanoribbons (γ-GDYNRs). The study found that the thermal conductivity of γ-GDYNRs has obvious anisotropy. At the same temperature and geometrical size, the lattice thermal conductivity of zigzag-edged γ-graphdiyne nanoribbons (γ-ZGDYNRs) is much lower than that of armchair-edged γ-graphdiyne nanoribbons (γ-AGDYNRs). We disclose the underlying mechanism for this intrinsic orientation. That is, γ-AGDYNRs have more phonon dispersion over the entire frequency range. Furthermore, the orientation dependence increases when the width of the γ-GDYNRs decreases. These excellent TE properties allow armchair-edged γ-graphdiyne nanoribbons with a planar width of 1.639 nm (γ-Z(2)GDYNRs) to have a higher power factor and lower thermal conductivity, ultimately resulting in a significantly higher TE conversion rate than other γ-GDYNR structures.

SELECTION OF CITATIONS
SEARCH DETAIL